Climate Change Scenarios Reduce Water Resources in the Schuylkill River Watershed during the Next Two Decades Based on Hydrologic Modeling in STELLA
<p>Map of study site showing the Schuylkill Watershed and USGS gage locations from the Delaware River Basin Commission; streams, reservoirs, and sub-watersheds from the Pennsylvania Spatial Data Access (PASDA) [<a href="#B26-water-15-03666" class="html-bibr">26</a>]; and land cover classifications from the National Land Cover Database (NLCD) 2011 [<a href="#B27-water-15-03666" class="html-bibr">27</a>].</p> "> Figure 2
<p>Conceptual diagrams of methodological approach including model equations and input data sources: (<b>a</b>) the Continuity Principle of reservoirs; (<b>b</b>) generation of area-weighted curve numbers; and (<b>c</b>) baseflow calculations.</p> "> Figure 3
<p>Observed and simulated streamflow for one example gage, the USGS gage 01473500 at Norristown. October 2007–2008 was used as the calibration period and October 2008–2010 was used as the validation period.</p> "> Figure 4
<p>Observed data compared with model simulated storage level of Blue Marsh Reservoir. October 2007–2008 was used as the calibration period and October 2008–2010 was used as the validation period.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Hydrologic Model Equations
2.3. Hydrologic Model Validation
2.4. Future Climate Scenarios
2.5. Future Land Use Scenarios
3. Results
3.1. Hydrologic Model Validation
3.2. Future Climate Scenarios
3.3. Future Land Use Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
STELLA Node | USGS Gage Number | Drainage Area (km2) | Curve Number (2011) |
---|---|---|---|
Upper Perkiomen | 01472198 | 98.4 | 71.79 |
Reading | 01471510 | 813.3 | 74.30 |
Dublin | 01472620 | 10.5 | 73.53 |
Skippack | 01473120 | 139.1 | 77.03 |
Norristown | 01473500 | 726.0 | 76.24 |
Schwenksville | 01472810 | 141.5 | 76.11 |
Philadelphia | 01474500 | 178.7 | 85.39 |
Little Schuylkill | 01470500 | 259.0 | 69.39 |
Pottstown | 01472000 | 470.1 | 73.12 |
Landingville | 01468500 | 199.2 | 70.21 |
Graterford | 01473000 | 472.2 | 72.58 |
Pottsville | 01467500 | 138.3 | 68.38 |
Blue Marsh | 01470960 | 453.2 | 74.79 |
Drehersville | 01470000 | 204.9 | 68.80 |
Wissahickon | 01474000 | 165.8 | 79.15 |
Tamaqua | 01469500 | 111.1 | 68.74 |
Manatawny | 01471980 | 74.1 | 72.17 |
Tulpehocken | 01471000 | 93.2 | 75.57 |
Spangsville | 01471875 | 147.4 | 71.91 |
Gage Name | USGS Gage Number | Field Capacity (mm) |
---|---|---|
Upper Perkiomen | 1472198 | 166.72 |
Reading | 1471510 | 129.15 |
Dublin | 1472620 | 138.01 |
Skippack | 1473120 | 114.71 |
Norristown | 1473500 | 130.38 |
Schwenksville | 1472810 | 121.07 |
Philadelphia | 1474500 | 84.61 |
Little Schuylkill | 1470500 | 116.56 |
Pottstown | 1472000 | 154.18 |
Landingville | 1468500 | 102.43 |
Graterford | 1473000 | 153.80 |
Pottsville | 1467500 | 107.28 |
Blue Marsh | 1470960 | 148.04 |
Drehersville | 1470000 | 115.21 |
Wissahickon | 1474000 | 111.94 |
Tamaqua | 1469500 | 133.55 |
Manatawny | 1471980 | 158.58 |
Tulpehocken | 1471000 | 139.96 |
