The Quantification of the Ecosystem Services of Forming Ridges in No-Tillage Farming in the Purple Soil Region of China: A Meta-Analysis
<p>The implementation of forming ridges in no-tillage farming (FRNF) on slope ((<b>A</b>) slope farmland before the implementation of forming ridges in no-tillage farming, (<b>B</b>) grid-like geomorphologic pattern of ridge-and-furrow; (<b>C</b>) plant dwarf plants on the ridges and high-barrel-resistant plants in the furrows).</p> "> Figure 2
<p>Flow chart of this study.</p> "> Figure 3
<p>Geographic distribution of the studies included in our systematic review.</p> "> Figure 4
<p>Key indicators (<span class="html-italic">δ</span>) for (<b>a</b>) runoff and (<b>b</b>) sediments yield losses (the colored dots mean the value of <span class="html-italic">δ<sub>runoff</sub></span> or <span class="html-italic">δ<sub>sediment</sub><sub>,</sub></span> the dashed lines are 95% confidence intervals).</p> "> Figure 5
<p>Key indicators (<span class="html-italic">δ</span>) for (<b>a</b>) SOC, (<b>b</b>) TN, (<b>c</b>) AN, (<b>d</b>) TP, (<b>e</b>) AP, (<b>f</b>) TK and (<b>g</b>) AK (the colored dots mean the value of <span class="html-italic">δ<sub>SOC</sub></span>, <span class="html-italic">δ<sub>TN</sub></span>, <span class="html-italic">δ<sub>AN</sub></span>, <span class="html-italic">δ<sub>TP</sub></span>, <span class="html-italic">δ<sub>AP</sub></span>, <span class="html-italic">δ<sub>TK,</sub> δ<sub>AK</sub></span>, the dashed lines are 95% confidence intervals).</p> "> Figure 6
<p>Key indicators (<span class="html-italic">δ</span>) for (<b>a</b>) soil bulk density and (<b>b</b>) soil moisture content (the colored dots mean the value of <span class="html-italic">δ<sub>Soil Bulk Density</sub></span> and <span class="html-italic">δ<sub>Soil Moisture Content</sub></span>, the dashed lines are 95% confidence intervals).</p> "> Figure 7
<p>Key indicators (<span class="html-italic">δ</span>) for aboveground and belowground biomass (the colored dots mean the value of <span class="html-italic">δ<sub>aboveground biomass</sub></span> and <span class="html-italic">δ<sub>belowground biomass</sub></span>, the dashed lines are 95% confidence intervals).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Effects of FRNF on Runoff and Sediment Yield Loss
3.2. Effects of FRNF on Soil Organic Carbon and Nutrient Concentration
3.3. Effects of FRNFon Soil Bulk Density and Soil Moisture Content
3.4. Effects of FRNF on Aboveground and Underground Biomass
4. Discussion
4.1. FRNF Reduced Runoff and Sediment Yield Loss
4.2. FRNF Increased Soil Organic Carbon and Nutrient Concentration
4.3. FRNF Improved Soil Bulk Density and Soil Moisture Content
4.4. FRNF Increased Aboveground and Underground Biomass
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Power, A.G. Ecosystem Services and Agriculture: Tradeoffs and Synergies. Philos. Trans. R. Soc. B 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhang, J.; Liu, Y.; Yu, Z.; Liu, X. Net Value of Farmland Ecosystem Services in China. Land Degrad. Dev. 2018, 29, 2291–2298. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.C.; Der Ploeg, S.V.; Anderson, S.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Kong, X.; Jin, D.; Tai, X.; Yu, C.; Duan, G.; Yan, X.; Pan, J.; Song, J.; Deng, Y. Bioremediation of Dibutyl Phthalate in a Simulated Agricultural Ecosystem by Gordonia sp. Strain qh-11 and the Microbial Ecological Effects in soil. Sci. Total Environ. 2019, 667, 691–700. [Google Scholar] [CrossRef]
- Sub-Global Assessment Selection Working Group of the Millennium Ecosystem Assessment (MA). Millennium Ecosystem Assessment Sub-Global Component: Purpose, Structure and Protocols. 2001. Available online: http://www.millenniumassessment.org (accessed on 1 January 2005).
