Projecting Water Yield Amidst Rapid Urbanization: A Case Study of the Taihu Lake Basin
<p>Geographical location and water distribution of the TLB.</p> "> Figure 2
<p>Flowchart for evaluating the spatiotemporal patterns of WY under multiple future scenarios in the TLB.</p> "> Figure 3
<p>The proportions of land use types under three future scenarios.</p> "> Figure 4
<p>Changes in LULC types in the TLB from 2000 to 2020.</p> "> Figure 5
<p>LULC transfer Sankey map for 2000—2020 (km<sup>2</sup>).</p> "> Figure 6
<p>Comparison of the 2020 forecasted results and actual situation.</p> "> Figure 7
<p>LULC changes in the TLB in 2030 under different scenarios.</p> "> Figure 8
<p>Water yield and the precipitation in the TLB from 2000 to 2020.</p> "> Figure 9
<p>WY depths of different LULC types.</p> "> Figure 10
<p>WY changes in the TLB under different scenarios.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Preprocessing
2.3. Methods
2.3.1. Water Yield Calculation Using InVEST
2.3.2. Future LULC Simulation Using PLUS
2.3.3. LULC Scenario Simulation and Threshold Setting
3. Results and Analysis
3.1. Spatiotemporal Analysis of LULC
3.1.1. Dynamic Changes in LULC
3.1.2. Transition Analysis of LULC
3.1.3. Analysis of the Land Prediction Results
3.2. Analysis of Water Yield Variation Characteristics in the TLB
3.2.1. Analysis of Spatiotemporal Variations in WY
3.2.2. Water Yield of Different LULC Types
3.2.3. Analysis of WY Prediction Results Under Multiple Scenarios
4. Discussion
4.1. Effects of Land Use Changes on Water Yield
4.2. Advantages and the Constraints of the Model Used in This Research
4.3. Shortcomings and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howarth, R.B.; Farber, S. Accounting for the value of ecosystem services. Ecol. Econ. 2002, 41, 421–429. [Google Scholar] [CrossRef]
- Sagoff, M. On the economic value of ecosystem services. Environ. Values 2008, 17, 239–257. [Google Scholar] [CrossRef]
- Bastian, O.; Grunewald, K.; Syrbe, R.-U. Space and time aspects of ecosystem services, using the example of the EU Water Framework Directive. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 5–16. [Google Scholar] [CrossRef]
- Chen, X.; Lin, S.; Tian, J.; Wang, Y.; Ye, Y.; Dong, S.; Gong, X.; Lin, Q.; Zhu, L. Simulation study on water yield service flow based on the InVEST-Geoda-Gephi network: A case study on Wuyi Mountains, China. Ecol. Indic. 2024, 159, 111694. [Google Scholar] [CrossRef]
- Liu, J.; Qin, K.; Xie, G.; Xiao, Y.; Huang, M.; Gan, S. Is the ‘water tower’reassuring? Viewing water security of Qinghai-Tibet Plateau from the perspective of ecosystem services ‘supply-flow-demand’. Environ. Res. Lett. 2022, 17, 094043. [Google Scholar] [CrossRef]
- Zhout, Y.; Wang, B.; Zhu, W.; Feng, L.; He, Q.; Zhang, X.; Wu, T.; Yan, N. Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions. Comput. Electron. Agric. 2024, 219, 108835. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.-d.; Zhen, L.; Lu, C.-x.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Bagstad, K.J.; Semmens, D.J.; Winthrop, R. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona. Ecosyst. Serv. 2013, 5, 40–50. [Google Scholar] [CrossRef]