Spangsville | 1471875 | 185.42 |
STELLA Node | USGS Gage Number | Percentage of Baseflow Discharge (X) (%) |
---|---|---|
Upper Perkiomen | 01472198 | 5.6 |
Reading | 01471510 | 11.5 |
Dublin | 01472620 | 14.5 |
Skippack | 01473120 | 1.5 |
Norristown | 01473500 | 15.7 |
Schwenksville | 01472810 | 25.1 |
Little Schuylkill | 01470500 | 14.4 |
Pottstown | 01472000 | 1.5 |
Landingville | 01468500 | 10.0 |
Graterford | 01473000 | 59.5 |
Pottsville | 01467500 | 15.1 |
Blue Marsh | 01470960 | 1.4 |
Drehersville | 01470000 | 34.3 |
Wissahickon | 01474000 | 15.2 |
Tamaqua | 01469500 | 10.7 |
Manatawny | 01471980 | 1.5 |
Tulpehocken | 01471000 | 59.0 |
Spangsville | 01471875 | 5.8 |
References
- UN-Water. Climate Change and Water: UN-Water Policy Brief; UN-Water: Geneva, Switzerland, 2019. [Google Scholar]
- Vörösmarty, C.J.; Green, P.; Salisbury, R. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–289. Available online: http://www.sciencemag.org/cgi/content/abstract/289/5477/284 (accessed on 15 June 2023).
- IPCC Panel. Climate Change 2014: Synthesis Report. 2014. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf (accessed on 17 October 2023).
- Sharma, A.; Wasko, C.; Lettenmaier, D.P. If Precipitation Extremes Are Increasing, Why Aren’t Floods? Water Resour. Res. 2018, 54, 8545–8551. [Google Scholar] [CrossRef]
- Blair, A.; Sanger, D.; Holland, A.F.; White, D.; Vandiver, L.; White, S. Stormwater Runoff—Modeling Impacts of Urbanization and Climate Change. In Proceedings of the South Carolina Water Resources Conference, Columbia, SC, USA, 13–14 October 2010. [Google Scholar]
- Lin, Y.P.; Hong, N.M.; Wu, P.J.; Wu, C.F.; Verburg, P.H. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landsc. Urban Plan. 2007, 80, 111–126. [Google Scholar] [CrossRef]
- Sertel, E.; Imamoglu, M.Z.; Cuceloglu, G.; Erturk, A. Impacts of Land Cover/Use Changes on Hydrological Processes in a Rapidly Urbanizing Mid-latitude Water Supply Catchment. Water 2019, 11, 1075. [Google Scholar] [CrossRef]
- Tian, Y.; Li, C.; Yi, Y.; Wang, X.; Shu, A. Dynamic Model of a Sustainable Water Resources Utilization System with Coupled Water Quality and Quantity in Tianjin City. Sustainability 2020, 12, 4254. [Google Scholar] [CrossRef]
- Perlman, H.; USGS. Runoff (Surface Water Runoff). 2018. Available online: https://water.usgs.gov/edu/runoff.html (accessed on 16 April 2018).
- Zhan, X.; Huang, M.L. ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps. Environ. Model. Softw. 2004, 19, 875–879. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Unkefer, P. Experimental Evaluation of Infiltration Models for Different Land Use and Soil Management Systems. Soil Sci. 2003, 168, 178–191. [Google Scholar] [CrossRef]
- USACE. Environmental Assessment: Fairmount Dam Fish Ladder Project Section 1135, Improvements to the Environment, Philadelphia, Pennsylvania, Philadelphia District; U.S. Army Corps of Engineers: Philadelphia, PA, USA, 2004. Available online: https://cw-environment.erdc.dren.mil/restore/fishpassage/pdfs/NAP%20-%20Fairmount%20Fish%20Ladder%20EA.pdf (accessed on 18 October 2023).