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The Superior Effect of Nature-based Solutions in Land Management for Enhancing Ecosystem Services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef]
- Tarolli, P.; Straffelini, E. Agriculture in Hilly and Mountainous Landscapes: Threats, Monitoring and Sustainable Management. Geogr. Sustain. 2020, 1, 70–76. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Su, C.; Forsius, M. Linking Ecosystem Processes and Ecosystem Services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Guaitoli, F.; Santoro, A.; Cerdà, A. Managing Soil Nitrate with Cover Crops and Buffer Strips in Sicilian Vineyards. Solid Earth 2013, 4, 255–262. [Google Scholar] [CrossRef]
- Vancampenhout, K.; Nyssen, J.; Gebremichael, D.; Deckers, J.; Poesen, J.; Haile, M.; Moeyersons, J. Stone Bunds for Soil Conservation in the Northern Ethiopian Highlands: Impacts on Soil Fertility and Crop Yield. Soil Till. Res. 2006, 90, 1–15. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.; Zhao, W. Quantitative Synthesis on the Ecosystem Services of Cover Crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Tang, X.M.; Pan, Y.C.; Cheng, J.N.; Ren, Y.M. Impact of High-standard Prime Farmland Construction on Ecosystem Service Value in Beijing. Acta Ecol. Sin. 2015, 35, 8009–8015. [Google Scholar]
- Zhong, L.; Wang, J.; Zhang, X.; Ying, L. Effects of Agricultural Land Consolidation on Ecosystem Services: Trade-offs and Synergies. J. Clean. Prod. 2020, 264, 121412. [Google Scholar] [CrossRef]
- Chen, D.; Wei, W.; Chen, L.D. Effects of Terracing Practices on Water Erosion Control in China: A Meta-analysis. Earth-Sci. Rev. 2017, 173, 109–121. [Google Scholar] [CrossRef]
- Chen, D.; Wei, W.; Daryanto, S.; Tarolli, P. Does Terracing Enhance Soil Organic Carbon Sequestration? A national-scale Data Analysis in China. Sci. Total Environ. 2020, 721, 137751. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wei, W.; Chen, L. Effects of Terracing on Soil Properties in Three Key Mountainous Regions of China. Geogr. Sustain. 2021, 2, 195–206. [Google Scholar] [CrossRef]
- Sun, Y.; Zeng, Y.; Shi, Q.; Pan, X.; Huang, S. No-tillage Controls on Runoff: A meta-analysis. Soil Till. Res. 2015, 153, 1–6. [Google Scholar] [CrossRef]
- Mhazo, N.; Chivenge, P.; Chaplot, V. Tillage Impact on Soil Erosion by Water: Discrepancies Due to Climate and Soil Characteristics. Agric. Ecosyst. Environ. 2016, 230, 231–241. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; Van Groenigen, K.J.; Lee, J.; Natasja Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; He, M.; Yuan, J.; Xu, L.; Tian, G. No-tillage Effects on Grain Yield, N Use Efficiency, and Nutrient Runoff Losses in Paddy Fields. Environ. Sci. Pollut. Res. 2016, 23, 21451–21459. [Google Scholar] [CrossRef]
- Briones, M.J.I.; Schmidt, O. Conventional Tillage Decreases the Abundance and Biomass of Earthworms and Alters their Community Structure in a Global Meta-analysis. Glob. Change Biol. 2017, 23, 4396–4419. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Chang, S.C.; Cui, S.; Jagadamma, S.; Zhang, Q.; Cai, Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture. Sci. Total Environ. 2020, 740, 140147. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, L.; Cui, S.; Zhang, Q. Trade-off between soil pH, bulk density and other soil physical properties under global no-tillage agriculture. Geoderma 2020, 361, 114099. [Google Scholar] [CrossRef]