- Peh, K.S.-H.; Balmford, A.; Bradbury, R.B.; Brown, C.; Butchart, S.H.; Hughes, F.M.; Stattersfield, A.; Thomas, D.H.; Walpole, M.; Bayliss, J. TESSA: A toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation importance. Ecosyst. Serv. 2013, 5, 51–57. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Feng, J.; Wang, Y.; Liu, K. Evaluation of social values for ecosystem services in urban riverfront space based on the solves model: A case study of the fenghe river, Xi’an, China. Int. J. Environ. Res. Public Health 2021, 18, 2765. [Google Scholar] [CrossRef] [PubMed]
- Waage, S. New business decision-making aids in an era of complexity, scrutiny, and uncertainty: Tools for identifying, assessing, and valuing ecosystem services. In Handbook on the Economics of Ecosystem Services and Biodiversity; Edward Elgar Publishing: Cheltenham, UK, 2014; pp. 546–566. [Google Scholar]
- Li, S.; Zhou, Y.; Yue, D.; Guo, Z.; Li, Z. Scenario Simulation of Ecosystem Services Based on Land Use/Land Cover Change in the Bailong River Basin, in China. Land 2024, 14, 25. [Google Scholar] [CrossRef]
- Huang, C.-H.; Yang, J.; Zhang, W.-J. Development of ecosystem services evaluation models: Research progress. Chin. J. Ecol. 2013, 32, 3360. [Google Scholar]
- Smithers, J.; Gray, R.; Johnson, S.; Still, D. Modelling and water yield assessment of Lake Sibhayi. Water SA 2017, 43, 480–491. [Google Scholar] [CrossRef]
- Ai, J.; Sun, X.; Feng, L.; Li, Y.; Zhu, X. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China. Front. Earth Sci. 2015, 9, 531–545. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, Y.; Alatalo, J.M.; Yang, Z.; Jiang, B. Scale effects on the relationships between land characteristics and ecosystem services-a case study in Taihu Lake Basin, China. Sci. Total Environ. 2020, 716, 137083. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, J.I.; Vicente-Serrano, S.; Moran-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; García-Ruiz, J. Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrol. Earth Syst. Sci. 2011, 15, 311–322. [Google Scholar] [CrossRef]
- Nahib, I.; Ambarwulan, W.; Rahadiati, A.; Munajati, S.L.; Prihanto, Y.; Suryanta, J.; Turmudi, T.; Nuswantoro, A.C. Assessment of the impacts of climate and LULC changes on the water yield in the Citarum River Basin, West Java Province, Indonesia. Sustainability 2021, 13, 3919. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, L.; Chiew, F.; Fu, B. Understanding the impacts of climate and landuse change on water yield. Curr. Opin. Environ. Sustain. 2018, 33, 167–174. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, W.; Feng, L.; Gao, J.; Chen, Y.; Zhang, X.; Luo, J. Hierarchical classification for improving parcel-scale crop mapping using time-series Sentinel-1 data. J. Environ. Manag. 2024, 369, 122251. [Google Scholar]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, Y.; He, J.; Liu, D. Regional land-use allocation using a coupled MAS and GA model: From local simulation to global optimization, a case study in Caidian District, Wuhan, China. Cartogr. Geogr. Inf. Sci. 2014, 41, 363–378. [Google Scholar] [CrossRef]
- Guo, H.W.; Sun, X.Y.; Lian, L.S.; Zhang, D.; Xu, Y. Response of water yield function of ecosystem to land use change in Nansi Lake Basin based on CLUE-S model and InVEST model. J. Appl. Ecol. 2016, 27, 2899–2906. [Google Scholar]
