A Comparative Study of GRACE with Continental Evapotranspiration Estimates in Australian Semi-Arid and Arid Basins: Sensitivity to Climate Variability and Extremes
<p>(<b>a</b>) Location map of the Murray-Darling and Lake Eyre Basin with climate zone according to the Koppen–Geiger classifications (adapted from [<a href="#B37-water-09-00614" class="html-bibr">37</a>]): A, equatorial; B, arid; C, warm temperate; W, desert; S, steppe; f, fully humid; s, summer dry; m, monsoonal; w, winter dry; h, hot arid; k, cold arid; a, hot summer; b, warm summer. (<b>b</b>,<b>c</b>) Digital elevation model (DEM) and land use maps were accessed from [<a href="#B38-water-09-00614" class="html-bibr">38</a>,<a href="#B39-water-09-00614" class="html-bibr">39</a>], respectively.</p> "> Figure 2
<p>Spatial distribution of mean annual rainfall (P) and mean annual ET derived from PT-CMRS, PM-Mu, AWRA, and GRACE across the Murray-Darling and the Lake Eyre Basins. Boxes A, B, and C show areas that are zoomed in <a href="#water-09-00614-f003" class="html-fig">Figure 3</a>.</p> "> Figure 3
<p>Zoom in mean annual ET values from the four models over three smaller regions (boxes A, B, and C shown in <a href="#water-09-00614-f002" class="html-fig">Figure 2</a>) that are prone to inundation or irrigation.</p> "> Figure 4
<p>Monthly ET time series derived from the four ET datasets with rainfall and potential evaporation (<span class="html-italic">E<sub>p</sub></span>) over the MDB (<b>a</b>) and LEB (<b>b</b>) from 2003 to 2010.</p> "> Figure 5
<p>Monthly ET anomalies during extreme climatic events: peak of Millennium drought and La Niña computed as deviation to monthly averages for the whole study period (August 2003 to July 2010). MDB (<b>a</b>) and LEB (<b>c</b>) during the peak of the Millennium drought; MDB (<b>b</b>) and LEB (<b>d</b>) during the La Niña period.</p> "> Figure 6
<p>Annual rainfall and ET computed in each hydrological year from August 2003 to July 2010 for the MDB (<b>a</b>) and the LEB (<b>b</b>).</p> "> Figure 7
<p>Budyko diagrams for the MDB (<b>a</b>) and the LEB (<b>b</b>). Ea represents the annual ET estimated by PT-CMRS, PM-MU, AWRA and GRACE. Pa is annual rainfall. <span class="html-italic">E<sub>p</sub></span> is potential evapotranspiration based on the Priestley–Taylor method. All the terms were computed for each hydrological annual year from 2003 to 2010.</p> "> Figure 8
<p>Time series of terrestrial water storage anomaly (TWSA) between 2003 and 2010 from GRACE regional solutions over the MDB (red) and the LEB (blue).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Datasets and Methods
2.2.1. Rainfall, Potential Evaporation, and Discharge Data
2.2.2. Model-Based ET Estimates
2.2.3. ET Estimates from GRACE Rainfall and Discharge Observations
2.2.4. Evaluation of ET Estimates Using the Budyko Diagram Scheme
3. Results
3.1. Spatial Evaluation
3.2. Temporal Evaluation
3.2.1. Seasonal Variations
3.2.2. Inter-Annual Variations
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vinukollu, R.K.; Meynadier, R.; Sheffield, J.; Wood, E.F. Multi-model, multi-sensor estimates of global evapotranspiration: Climatology, uncertainties and trends. Hydrol. Process. 2011, 25, 3993–4010. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data. J. Hydrometeorol. 2007, 8, 758–769. [Google Scholar] [CrossRef]
- L’vovich, M.I.; White, G.F. Use and transformation of terrestrial water systems. In The Earth as Transformed by Human Action; Turner, B.L., Ed.; Cambridge University Press: New York, NY, USA, 1990; pp. 235–252. [Google Scholar]
- Chirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J.C.; Ezzahar, J.; Er-Raki, S.; Bigeard, G.; Merlin, O.; Garatuza-Payan, J.; et al. Inter-comparison of four remote sensing based surface energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 895–963. [Google Scholar] [CrossRef]
- Australia. National Water Commission. Australian Water Resources 2005: A Baseline Assessment of Water Resources for the National Water Initiative; National Water Commision: Canberra, Australia, 2006.