- Zhang, J.H.; Frielinghaus, M.; Tian, G.; Lobb, D.A. Ridge and Contour Tillage Effects on Soil Erosion from Steep Hillslope in the Sichuan Basin, China. J. Soil Water Conserv. 2004, 59, 277–284. [Google Scholar]
- Zhang, J.H.; Su, Z.A.; Nie, X.J. An Investigation of Soil Translocation and Erosion by Conservation Hoeing Tillage on Steep Lands Using a Magnetic Tracer. Soil Till. Res. 2009, 105, 177–183. [Google Scholar] [CrossRef]
- Jia, L.Z.; Zhang, J.H.; Zhang, Z.H.; Wang, Y. Assessment of Gravelly Soil Redistribution Caused by a Two-tooth Harrow in Mountainous Landscapes of the Yunnan-Guizhou Plateau, China. Soil Till. Res. 2017, 168, 11–19. [Google Scholar] [CrossRef]
- Deckers, J.A.; Nachtergaele, F.O.; Spaargaren, O. Anticipated Developments of the World Reference Base for Soil Resources. In Soil Classification; Esworan, H., Ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 245–256. [Google Scholar]
- Gao, X.; Xie, Y.; Liu, G.; Liu, B.; Duan, X. Effects of Soil Erosion on Soybean Yield as Estimated by Simulating Gradually Eroded Soil Profiles. Soil Till. Res. 2015, 145, 126–134. [Google Scholar] [CrossRef]
- Lin, H.; Xie, Y.; Liu, G.; Zhai, J.; Li, S. Soybean and Maize Simulation under Different Degrees of Soil Erosion. Field Crops Res. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- Li, T.Y.; Chen, S.; Luo, Z.P.; Huang, Z.Q.; Zhang, X.W. A New Method of Cropping in Hill-land Seasonal Non-tillage on Collected Soil Ridge Cropping Method. Southwest China J. Agric. Sci. 1988, 4, 44–49, (In Chinese with English Abstract). [Google Scholar]
- Alletto, L.; Coquet, Y.; Justes, E. Effects of Tillage and Fallow Period Management on Soil Physical Behaviour and Maize Development. Agric. Water Manag. 2011, 102, 74–85. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, F.C. Soil Redistribution and Organic Carbon Accumulation Under Long-term (29 years) Upslope Tillage Systems. Soil Use Manag. 2013, 29, 365–373. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.; Drinkwater, L. Replacing Bare Fallows with Cover Crops in Fertilizer-intensive Cropping Systems: A Meta-analysis of Crop Yield and N Dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Chen, S.; Liu, G.C.; Zhang, X.W. A Review Upon the Importance and Effect of Piling Soil to Ridge with Non-tillage for Agro-ecosystem in Central Hilly Area of Sichuan Basin. J. Mt. Sci. 2001, S1, 20–25. [Google Scholar]
- Liu, G.C.; Gao, M.R.; Zhang, J.H.; Li, Y.; Zhang, X.W. Soil Erosion Characteristics of Slope Land under Alternative Tillage Systems in Central Hilly Area of Sichuan, China. J. Mt. Sci. 2001, 19, 65–70. [Google Scholar]
- Wei, W.; Chen, D.; Wang, L.; Daryanto, S.; Chen, L.; Yu, Y.; Lu, Y.; Sun, G.; Feng, T. Global Synthesis of the Classifications, Distributions, Benefits and Issues of Terracing. Earth-Sci. Rev. 2016, 159, 388–403. [Google Scholar] [CrossRef]
- Utzig, D.L.; Minella, J.P.; Schneider, F.J.; Londero, A.L.; Dambroz, A.B.; Barros, C.A.; Tiecher, T.; Kaiser, D.R. Nutrient Transport in Surface Runoff and Sediment Yield on Macroplots and Zero-order Catchments under No-tillage. Catena 2023, 231, 107333. [Google Scholar] [CrossRef]
- Jia, L.; Zhao, W.; Zhai, R.; Liu, Y.; Kang, M.; Zhang, X. Regional Differences in the Soil and Water Conservation Efficiency of Conservation Tillage in China. Catena 2019, 175, 18–26. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhu, Z.J. Soil and Water Conservation, 2nd ed.; China Forestry Publishing House: Beijing, China, 2004; pp. 240–274. [Google Scholar]