- Peng, K.; Jiang, W.; Deng, Y.; Liu, Y.; Wu, Z.; Chen, Z. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecol. Indic. 2020, 117, 106671. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, P.; Tian, Y.; Chen, H.; Chen, Y. Exploring the impact of integrated spatial function zones on land use dynamics and ecosystem services tradeoffs based on a future land use simulation (FLUS) model. Ecol. Indic. 2023, 150, 110246. [Google Scholar] [CrossRef]
- Tobias, J.A.; Durant, S.M.; Pettorelli, N. Improving predictions of climate change–land use change interactions. Trends Ecol. Evol. 2021, 36, 29–38. [Google Scholar]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Sun, X.-X.; Xue, J.-H.; Dong, L.-N. Spatiotemporal change and prediction of carbon storage in Nanjing ecosystem based on PLUS model and InVEST model. J. Ecol. Rural Environ. 2023, 39, 41–51. [Google Scholar]
- Wang, C.; Li, T.; Guo, X.; Xia, L.; Lu, C.; Wang, C. Plus-InVEST Study of the Chengdu-Chongqing urban agglomeration’s land-use change and carbon storage. Land 2022, 11, 1617. [Google Scholar] [CrossRef]
- Hu, N.; Xu, D.; Zou, N.; Fan, S.; Wang, P.; Li, Y. Multi-scenario simulations of land use and habitat quality based on a PLUS-InVEST model: A case study of baoding, China. Sustainability 2022, 15, 557. [Google Scholar] [CrossRef]
- Chen, J.; Alimujiang, K.; Rukeya, R.; Bohao, W.; Fuqiang, H.; Yan, Z. Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model. J. Arid Land 2024, 16, 852–875. [Google Scholar] [CrossRef]
- Xu, L.; Chen, S.S.; Xu, Y.; Li, G.; Su, W. Impacts of land-use change on habitat quality during 1985–2015 in the Taihu Lake Basin. Sustainability 2019, 11, 3513. [Google Scholar] [CrossRef]
- Taihu Basin Authority (TBA), Ministry of Water Resources (MWR). Comprehensive Plan of the Taihu Lake Basin 2012–2030; Taihu Basin Authority (TBA), Ministry of Water Resources (MWR): Shanghai, China, 2012. [Google Scholar]
- Li, P.; Li, H.; Yang, G.; Zhang, Q.; Diao, Y. Assessing the hydrologic impacts of land use change in the Taihu Lake Basin of China from 1985 to 2010. Water 2018, 10, 1512. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, H.; Liu, E.; Wang, J.; Wang, Y. Spatial distribution and stratigraphic characteristics of surface sediments in Taihu Lake, China. Chin. Sci. Bull. 2011, 56, 179–187. [Google Scholar] [CrossRef]
- Sun, X.; Xiong, S.; Zhu, X.; Zhu, X.; Li, Y.; Li, B.L. A new indices system for evaluating ecological-economic-social performances of wetland restorations and its application to Taihu Lake Basin, China. Ecol. Model. 2015, 295, 216–226. [Google Scholar] [CrossRef]
- Verberg, K.; Stockmann, U.; Cocks, B.; Manning, B.; Austin, J. Soil water-methods to predict plant available water capacity (PAWC) using soil-landscape associations. Grains Res. Update 2018, 32, 33–43. [Google Scholar]
- Choudhury, B. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K. InVEST 3.14.1. User’s Guide. Nat. Cap. Proj. 2020. [Google Scholar]
- Posner, S.; Verutes, G.; Koh, I.; Denu, D.; Ricketts, T. Global use of ecosystem service models. Ecosyst. Serv. 2016, 17, 131–141. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.; Chiew, F.H.; Western, A.; Briggs, P. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Tan, Y.; Yang, G. Quantifying and optimizing agroecosystem services in China’s Taihu Lake Basin. J. Environ. Manag. 2021, 277, 111440. [Google Scholar] [CrossRef]
- Ocloo, D.M. Water yield of the Volta Basin under future land use and climate change. Environ. Dev. Sustain. 2023, 1–26. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Cai, Z.; Wu, C.; Ye, C. Effects of land-use and land-cover change on nitrogen transport in northern Taihu Basin, China during 1990–2017. Sustainability 2020, 12, 3895. [Google Scholar] [CrossRef]