- Gowda, P.H.; Senay, G.B.; Howell, T.A.; Marek, T.H. Lysimetric Evaluation of Simplified Surface Energy Balance Approach in the Texas High Plains. Appl. Eng. Agric. 2009, 25, 665–669. [Google Scholar] [CrossRef]
- Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrol. Process. 2011, 25, 4037–4049. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Ferguson, C.R.; Sheffield, J.; Wood, E.F.; Gao, H. Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA. Int. J. Remote Sens. 2010, 31, 3821–3865. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44, W10419. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Heinsch, F.A.; Liu, M.; Tian, H.; Running, S.W. Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. J. Geophys. Res. 2007, 112, G01012. [Google Scholar] [CrossRef]
- Tang, Q.; Peterson, S.; Cuenca, R.H.; Hagimoto, Y.; Lettenmaier, D.P. Satellite-based near-real-time estimation of irrigated crop water consumption. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Mueller, B.; Seneviratne, S.I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J.B.; Guo, Z.; et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based Energy Balance for Mapping Evapotranspiration With Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.-L.; Jia, Y.; Li, C.; Sun, X.; Kustas, W.P.; Anderson, M.C. An intercomparison of three remote sensing-based energy balance models using Large Aperture Scintillometer measurements over a wheat–corn production region. Remote Sens. Environ. 2011, 115, 3187–3202. [Google Scholar] [CrossRef]
- Syed, T.H.; Webster, P.J.; Famiglietti, J.S. Assessing variability of evapotranspiration over the Ganga river basin using water balance computations. Water Resour. Res. 2014, 50, 2551–2565. [Google Scholar] [CrossRef]
- Li, Z.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Li, Z.L.; Sun, X. Temporal upscaling of instantaneous evapotranspiration: An intercomparison of four methods using eddy covariance measurements and MODIS data. Remote Sens. Environ. 2013, 138, 102–118. [Google Scholar] [CrossRef]
- Badgley, G.; Fisher, J.B.; Jiménez, C.; Tu, K.P.; Vinukollu, R. On Uncertainty in Global Terrestrial Evapotranspiration Estimates from Choice of Input Forcing Datasets. J. Hydrometeorol. 2015, 16, 1449–1455. [Google Scholar] [CrossRef]
- Hu, G.; Jia, L.; Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens. Environ. 2015, 156, 510–526. [Google Scholar] [CrossRef]
- Gokmen, M.; Vekerdy, Z.; Verhoef, A.; Verhoef, W.; Batelaan, O.; Tol, C.V.D. Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sens. Environ. 2012, 121, 261–274. [Google Scholar] [CrossRef]
- Ruhoff, A.L.; Paz, A.R.; Collischonn, W.; Aragao, L.E.O.C.; Rocha, H.R.; Malhi, Y.S. A MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas. Remote Sens. 2012, 4, 703–725. [Google Scholar] [CrossRef]
- Olioso, A.; Chauki, H.; Courault, D.; Wigneron, J.P. Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models. Remote Sens. Environ. 1999, 68, 341–356. [Google Scholar] [CrossRef]
- Carlson, T.N.; Taconet, O.; Vidal, A.; Gillies, R.R.; Olioso, A.; Humes, K. An overview of the workshop on thermal remote sensing held at La Londe les Maures, France, September 20–24, 1993. Agric. For. Meteorol. 1995, 77, 141–151. [Google Scholar] [CrossRef]