- Demaria, E.M.C.; Palmer, R.N.; Roundy, J.K. Regional climate change projections of streamflow characteristics in the Northeast Midwest US. J. Hydrol. Reg. Stud. 2016, 5, 309–323. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity Is Dead: Stationarity Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Müller, E.N.; et al. Comparing impacts of climate change on streamflow in four large African river basins. Hydrol. Earth Syst. Sci. 2014, 18, 1305–1321. [Google Scholar] [CrossRef]
- Christensen, N.S.; Wood, A.W.; Voisin, N.; Lettenmaier, D.P.; Palmer, R.N. The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim. Change 2004, 62, 337–363. [Google Scholar] [CrossRef]
- Jin, L.; Whitehead, P.G.; Appeaning Addo, K.; Amisigo, B.; Macadam, I.; Janes, T.; Crossman, J.; Nicholls, R.J.; McCartney, M.; Rodda, H.J.E. Modeling future flows of the Volta River system: Impacts of climate change and socio-economic changes. Sci. Total Environ. 2018, 637–638, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Hesson, M.D. Metrics to Evaluate Alternative Watershed Management Policy Outcomes Using Linear Programming Optimization and Simulation of the Schuylkill River Watershed in Southeastern Pennsylvania. Ph.D. Thesis, Drexel University, Philadelphia, PA, USA, 2013. [Google Scholar]
- Delaware River Basin Commision. Delaware River State of the Basin Report, 55 pages. 2019. Available online: https://www.nj.gov/drbc/library/documents/SOTBreport_july2019.pdf (accessed on 15 June 2023).
- Hawkins, T.W.; Woltemade, C.J. Impact of projected 21st century climate change on basin hydrology and runoff in the Delaware river basin, USA. J. Water Clim. Change 2021, 12, 60–81. [Google Scholar] [CrossRef]
- Billett, C.; Rosencrance, D.; Harper, H.; Athey, D.; Pitz, A.; Johnson, T.; Hession, C.; Cianfrani, C.; McBride, M.; Kitchel, E.; et al. Schuylkill Watershed Conservation Plan. 31 May 2001. Available online: https://elibrary.dcnr.pa.gov/GetDocument?docId=1736920&DocName=RiverRegistry29_SchuylkillRiver.pdf (accessed on 17 October 2023).
- Biesecker, J.E.; Lescinsky, J.B.; Wood, C.R. Water Resources of the Schuylkill River Basin. In Water Resources Bulletin; Pennsylvania Department of Forests and Waters: Schuylkill River Basin, PA, USA, 1968; Volume 3, p. 198. [Google Scholar]
- Fleeger, G.M. The Geology of Pennsylvania’s Groundwater. 1999. Available online: http://www.docs.dcnr.pa.gov/cs/groups/public/documents/document/dcnr_014598.pdf (accessed on 15 June 2023).
- Philadelphia Water Department. The Schuylkill River Source Water Protection Plan; Philadelphia Water Department: Philadelphia, PA, USA, 2006. Available online: https://water.phila.gov/pool/files/Schuylkill_SWPP_2006.pdf (accessed on 6 August 2006).
- Philadelphia Water Department. Schuylkill River Hydrology and Consumptive Use. 2010. Available online: http://phillywatersheds.org/doc/Sourcewater/PWD_Water_Budget_Report.pdf (accessed on 15 June 2023).
- Pennsylvania Spatial Data Access. Pennsylvania Spatial Data Access. Available online: https://www.pasda.psu.edu/ (accessed on 22 September 2023).
- NLCD 2011 Land Cover (CONUS). NLCD 2011 Land Cover (CONUS), Multi-Resolution Land Characteristics (MRLC) Consortium. Available online: https://www.mrlc.gov/data/nlcd-2011-land-cover-conus (accessed on 22 September 2023).