- Fernández-Raga, M.; Palencia, C.; Keesstra, S.; Jordán, A.; Fraile, R.; Angulo-Martínez, M.; Cerdà, A. Splash Erosion: A Review with Unanswered Questions. Earth-Sci. Rev. 2017, 171, 463–477. [Google Scholar] [CrossRef]
- Ruiz Sinoga, J.D.; Gabarrón Galeote, M.A.; Martínez Murillo, J.F.; Garcia Marín, R. Vegetation Strategies for Soil Water Consumption along a Pluviometric Gradient in Southern Spain. Catena 2011, 84, 12–20. [Google Scholar] [CrossRef]
- Zhao, W.; Wei, H.; Jia, L.; Daryanto, S.; Zhang, X.; Liu, Y. Soil Erodibility and its Influencing Factors on the Loess Plateau of China: A Case Study in the Ansai Watershed. Solid Earth 2018, 9, 1507–1516. [Google Scholar] [CrossRef]
- Leggett, M.; Diaz-Zorita, M.; Koivunen, M.; Bowman, R.; Pesek, R.; Stevenson, C.; Leister, T. Soybean Response to Inoculation with Bradyrhizobium Japonicum in the United States and Argentina. Agron. J. 2017, 109, 1031–1038. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Merloti, L.F.; Moretti, L.G.; Costa, N.R.; Tsai, S.M.; Kuramae, E.E. Long-term Lime and Gypsum Amendment Increase Nitrogen Fixation and Decrease Nitrification and Denitrification Gene Abundances in the Rhizosphere and Soil in a Tropical No-till Intercropping System. Geoderma 2020, 375, 114476. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P. No-till is challenged: Complementary Management is Crucial to Improve its Environmental Benefits under a Changing Climate. Geogr. Sustain. 2020, 1, 229–232. [Google Scholar] [CrossRef]
- De Oliveira Ferreira, A.; De Moraes Sá, J.C.; Lal, R.; Barth, G.; Inagaki, T.M.; Gonçalves, D.P.; Briedis, C.; Tomaz, A.R.; Da Silva, W.R. Why no-till system sequesters more carbon and is more resilient and productive with contrasting fertilization regimes in a highly weathered soil? Soil Till. Res. 2024, 244, 106179. [Google Scholar] [CrossRef]
- Li, Y.M.; Duan, Y.; Wang, G.L.; Wang, A.Q.; Zhang, D.M. Straw Alters the Soil Organic Carbon Composition and Microbial Community under Different Tillage Practices in a Meadow Soil in Northeast China. Soil Till. Res. 2021, 208, 104879. [Google Scholar] [CrossRef]
- Kätterer, T.; Bolinder, M.A.; Andrén, O.; Kirchmann, H.; Menichetti, L. Roots Contribute More to Refractory Soil Organic Matter than Above-ground Crop Residues, as Revealed by a Long-term Field Experiment. Agric. Ecosyst. Environ. 2011, 141, 184–192. [Google Scholar] [CrossRef]
- Valkama, E.; Lemola, R.; Kankanen, H.; Turtola, E. Meta-analysis of the Effects of Undersown Catch Crops on Nitrogen Leaching Loss and Grain Yields in the Nordic Countries. Agric. Ecosyst. Environ. 2015, 203, 93–101. [Google Scholar] [CrossRef]
- Topa, D.; Cara, I.G.; Jitreanu, G. Long Term Impact of Different Tillage Systems on Carbon Pools and Stocks, Soil Bulk Density, Aggregation and Nutrients: A Field Meta-analysis. Catena 2021, 199, 105102. [Google Scholar] [CrossRef]
- Zhu, X.; Hu, Y.; Wang, W.; Wu, D. Earthworms Promote the Accumulation of Maize Root-derived Carbon in a Black Soil of Northeast China, Especially in Soil from Long-term No-till. Geoderma 2019, 340, 124–132. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, G.; Dou, Y.; Yang, H.; Wang, T.; Wang, Z.; Malhi, S.; Khan, A.A. Plastic mulch increases dryland wheat yield and water-use productivity, while straw mulch increases soil water storage. J. Integr. Agric. 2024, 9, 3174–3185. [Google Scholar] [CrossRef]