- Samal, D.R.; Gedam, S. Assessing the impacts of land use and land cover change on water resources in the Upper Bhima river basin, India. Environ. Chall. 2021, 5, 100251. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D.; Tao, W. Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environ. Earth Sci. 2021, 80, 72. [Google Scholar] [CrossRef]
- Yang, X.; Gu, X.; Zhang, P.; Liu, J.; Zhang, W.; Long, A. Assessment of the Impacts of Climate and Land Use Changes on Water Yield in the Ebinur Lake Basin. Land 2024, 13, 1324. [Google Scholar] [CrossRef]
- Lang, Y.; Song, W.; Zhang, Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys. Chem. Earth Parts A/B/C 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Canqiang, Z.; Wenhua, L.; Biao, Z.; Moucheng, L. Water yield of Xitiaoxi river basin based on InVEST modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar] [CrossRef]
- Dai, Y.; Qiao, X.; Yang, Y.; Liu, L.; Chen, Y.; Zhang, J.; Zhao, T. Optimizing Land Use to Mitigate Ecosystem Service Trade-Offs Using Multi-Scenario Simulation in the Luo River Basin. Land 2024, 13, 1243. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Zhang, J.; Ma, X.; Zhou, L.; Sun, Y. Spatial-temporal changes in ecosystem services and social-ecological drivers in a typical coastal tourism city: A case study of Sanya, China. Ecol. Indic. 2022, 145, 109607. [Google Scholar] [CrossRef]
- Tao, Y.; Li, Z.; Sun, X.; Qiu, J.; Pueppke, S.G.; Ou, W.; Guo, J.; Tao, Q.; Wang, F. Supply and demand dynamics of hydrologic ecosystem services in the rapidly urbanizing Taihu Lake Basin of China. Appl. Geogr. 2023, 151, 102853. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Impacts of future climate and land use change on water yield in a semiarid basin in Iran. Land Degrad. Dev. 2020, 31, 1252–1264. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Chu, J. Research on land-use evolution and ecosystem services value response in mountainous counties based on the SD-PLUS model. Ecol. Evol. 2022, 12, e9431. [Google Scholar] [CrossRef] [PubMed]
Data Type | Data Name | Data Resolution | Data Source |
---|---|---|---|
LULC Data | LULC Data | 30 m | https://data.casearth.cn/ (acecessed on 6 March 2023) |
Socioeconomic Data | Distance to Railways/Roads | 1 km | https://www.openstreetmap.org/ (acecessed on 24 March 2023) |
Population | 1 km | https://www.resdc.cn/ (acecessed on 24 March 2023) | |
GDP | 1 km | https://www.resdc.cn/ | |
DEM | 1 km | http://www.gscloud.cn (acecessed on 24 March 2023) | |
Climate Data | Slope and Aspect Data | 1 km | Generated from DEM |
Soil Physicochemical Properties | 1 km | http://globalchange.bnu.edu.cn/ (acecessed on 6 March 2023) | |
Annual Evapotranspiration | 1 km | https://portal.casearth.cn/ (acecessed on 6 March 2023) | |
Annual Average Precipitation | 1 km | https://portal.casearth.cn/ | |
Annual Average Temperature | 1 km | https://portal.casearth.cn/ |
LULC | Cropland | Forest | Grassland | Water Bodies | Construction Land | Unused Land |
---|---|---|---|---|---|---|
2020 | 18,135.9 | 3855.8 | 188.1 | 4816.1 | 9569.7 | 8.8 |
2030ND | 16,531.0 | 3748.4 | 212.0 | 4900.7 | 11,172.8 | 9.4 |
2030UD | 16,118.8 | 3740.7 | 204.3 | 4880.0 | 11,621.3 | 9.3 |