- Boulet, G.; Mougenot, B.; Lhomme, J.P.; Fanise, P.; Lilichabaane, Z.; Olioso, A.; Bahir, M.; Rivalland, V.; Jarlan, L.; Merlin, O. The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat. Hydrol. Earth Syst. Sci. 2015, 12, 7127–7178. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Yang, D.; Shao, W.; Yeh, J.F.; Yang, H.; Kanae, S.; Oki, T. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour. Res. 2009, 45, 450–455. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Chen, J.; Seneviratne, S.I.; Viterbo, P.; Holl, S.; Wilson, C.R. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Ramillien, G.; Frappart, F.; Guntner, A.; Ngo-Duc, T.; Cazenave, A.; Laval, K. Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Ladson, A. Hydrology: An Australian Introduction; Oxford University Press: Melbourne, Australia, 2008. [Google Scholar]
- Leblanc, M.; Tweed, S.; Van Dijk, A.; Timbal, B. A review of historic and future hydrological changes in the Murray-Darling Basin. Glob. Planet. Chang. 2012, 80–81, 226–246. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 4, 439–473. [Google Scholar] [CrossRef]
- Digital Elevation Model (DEM) of MDB and LEB. Available online: http://www.ga.gov.au/metadata-gateway/metadata/record/72760/ (accessed on 8 March 2017).
- Landuse Map of MDB and LEB. Available online: http://data.daff.gov.au/anrdl/metadata_files/pb_luausg9abll20160616_11a.xml (accessed on 8 March 2017).
- McMahon, T.A.; Murphy, R.E.; Peel, M.C.; Costelloe, J.F.; Chiew, F.H.S. Understanding the surface hydrology of the Lake Eyre Basin: Part 1—Rainfall. J. Arid Environ. 2008, 72, 1853–1868. [Google Scholar] [CrossRef]
- McMahon, T.A.; Murphy, R.E.; Peel, M.C.; Costelloe, J.F.; Chiew, F.H.S. Understanding the surface hydrology of the Lake Eyre Basin: Part 2—Streamflow. J. Arid Environ. 2008, 72, 1869–1886. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Renzullo, L.J.; Wada, Y.; Tregoning, P. A global water cycle reanalysis (2003–2012) reconciling satellite gravimetry and altimetry observations with a hydrological model ensemble. Hydrol. Earth Syst. Sci. 2014, 18, 2955–2973. [Google Scholar] [CrossRef]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.R.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Chiew, F.H.S.; Zhang, L.; Leuning, R.; Cleugh, H.A. Estimating catchment evaporation and runoff using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44, W10420. [Google Scholar] [CrossRef]
- Leblanc, M.J.; Tregoning, P.; Ramillien, G.; Tweed, S.O.; Fakes, A. Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Beck, H.E.; Crosbie, R.S.; de Jeu, R.A.M.; Liu, Y.Y.; Podger, G.M.; Timbal, B.; Viney, N.R. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49, 1040–1057. [Google Scholar] [CrossRef]
- BoM. Available online: http://www.bom.gov.au/ (accessed on 15 May 2014).
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Australian Water Availability Project (AWAP). Available online: http://www.csiro.au/awap/ (accessed on 16 March 2014).
- Raupach, M.R.; Briggs, P.R.; Haverd, V.; King, E.A.; Paget, M.J.; Trudinger, C.M. Australian Water Availability Project (AWAP), CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3; Technical Report No. 013; Centre for Australian Weather and Climate Research: Canberra, Australia, 2009.
- WaterConnect. Available online: https://www.waterconnect.sa.gov.au/ (accessed on 2 April 2014).
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Van Dijk, A.I.J.M.; Mattersdorf, G.; Beringer, J.; Hutley, L.B.; Leuning, R.; Pipunic, R.C.; Sherman, B.S. Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. J. Hydrol. 2009, 369, 107–119. [Google Scholar] [CrossRef]
- WIRADA. Available online: http://remote-sensing.nci.org.au/u39/public/html/wirada/index.shtml (accessed on 17 March 2014).