- Ndlangamandla, M.T.; Ndlela, Z.P.; Manyatsi, A.M. Mulching and Tied Ridges as a Moisture Conservation Strategy to Improve the Yield of Sorghum (Sorghum Bicolor) in Semi-arid Parts of Swaziland. Int. J. Environ. Agric. Res. 2016, 2, 23–26. [Google Scholar]
- Biazin, B.; Stroosnijder, L. To Tie or not to Tie Ridges for Water Conservation in Rift Valley Drylands of Ethiopia. Soil Till. Res. 2012, 124, 83–94. [Google Scholar] [CrossRef]
- Atkinson, J.A.; Hawkesford, M.J.; Whalley, W.R.; Zhou, H.; Mooney, S.J. Soil strength influences wheat root interactions with soil macropores. Plant Cell Environ. 2020, 43, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Chen, S.; You, X.; Peng, K.; Zhang, X.W. Soil Fertility Restoration on Degraded Upland of Purple Soil. Acta Pedol. Sin. 2002, 39, 743–749, (In Chinese with English Abstract). [Google Scholar]
- Mak-Mensah, E.; Obour, P.B.; Wang, Q. Influence of Tied-Ridge-Furrow with Inorganic Fertilizer on Grain Yield across Semiarid Regions of Asia and Africa: A Meta-analysis. PeerJ 2021, 9, e11904. [Google Scholar] [CrossRef]
- Chen, S.; Li, T.Y.; Zhang, X.W. Preliminary report on energy flow analysis of plant-free state engineering of collecting soil to form ridges with no-tillage. Chin. J. Soil Sci. 1989, 6, 241–251, (In Chinese with English Abstract). [Google Scholar]
- Wu, R.J.; Zhang, X.W. Optimized structure of collecting soil to form ridges with no-tillage furrow crops. Sichuan Agric. Sci. Technol. 1989, 4, 7–8, (In Chinese with English Abstract). [Google Scholar]
- Wu, R.J. Effect of Effect of poly-soil no-till on wheat growth on wheat growth. Agric. Mod. Res. 1990, 11, 54–55, (In Chinese with English Abstract). [Google Scholar]
- Gao, F.H.; Zhang, X.W. The solution of food ration for migrants in the Three Gorges Project reservoir area is explored. Yangtze River 1990, 21, 44–47, (In Chinese with English Abstract). [Google Scholar]
- Guo, Y.M. Soil erosion characteristics and construction of soil and water conservation protection system in the Sichuan Basin. China Soil Water Conserv. 1992, 5, 5–9, (In Chinese with English Abstract). [Google Scholar]
- Zhu, B. Effect of tillage system on nutrient cycling in purple soils. J. Mt. Sci. 1996, 14, 51–54, (In Chinese with English Abstract). [Google Scholar]
- Chai, Z.X. Stereoscopic agriculture and soil and water conservation. Agric. Zoning 1996, 56–59, (In Chinese with English Abstract). [Google Scholar]
- Wang, G.X. A preliminary investigation on the effectiveness of collecting soil to form ridges with no-tillage in mountainous areas of Shuangfeng County. Mod. Agric. Technol. 2008, 6, 153–154. [Google Scholar]
- Ai, Y.W.; Chen, S.; Zhang, X.W.; Xu, P. Effect of deep N fertilizer application depth on N uptake and utilization in wheat. Acta Cardiol. Sin. 1997, 34, 146–151, (In Chinese with English Abstract). [Google Scholar]
- Ma, Z.Q.; Li, T.Y.; Zhang, X.W. Study on fertilization of calcareous purple soil in high terrace dryland. J. Resour. Dev. Conserv. 1990, 6, 195–200. [Google Scholar]
- Li, M.W. Experimental demonstration effect of collecting soil to form ridges with no-tillage on dryland. Hubei Agric. Sci. 1993, 1, 12–14, (In Chinese with English Abstract). [Google Scholar]
- Xia, S.H. Collecting soil to form ridges with no-tillage to maintain soil and water. Soil Agrochem. Bull. 1998, 13, 70–71, (In Chinese with English Abstract). [Google Scholar]
- Li, R.P. Discussion on integrated supporting technology of water-saving agriculture in purple soil and dryland. Guizhou Agric. Sci. 2001, 29, 43–45, (In Chinese with English Abstract). [Google Scholar]
