Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model
<p>The Cork Brook watershed empties into the Scituate Reservoir, the main drinking water supply for the City of Providence, Rhode Island, USA.</p> "> Figure 2
<p>A simulated 2009–2010 hydrograph produced by the calibrated Cork Brook SWAT model compared to observed data from USGS Gauge 01115280.</p> "> Figure 3
<p>Streamflow scatterplot of modeled and observed average daily streamflow from USGS gauge 0111528 during 2009–2010.</p> "> Figure 4
<p>The number of days per month that stream temperatures exceeded the stress threshold of 21 °C during the stream temperature calibration and validation periods (2010–2013).</p> "> Figure 5
<p>Simulated flow duration curves by decade generated by the SWAT model with the hydroclimatological component. Stream discharge is equal to zero at the 100th percentile.</p> "> Figure 6
<p>Cork Brook simulated flow duration curve and stream temperatures for SWAT with the hydroclimatological component over three decades. (<b>a</b>) 1980–1989, (<b>b</b>) 1990–1999 (<b>c</b>) 2000–2009 and (<b>d</b>) 1980–2009. The secondary <span class="html-italic">y</span>-axis begins at 21 °C and any temperatures that are not above the stressful threshold are not shown in the figures. The stream temperatures in the Q25–Q75 range are omitted from each figure.</p> "> Figure 6 Cont.
<p>Cork Brook simulated flow duration curve and stream temperatures for SWAT with the hydroclimatological component over three decades. (<b>a</b>) 1980–1989, (<b>b</b>) 1990–1999 (<b>c</b>) 2000–2009 and (<b>d</b>) 1980–2009. The secondary <span class="html-italic">y</span>-axis begins at 21 °C and any temperatures that are not above the stressful threshold are not shown in the figures. The stream temperatures in the Q25–Q75 range are omitted from each figure.</p> "> Figure 7
<p>The number of days per decade that stream temperatures exceeded the stress threshold of 21 °C during the 2-, 7- and 10-day moving averages at the lowest 25th flow percentile.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Model Calibration & Validation
3.1.1. Stream Discharge
3.1.2. Stream Temperature
3.2. Stream Conditions and Stressful Event Analysis
4. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G. Changes in the timing of high river flows in New England over the 20th century. J. Hydrol. 2003, 278, 244–252. [Google Scholar] [CrossRef]
- Hayhoe, K.; Wake, C.P.; Huntington, T.G.; Luo, L.; Schwartz, M.D.; Sheffield, J.; Wood, E.; Anderson, B.; Bradbury, J.; DeGaetano, A.; et al. Past and future changes in climate and hydrological indicators in the US Northeast. Clim. Dyn. 2007, 28, 381–407. [Google Scholar] [CrossRef]
- Eaton, J.G.; Scheller, R.M. Effects of climate warming on fish thermal habitat in streams of the United States. Limnol. Oceanogr. 1996, 41, 1109–1115. [Google Scholar] [CrossRef]
- Mohseni, O.; Stefan, H.G.; Eaton, J.G. Global warming and potential changes in fish habitat in U.S. Streams. Clim. Chang. 2003, 59, 389–409. [Google Scholar] [CrossRef]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [PubMed]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Doll, P.; Jiang, T.; Mwakalila, S.S. 2014: Freshwater Resources. In Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 40. [Google Scholar]
- Whitney, J.E.; Al-Chokhachy, R.; Bunnell, D.B.; Caldwell, C.A.; Cooke, S.J.; Eliason, E.J.; Rogers, M.; Lynch, A.J.; Paukert, C.P. Physiological basis of climate change impacts on North American inland fishes. Fisheries 2016, 41, 332–345. [Google Scholar] [CrossRef]
- Mohseni, O.; Erickson, T.R.; Stefan, H.G. Sensitivity of stream temperatures in the United States to air temperatures projected under a global warming scenario. Water Resour. Res. 1999, 35, 3723–3733. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Brett, J.R. Some principles in the thermal requirements of fishes. Q. Rev. Biol. 1956, 31, 75–87. [Google Scholar] [CrossRef]
- Raleigh, R.F. Habitat Suitability Index Models: Brook Trout; 82/10.24; U.S. Fish and Wildlife Service: Washington, DC, USA, 1982.