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- MOD16. Available online: http://www.ntsg.umt.edu/project/mod16 (accessed on 27 May 2014).
- Van Dijk, A.I.J.M.; Renzullo, L.J. Water resource monitoring systems and the role of satellite observations. Hydrol. Earth Syst. Sci. 2011, 15, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, A.I.J.M. Landscape Model (Version 0.5) Technical Description; AWRA Technical Report 3; Water Information Research and Development Alliance/CSIRO Water for a Healthy Country Flagship: Canberra, Australia, 2010. [Google Scholar]
- Ramillien, G.; Biancale, R.; Gratton, S.; Vasseur, X.; Bourgogne, S. GRACE-derived surface water mass anomalies by energy integral approach: Application to continental hydrology. J. Geod. 2011, 85, 313–328. [Google Scholar] [CrossRef]
- Ramillien, G.; Seoane, L.; Frappart, F.; Biancale, R.; Gratton, S.; Vasseur, X.; Bourgogne, S. Constrained Regional Recovery of Continental Water Mass Time-variations from GRACE-based Geopotential Anomalies over South America. Surv. Geophys. 2012, 33, 887–905. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Seoane, L.; Ramillien, G. Validation of GRACE-derived terrestrial water storage from a regional approach over South America. Remote Sens. Environ. 2013, 137, 69–83. [Google Scholar] [CrossRef]
- Seoane, L.; Ramillien, G.; Frappart, F.; Leblanc, M. Regional GRACE-based estimates of water mass variations over Australia: Validation and interpretation. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 5355–5395. [Google Scholar] [CrossRef]
- Ramillien, G.; Frappart, F.; Seoane, L. Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water Management in Africa. Remote Sens. 2014, 6. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Xu, X.; Liu, W.; Scanlon, B.R.; Zhang, L.; Pan, M. Local and global factors controlling water-energy balances within the Budyko framework. Geophys. Res. Lett. 2013, 40, 2013GL058324. [Google Scholar] [CrossRef]
- Potter, N.J.; Lu, Z. Interannual variability of catchment water balance in Australia. J. Hydrol. 2009, 369, 120–129. [Google Scholar] [CrossRef]
- Gulden, L.E.; Rosero, E.; Yang, Z.L.; Rodell, M.; Jackson, C.S.; Niu, G.Y.; Yeh, P.J.F.; Famiglietti, J. Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile? Geophys. Res. Lett. 2007, 34, L09402. [Google Scholar] [CrossRef]
- Zhang, L.; Potter, N.; Hickel, K.; Zhang, Y.; Shao, Q. Water balance modeling over variable time scales based on the Budyko framework—Model development and testing. J. Hydrol. 2008, 360, 117–131. [Google Scholar] [CrossRef]
- Andam-Akorful, S.A.; Ferreira, V.G.; Awange, J.L.; Forootan, E.; He, X.F. Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa. Int. J. Climatol. 2015, 35, 3132–3145. [Google Scholar] [CrossRef]
- Shen, H. Satellite Gravimetry in Water-Limited Environments: Applications and Spatial Enhancement. Ph.D. Thesis, James Cook University, Townsville, Australia, 28 November 2014. [Google Scholar]
Name | Algorithm | Resolution | Forcing Data | Calibration in Australia | ||
---|---|---|---|---|---|---|