- Ou, S. Soil Erosion and Countermeasures in Sloping Farmland in Hilly Area of Central Sichuan Basin. Master’s Thesis, Sichuan Agricultural University, Yaan, China, 2010. (In Chinese with English abstract). [Google Scholar]
- Liu, G.C.; Luo, Z.P.; Zhang, X.W. Soil erosion and its p value determination in hilly area of central Sichuan Basin. J. Soil Water Conserv. 1993, 7, 40–44, (In Chinese with English abstract). [Google Scholar]
- Chen, K.L.; Zhu, X.D.; Zhu, B.; Li, Q.Z.; Wang, X.H.; Cai, B.C. Characteristics of non-point source nitrogen output and pollution load from dry slopes in the purple soil region of central Sichuan. J. Soil Water Conserv. 2006, 20, 54–58, (In Chinese with English abstract). [Google Scholar]
- Gao, M.R.; Liu, G.C.; Zhu, B. Preliminary analysis of flow production processes in different tillage systems in purple soil hilly areas of Sichuan. J. Soil Water Conserv. 2000, 14, 118–121, (In Chinese with English abstract). [Google Scholar]
- Chen, S.; Li, T.Y.; Zhang, X.W. Rediscussing the mid-layer fertilization of collecting soil to form ridges with no-tillage. Mt. Res. 1996, 14, 55–58, (In Chinese with English abstract). [Google Scholar]
Runoff or Sediment | Mean Value δ | SD δ | Max δ | Min δ | Median δ | No. of Sample (n) |
---|---|---|---|---|---|---|
Runoff | 0.51 | 0.21 | 0.98 | 0.08 | 0.44 | 108 |
Sediment | 0.27 | 0.16 | 0.66 | 0.004 | 0.26 | 70 |
Soil Organic Carbon and Nutrient Concentration | Mean Value δ | SD δ | Max δ | Min δ | Median δ | No. of Sample (n) |
---|---|---|---|---|---|---|
Soil organic carbon (SOC) | 1.15 | 0.24 | 1.73 | 0.37 | 1.10 | 48 |
Soil total nitrogen (TN) | 1.14 | 0.14 | 1.53 | 0.86 | 1.12 | 45 |
Soil available nitrogen (AN) | 1.30 | 0.42 | 2.11 | 0.34 | 1.32 | 34 |
Soil total phosphorus (TP) | 0.94 | 0.13 | 1.10 | 0.72 | 0.97 | 12 |
Soil available phosphorus (AP) | 1.58 | 0.69 | 3.90 | 0.40 | 1.52 | 32 |
Soil total potassium (TK) | 0.98 | 0.24 | 1.45 | 0.40 | 1.04 | 16 |
Soil available potassium (AK) | 1.17 | 0.33 | 2.9 | 0.72 | 1.10 | 42 |
Soil Physical Properties | Mean Value δ | SD δ | Max δ | Min δ | Median δ | No. of Sample (n) |
---|---|---|---|---|---|---|
Soil bulk density | 0.93 | 0.08 | 1.09 | 0.76 | 0.93 | 45 |
Soil moisture content | 1.10 | 0.18 | 1.50 | 0.87 | 1.14 | 23 |
Biomass | Mean Value δ | SD δ | Max δ | Min δ | Median δ | No. of Sample (n) |
---|---|---|---|---|---|---|
Aboveground biomass | 1.23 | 0.25 | 2.29 | 0.81 | 0.93 | 119 |
Belowground biomass | 1.63 | 0.57 | 3.04 | 1.06 | 1.14 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L. The Quantification of the Ecosystem Services of Forming Ridges in No-Tillage Farming in the Purple Soil Region of China: A Meta-Analysis. Water 2024, 16, 2675. https://doi.org/10.3390/w16182675
Jia L. The Quantification of the Ecosystem Services of Forming Ridges in No-Tillage Farming in the Purple Soil Region of China: A Meta-Analysis. Water. 2024; 16(18):2675. https://doi.org/10.3390/w16182675
Chicago/Turabian StyleJia, Lizhi. 2024. "The Quantification of the Ecosystem Services of Forming Ridges in No-Tillage Farming in the Purple Soil Region of China: A Meta-Analysis" Water 16, no. 18: 2675. https://doi.org/10.3390/w16182675
APA StyleJia, L. (2024). The Quantification of the Ecosystem Services of Forming Ridges in No-Tillage Farming in the Purple Soil Region of China: A Meta-Analysis. Water, 16(18), 2675. https://doi.org/10.3390/w16182675