- Fry, F.E.J. The effect of environmental factors on the physiology of fish. In Fish Physiology; Hoar, W.S., Randall, D.J., Eds.; Academic Press: Cambridge, MA, USA, 1971; Volume 6, pp. 1–98. [Google Scholar]
- Hokanson, K.E.F.; McCormick, J.H.; Jones, B.R.; Tucker, J.H. Thermal requirements for maturation, spawning, and embryo survival of the brook trout, Salvelinus fontinalis. J. Fish. Res. Board Can. 1973, 30, 975–984. [Google Scholar] [CrossRef]
- Milner, N.J.; Elliott, J.M.; Armstrong, J.D.; Gardiner, R.; Welton, J.S.; Ladle, M. The natural control of salmon and trout populations in streams. Fish. Res. 2003, 62, 111–125. [Google Scholar] [CrossRef]
- Goniea, T.M.; Keefer, M.L.; Bjornn, T.C.; Peery, C.A.; Bennett, D.H.; Stuehrenberg, L.C. Behavioral thermoregulation and slowed migration by adult fall chinook salmon in response to high Columbia River water temperatures. Trans. Am. Fish. Soc. 2006, 135, 408–419. [Google Scholar] [CrossRef]
- Peterson, J.T.; Kwak, T.J. Modeling the effects of land use and climate change on riverine smallmouth bass. Ecol. Appl. 1999, 9, 1391–1404. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Erkan, D.E. Strategic Plan for the Restoration of Anadromous Fishes to Rhode Island Coastal Streams; Rhode Island Department of Environmental Management, Division of Fish and Wildlife: Providence, RI, USA, 2002.
- WPWA. Maximum Daily Stream Temperature in the Queen River Watershed and Mastuxet Brook Summer 2006. Wood-Pawcatuck Watershed Association. Available online: http://www.wpwa.org/reports/2006TemperatureStudy.pdf (accessed on 1 October 2016).
- Hakala, J.P.; Hartman, K.J. Drought effect on stream morphology and brook trout (Salvelinus fontinalis) populations in forested headwater streams. Hydrobiologia 2004, 515, 203–213. [Google Scholar] [CrossRef]
- Chadwick, J.J.G.; Nislow, K.H.; McCormick, S.D. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold-water fish. Conserv. Physiol. 2015, 3, cov017. [Google Scholar] [CrossRef] [PubMed]
- Letcher, B.H.; Nislow, K.H.; Coombs, J.A.; O’Donnell, M.J.; Dubreuil, T.L. Population response to habitat fragmentation in a stream-dwelling brook trout population. PLoS ONE 2007, 2, e1139. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.M.; Rinne, J.N. Critical thermal maxima of five trout species in the southwestern United States. Trans. Am. Fish. Soc. 1980, 109, 632–635. [Google Scholar] [CrossRef]
- Bjornn, T.; Reiser, D. Habitat requirements of salmonids in streams. Am. Fish. Soc. Spec. Publ. 1991, 19, 138. [Google Scholar]
- Kling, G.W.; Hayhoe, K.; Johnson, L.B.; Magnuson, J.J.; Polasky, S.; Robinson, S.K.; Shuter, B.J.; Wander, M.M.; Wuebbles, D.J.; Zak, D.R. Confronting Climate Change in the Great Lakes Region: Impacts on Our Communities and Ecosystems; Union of Concerned Scientists: Cambridge, MA, USA; Ecological Society of America: Washington, DC, USA, 2003; p. 92. [Google Scholar]
- Magnuson, J.J.; Crowder, L.B.; Medvick, P.A. Temperature as an ecological resource. Am. Zool. 1979, 19, 331–343. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Freeman, M.C.; Pringle, C.M.; Jackson, C.R. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 5–14. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 1995, 76, 606–627. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Bassar, R.D.; Letcher, B.H.; Nislow, K.H.; Whiteley, A.R. Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout. Glob. Chang. Biol. 2016, 22, 577–593. [Google Scholar] [CrossRef] [PubMed]
- DePhilip, M.; Moberg, T. Ecosystem Flow Recommendations for the Susquehanna River Basin; The Nature Conservancy: Harrisburg, PA, USA, 2010. [Google Scholar]
- Nuhfer, A.J.; Zorn, T.G.; Wills, T.C. Effects of reduced summer flows on the brook trout population and temperatures of a groundwater-influenced stream. Ecol. Freshw. Fish 2017, 26, 108–119. [Google Scholar] [CrossRef]
- Walters, A.W.; Post, D.M. An experimental disturbance alters fish size structure but not food chain length in streams. Ecology 2008, 89, 3261–3267. [Google Scholar] [CrossRef] [PubMed]
- Ficklin, D.L.; Luo, Y.; Stewart, I.T.; Maurer, E.P. Development and application of a hydroclimatological stream temperature model within the soil and water assessment tool. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Hayhoe, K.; Wake, C.; Anderson, B.; Liang, X.-Z.; Maurer, E.; Zhu, J.; Bradbury, J.; DeGaetano, A.; Stoner, A.M.; Wuebbles, D. Regional climate change projections for the northeast USA. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 425–436. [Google Scholar] [CrossRef]