- Costanza, R.; Voinov, A.; Boumans, R.; Maxwell, T.; Villa, F.; Wainger, L.; Voinov, H. Integrated ecological economic modeling of the Patuxent River watershed, Maryland. Ecol. Monogr. 2002, 72, 203–231. [Google Scholar] [CrossRef]
- Elshorbagy, A.; Jutla, A.; Kells, J. Simulation of the hydrological processes on reconstructed watersheds using system dynamics. Hydrol. Sci. J. 2007, 52, 538–562. [Google Scholar] [CrossRef]
- Ouyang, Y.; Feng, G.; Renninger, H.; Leininger, T.D.; Parajuli, P.; Grace, J.M. A stella-based model to simultaneously predict hydrological processes, n uptake and biomass production in a eucalyptus plantation. Forests 2021, 12, 515. [Google Scholar] [CrossRef]
- Sher, S.; Waseem, M.; Waqas, M.M.; Rehman, K.; Ilyas, M.; Waqas, H.A.; Leta, M.K. An Integrated Hydrological Modelling Approach to Evaluate the Capacity of Keenjhar Lake by Using STELLA. Hydrology 2022, 9, 90. [Google Scholar] [CrossRef]
- Costanza, R. Simulation modeling on the Macintosh using, S.T.E.L.L.A. BioScience 1987, 37, 129–132. [Google Scholar] [CrossRef]
- NRCS. Urban Hydrology for Small Watersheds TR-55; Technical Release; USDA Natural Resource Conservation Service Conservation Engineering Division: Washington, DC, USA, 1986; Volume 55, p. 164. Available online: https://www.nrc.gov/docs/ML1421/ML14219A437.pdf (accessed on 15 June 2023).
- Hawkins, T.W. Simulating the Impacts of Projected Climate Change on Streamflow Hydrology for the Chesapeake Bay Watershed. Ann. Assoc. Am. Geogr. 2015, 105, 62. [Google Scholar] [CrossRef]
- Bureau of Reclamation. ‘Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs’, Prepared by the U.S. Department of the Interior, Bureau of Reclamation, Technical Services Center, Denver, CO, USA. 2014; p. 110. Available online: https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html#Projections:SubsetRequest (accessed on 15 June 2023).
- Intergovernmental Panel on Climate Change (IPCC). What Is a GCM? Available online: http://ipcc-data.org/guidelines/pages/gcm_guide.html (accessed on 16 April 2018).
- Pierce, D.; Cayan, D. High-Resolution LOCA Downscaled Climate Projections Aim to Better Represent Extreme Weather Events. 2017; p. 16. Available online: https://loca.ucsd.edu/~pierce/LOCA_DPierce_2017-07-08.pdf (accessed on 15 June 2023).
- Yu, Z. Assessment of the Physical, Socioeconomic and Climatic Constraints on Green Infrastructure. Ph.D. Thesis, Drexel University, Philadelphia, PA, USA, 2015; p. 317. Available online: https://www.proquest.com/openview/af25318a185df2b15961872c7ae8729e/1?pq-origsite=gscholar&cbl=18750 (accessed on 15 June 2023).
- Pierce, D.W.; Cayan, D.R. Downscaling humidity with Localized Constructed Analogs (LOCA) over the conterminous United States. Clim. Dyn. 2016, 47, 411–431. [Google Scholar] [CrossRef]
- Cayan, D.R.; Dehann, L.; Pierce, D. Creating Climate Projections to Support the 4th California Climate Assessment; University of California at San Diego, Scripps Institution of Oceanography: La Jolla, CA, USA, 2016; pp. 1–20. [Google Scholar]
- Census Bureau, U.S. Census Bureau QuickFacts. 2018. Available online: https://www.census.gov/quickfacts/fact/table/philadelphiacountypennsylvania,buckscountypennsylvania,montgomerycountypennsylvania,schuylkillcountypennsylvania,berkscountypennsylvania/PST045217 (accessed on 18 May 2018).
- Behney, M.; Copella, S.; Shultz, J.; Bowalick, D.; Koontz, A.; Meyers, L.; Kotovsky, M. Pennsylvania Population Projections 2010–2040. Available online: http://www.rural.palegislature.us/documents/reports/Population_Projections_Report.pdf (accessed on 15 June 2023).