2030EP | 17,563.3 | 3766.8 | 218.9 | 4924.4 | 10,091.5 | 9.5 |
Variety | Cropland | Forest | Grassland | Water Bodies | Construction Land | Unused Land |
---|---|---|---|---|---|---|
−2,254,105 | −112,567 | 44,512 | 136,556 | 2,184,696 | 908 | |
weight | 0 | 0.4824 | 0.5178 | 0.5385 | 1 | 0.5080 |
ND Scenario | UD Scenario | EP Scenario | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
D | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
E | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
F | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Study Period | Cropland | Forest | Grassland | |||
---|---|---|---|---|---|---|
Change Area (km2) | Change | Change Area (km2) | Change | Change Area (km2) | Change | |
% | % | % | ||||
2000–2010 | −3980 | −1.65% | −9.0 | −0.02% | 24.79 | 2.01% |
2010–2020 | −2029 | −1.01% | −100.5 | −0.25% | 39.99 | 2.70% |
Study Period | Water bodies | Construction land | Unused land | |||
Change Area (km2) | Change | Change Area (km2) | Change | Change Area (km2) | Change | |
% | % | % | ||||
2000–2010 | 456.5 | 1.01% | 3773 | 9.80% | 5.2 | 18.48% |
2010–2020 | −147.8 | −0.30% | 1966 | 2.60% | 0.8 | 1.00% |
LULC (2020) | Cropland | Forest | Grassland | Water Bodies | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Actual proportion | 50.24% | 10.56% | 0.50% | 13.13% | 25.55% | 0.02% |
Simulated proportion | 49.59% | 10.54% | 0.51% | 13.17% | 26.16% | 0.02% |
Year | Development Scenario | Cropland | Forest | Grassland | Water | Construction | Unused Land | |
---|---|---|---|---|---|---|---|---|
Area | 2020 | - | 18,135.9 | 3855.8 | 188.1 | 4816.1 | 9569.7 | 8.8 |
2030 | ND | 16,531.0 | 3754.0 | 212.0 | 4900.6 | 11,172.8 | 7.4 | |
UD | 16,118.8 | 3793.6 | 204.3 | 4832.4 | 11,621.3 | 7.5 | ||
EP | 17,563.3 | 3865.6 | 181.8 | 4868.7 | 10,091.5 | 7.0 | ||
Total percent change | ND | −8.86% | −2.68% | 12.77% | 1.76% | 16.75% | −16.11% | |
UD | −11.13% | −1.66% | 8.67% | 0.34% | 21.43% | −14.77% | ||
EP | −3.17% | 0.21% | −3.29% | 1.10% | 5.45% | −20.84% |
Area | Total WY/108 m3 | Precipitation/mm | ||||
---|---|---|---|---|---|---|
Year | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 |
Lake West and Lake Area | 91.25 | 93.04 | 110.35 | 963.0 | 977.2 | 1087.6 |
Wuyang District | 43.43 | 42.15 | 51.42 | 884.1 | 870.6 | 992.0 |
Hangjiahu District | 46.49 | 41.72 | 50.43 | 1019.2 | 951.6 | 1079.5 |
Huangpu River District | 28.09 | 24.61 | 30.48 | 1019.2 | 841.0 | 975.0 |
Total | 209.27 | 201.52 | 242.70 | 963.5 | 932.2 | 1051.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Zhou, Y.; Zhu, W.; Feng, L.; Liu, L. Projecting Water Yield Amidst Rapid Urbanization: A Case Study of the Taihu Lake Basin. Land 2025, 14, 149. https://doi.org/10.3390/land14010149
Zhou R, Zhou Y, Zhu W, Feng L, Liu L. Projecting Water Yield Amidst Rapid Urbanization: A Case Study of the Taihu Lake Basin. Land. 2025; 14(1):149. https://doi.org/10.3390/land14010149
Chicago/Turabian StyleZhou, Rui, Yanan Zhou, Weiwei Zhu, Li Feng, and Lumeng Liu. 2025. "Projecting Water Yield Amidst Rapid Urbanization: A Case Study of the Taihu Lake Basin" Land 14, no. 1: 149. https://doi.org/10.3390/land14010149
APA StyleZhou, R., Zhou, Y., Zhu, W., Feng, L., & Liu, L. (2025). Projecting Water Yield Amidst Rapid Urbanization: A Case Study of the Taihu Lake Basin. Land, 14(1), 149. https://doi.org/10.3390/land14010149