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Chang. 2012, 113, 499–524. [Google Scholar] [CrossRef]
- Mohseni, O.; Stefan, H.G. Stream temperature/air temperature relationship: A physical interpretation. J. Hydrol. 1999, 218, 128–141. [Google Scholar] [CrossRef]
- Null, S.; Viers, J.; Deas, M.; Tanaka, S.; Mount, J. Stream temperature sensitivity to climate warming in California’s Sierra Nevada. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 13–17 December 2010. [Google Scholar]
- Preud’homme, E.B.; Stefan, H.G. Relationship between Water Temperatures and Air Temperatures for Central US Streams; EPA/600/R-92/243; U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
- Brennan, L. Stream Temperature Modeling: A Modeling Comparison for Resource Managers and Climate Change Analysis. Master’s Thesis, University of Massachusetts, Amherst, MA, USA, 2015. [Google Scholar]
- US Geological Survey (USGS). U.G.S. National Water Information System Web Interface, 2015 ed.; US Geological Survey: Reston, VA, USA, 2017.
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and water assessment tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Penman, H.L. Estimating evaporation. Eos Trans. Am. Geophys. Union 1956, 37, 43–50. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- University of Rhode Island. Rhode Island Geographic Information System (RIGIS); University of Rhode Island Rhode Island: Kingston, RI, USA, 2016; Available online: http://www.rigis.org (accessed on 3 September 2017).
- Texas A&M University. Arcswat Software; ArcSWAT 2012.10.19; Texas A&M University: College Station, TX, USA, 2012; Available online: http://swat.tamu.edu/ (accessed on 3 September 2017).
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.; Megown, K. Completion of the 2011 national land cover database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Rhode Island Geographic Information System (RIGIS). Data Distribution System SOIL_soils. Available online: http://www.rigis.org/geodata/soil/Soils16.zip (accessed on 5 September 2016).
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The ncep climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Texas A&M University. NCEP Global Weather Data for Swat. Available online: http://swat.tamu.edu/ (accessed on 3 January 2016).
- Abbaspour, K.C. SWAT Calibration and Uncertainty Program—A User Manual; Swat-Cup 2012; Swiss Federal Institute of Aquatic Science and Technology, Eawag: Duebendorf, Switzerland, 2013. [Google Scholar]
- Abbaspour, K. User Manual for Swat-Cup, Swat Calibration and Uncertainty Analysis Programs; Swiss Federal Institute of Aquatic Science and Technology, Eawag: Duebendorf, Switzerland, 2007. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the iroquois river watershed using HSPF and SWAT. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Liew, M.W.V.; Veith, T.L.; Bosch, D.D.; Arnold, J.G. Suitability of swat for the conservation effects assessment project: Comparison on usda agricultural research service watersheds. J. Hydrol. Eng. 2007, 12, 173–189. [Google Scholar] [CrossRef]
- Pradhanang, S.M.; Mukundan, R.; Schneiderman, E.M.; Zion, M.S.; Anandhi, A.; Pierson, D.C.; Frei, A.; Easton, Z.M.; Fuka, D.; Steenhuis, T.S. Streamflow responses to climate change: Analysis of hydrologic indicators in a New York city water supply watershed. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 1308–1326. [Google Scholar] [CrossRef]
- Stefan, H.G.; Preud’homme, E.B. Stream temperature estimation from air temperature. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated base flow separation and recession analysis techniques. Ground Water 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Ficklin, D.L. Swat Stream Temperature Executable Code; Indiana State University: Terre Haute, IN, USA, 2012. [Google Scholar]
- Pyrce, R. Hydrological Low Flow Indices and Their Uses; Watershed Science Centre (WSC) Report; Trent University: Peterborough, ON, Canada, 2004. [Google Scholar]
- Smakhtin, V.U. Low flow hydrology: A review. J. Hydrol. 2001, 240, 147–186. [Google Scholar] [CrossRef]
- Ahearn, E.A. Flow Durations, Low-Flow Frequencies, and Monthly Median Flows for Selected Streams in Connecticut through 2005; US Department of the Interior: Washington, DC, USA; US Geological Survey: Reston, VA, USA, 2008.