Temporal | Spatial (°) | Ground Meteorological Inputs | Remote Sensing Inputs | |||
PT-CMRS | MODIS 1-based retrievals to scale the PT method | 8-day | 0.002 | SILO 2 (temperature + radiation) datasets | MOD13Q1 + MOD09A1 | 7 flux sites (two forests, two savannah, a grassland, a floodplain, and a lake) |
PM-Mu | MODIS-based retrievals to force the PM method | monthly | 0.05 | GMAO 3 datasets | MOD12Q1 + MOD13A2 + MOD15A2 + MOD43C1 | None |
AWRA | Water and energy constrained model | daily | 0.05 | SILO and BAWAP 4 datasets | AVHRR 5 NDVI 6 | 4 flux sites and up to 326 catchments |
Basin | ET Model | Spring (September–November) | Summer (December–February) | Autumn (March–May) | Winter (June–August) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ET (mm) | P (mm) | Ratio | ET (mm) | P (mm) | Ratio | ET (mm) | P (mm) | Ratio | ET (mm) | P (mm) | Ratio | ||
LEB | PT-CMRS | 68.7 | 57.9 | 1.2 | 83.1 | 132.4 | 0.6 | 68.9 | 45.2 | 1.5 | 51.4 | 36.9 | 1.4 |
PM-Mu | 80.1 | 1.4 | 99.9 | 0.8 | 72.5 | 1.6 | 36.3 | 1.0 | |||||
AWRA | 50.1 | 0.9 | 102.5 | 0.8 | 55.5 | 1.2 | 40.3 | 1.1 | |||||
GRACE | 63.5 | 1.1 | 165.0 | 1.2 | 49.9 | 1.1 | 24.2 | 0.7 | |||||
MDB | PT-CMRS | 129.6 | 125.6 | 1.0 | 137.4 | 156.3 | 0.9 | 87.3 | 81.7 | 1.1 | 72.7 | 112.0 | 0.7 |
PM-Mu | 102.2 | 0.8 | 105.8 | 0.7 | 65.9 | 0.8 | 47.2 | 0.4 | |||||
AWRA | 126.5 | 1.0 | 145.5 | 0.9 | 77.3 | 1.0 | 85.4 | 0.8 | |||||
GRACE | 120.1 | 1.0 | 192.8 | 1.2 | 77.1 | 0.9 | 79.8 | 0.7 |
Basin | August 2003–July 2004 | August 2004–July 2005 | August 2005–July 2006 | August 2006–July 2007 | August 2007–July 2008 | August 2008–July 2009 | August 2009–July 2010 | Average |
---|---|---|---|---|---|---|---|---|
LEB | −0.9 | −2.3 | −20.3 | 2.7 | 2.2 | 0.6 | 31.8 | 2.0 |
MDB | −21.9 | 33.6 | −70.4 | 27.7 | −4.2 | −6.7 | −2.2 | −4.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Leblanc, M.; Frappart, F.; Seoane, L.; O’Grady, D.; Olioso, A.; Tweed, S. A Comparative Study of GRACE with Continental Evapotranspiration Estimates in Australian Semi-Arid and Arid Basins: Sensitivity to Climate Variability and Extremes. Water 2017, 9, 614. https://doi.org/10.3390/w9090614
Shen H, Leblanc M, Frappart F, Seoane L, O’Grady D, Olioso A, Tweed S. A Comparative Study of GRACE with Continental Evapotranspiration Estimates in Australian Semi-Arid and Arid Basins: Sensitivity to Climate Variability and Extremes. Water. 2017; 9(9):614. https://doi.org/10.3390/w9090614
Chicago/Turabian StyleShen, Hong, Marc Leblanc, Frédéric Frappart, Lucia Seoane, Damien O’Grady, Albert Olioso, and Sarah Tweed. 2017. "A Comparative Study of GRACE with Continental Evapotranspiration Estimates in Australian Semi-Arid and Arid Basins: Sensitivity to Climate Variability and Extremes" Water 9, no. 9: 614. https://doi.org/10.3390/w9090614
APA StyleShen, H., Leblanc, M., Frappart, F., Seoane, L., O’Grady, D., Olioso, A., & Tweed, S. (2017). A Comparative Study of GRACE with Continental Evapotranspiration Estimates in Australian Semi-Arid and Arid Basins: Sensitivity to Climate Variability and Extremes. Water, 9(9), 614. https://doi.org/10.3390/w9090614