- Armstrong, D.S.; Richards, T.A.; Parker, G.W. Assessment of Habitat, Fish Communities, and Streamflow Requirements for Habitat Protection, Ipswich River, Massachusetts, 1998–99; Department of the Interior, US Geological Survey: Reston, VA, USA, 2001.
- Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and ground water recharge from streamflow records. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Johnson, S.L. Factors influencing stream temperatures in small streams: Substrate effects and a shading experiment. Can. J. Fish. Aquat. Sci. 2004, 61, 913–923. [Google Scholar] [CrossRef]
- Wake, C.P.; Keeley, C.; Burakowski, E.; Wilkinson, P.; Hayhoe, K.; Stoner, A.; LaBrance, J. Climate Change in Northern New Hampshire: Past, Present and Future; Climate Solutions New England: Durham, NH, USA, 2014. [Google Scholar]
- Wake, C. Rhode Island’s Climate: Past and Future Changes; Climate Solutions New England: Durham, NH, USA, 2014; p. 2. [Google Scholar]
Parameter | Definition | Value Range | Units |
---|---|---|---|
CN2.mgt | SCS runoff curve number | −0.40–0.75 | - |
ALPHA_BF.gw | Baseflow alpha factor | 0.0–0.10 | 1/Days |
GW_DELAY.gw | Groundwater delay | 0.0–7.0 | Days |
GWQMN.gw | Depth of water in shallow aquifer for return flow | 200–1000 | mm |
v__SMTMP.bsn | Snowmelt base temperature | −0.5–2.0 | °C |
ESCO.hru | Soil evaporation compensation factor | 0.15–0.65 | - |
EPCO.hru | Plant uptake compensation factor | 0.15–65 | - |
SLSOIL.hru | Slope length for lateral subsurface flow | 0.0–150.0 | m |
Streamflow | R2 | NSE | PBIAS |
---|---|---|---|
Calibration | 0.70 | 0.71 | −0.01 |
Validation | 0.54 | 0.50 | 0.03 |
Time Period | Alpha | Beta | Phi | K | Lag Time |
---|---|---|---|---|---|
1–180 | 1.0 | 1.0 | 1.0 | 1.0 | 4 |
181–270 | 1.0 | 1.0 | 0.8 | 0.8 | 2 |
271–330 | 1.0 | 1.0 | 0.8 | 0.8 | 2 |
331–366 | 1.0 | 1.0 | 1.0 | 0.7 | 4 |
Model Type | R2 | NSE | Mean Stream Temperature |
---|---|---|---|
Basic SWAT Calibration | 0.93 | 0.83 | 12.5 °C |
Basic SWAT Validation | 0.94 | 0.83 | 12.9 °C |
Ficklin Calibration | 0.95 | 0.93 | 9.9 °C |
Ficklin Validation | 0.96 | 0.94 | 10.0 °C |
Date | Indicator | Any Type of Stress | Stream Temp. >21 °C | Q25 or Q75 Flow | Stressful Event |
---|---|---|---|---|---|
1980–1989 | Days | 2066 | 252 | 1814 | 84 |
% Chance | 56.6 | 6.9 | 49.7 | 2.3 | |
1990–1999 | Days | 2049 | 228 | 1821 | 122 |
% Chance | 56.1 | 6.2 | 49.8 | 3.3 | |
2000–2009 | Days | 2007 | 196 | 1811 | 131 |
% Chance | 54.9 | 5.4 | 49.6 | 3.6 | |
1980–2009 | Days | 6142 | 676 | 5466 | 338 |
% Chance | 56.0 | 6.2 | 49.9 | 3.1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chambers, B.; Pradhanang, S.M.; Gold, A.J. Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model. Water 2017, 9, 667. https://doi.org/10.3390/w9090667
Chambers B, Pradhanang SM, Gold AJ. Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model. Water. 2017; 9(9):667. https://doi.org/10.3390/w9090667
Chicago/Turabian StyleChambers, Britta, Soni M. Pradhanang, and Arthur J. Gold. 2017. "Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model" Water 9, no. 9: 667. https://doi.org/10.3390/w9090667
APA StyleChambers, B., Pradhanang, S. M., & Gold, A. J. (2017). Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model. Water, 9(9), 667. https://doi.org/10.3390/w9090667