- Lehigh Environmental Initiative’s Envirosci Inquiry. Sprawl: What Is Sprawl? 2011. Available online: http://www.ei.lehigh.edu/envirosci/enviroissue/sprawl/whatissprawl.html (accessed on 18 May 2018).
- Goetz, S.; Jantz, C.A.; Sun, M. SCIENCE Forecasting Future Land Use and Its Hydrologic Implications: A Case Study of the Upper Delaware River Watershed; Association of Watershed & Stormwater Professionals: Ellicott City, MD, USA, 2011; pp. 18–26. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systemic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Kopytkovskiy, M.; Geza, M.; McCray, J.E. Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin. J. Hydrol. Reg. Stud. 2015, 473–493. [Google Scholar] [CrossRef]
- Shamir, E.; Megdal, S.B.; Carrillo, C.; Castro, C.L.; Chang, H.; Chief, K.; Corkhill, F.E.; Eden, S.; Georgakakos, K.P.; Nelson, K.M.; et al. Climate change and water resources management in the Upper Santa Cruz River, Arizona. J. Hydrol. 2015, 18–33. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Ge, J. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmos. Res. 2016, 178–179, 521–534. [Google Scholar] [CrossRef]
- Vetter, T.; Reinhardt, J.; Flörke, M.; van Griensven, A.; Hattermann, F.; Huang, S.; Koch, H.; Pechlivanidis, I.G.; Plötner, S.; Seidou, O.; et al. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim. Change 2017, 141, 419–433. [Google Scholar] [CrossRef]
- Shade, C.; Kremer, P. Article predicting land use changes in Philadelphia following green infrastructure policies. Land 2019, 8, 28. [Google Scholar] [CrossRef]
Sectors | Annual Average Withdrawals (m3/s) | Percentage of Water Consumption (%) |
---|---|---|
Power | 9.34 | 41% |
Drinking Water | 7.02 | 31% |
Agriculture | 3.40 | 15% |
Mining | 1.59 | 7% |
Industrial | 0.91 | 4% |
Others | 0.48 | 2% |
Count | Map Unit Name | Available Water Storage 0–150 cm—Weighted Average (cm/m) | Hydrologic Group—Dominant Conditions |
---|---|---|---|
9048 | Andover–Buchanan gravelly loams, 3 to 8 percent slopes | 14.28 | D |
8388 | Andover–Buchanan gravelly loams, 0 to 8 percent slopes, extremely stony | 14.32 | D |
21,275 | Bedington–Berks complex, 3 to 8 percent slopes | 13.82 | A |
15,685 | Bedington–Berks complex, 8 to 15 percent slopes | 13.22 | A |
3378 | Berks–Bedington complex, 15 to 25 percent slopes | 11.48 | B |
3861 | Berks–Weikert complex, 0 to 3 percent slopes | 7.61 | B |
282,303 | Berks–Weikert complex, 3 to 8 percent slopes | 7.35 | B |
GCM-1 | GCM-2 | GCM-3 | GCM-4 | GCM-5 | GCM-6 | |
---|---|---|---|---|---|---|
GCM Name | ACCESS | BCC-CSM | BCC-CSM-1-1-m | CanESM 2 | CCSM 4 | CESM 1-BGC |
Resolution | 1.25° × 1.88° | 2.8° × 2.8° | 2.8° × 2.8° | 2.79° × 2.81° | 3.75° × 3.75° | 0.94° × 1.25° |
Full Name | ARC Centre of Excellence for Climate System Science | Beijing Climate Center Climate System Model | Beijing Climate Center Climate System Model | Canadian Earth System Model | Community Climate System Model | Community Earth System Model version 1.0 with Biogeochemistry |
Components | Forcings: Solar, volcanic, stratospheric aerosol, anthropogenic aerosol, emissions, greenhouse gas | 4 models: atmospheric, land-surface, oceanic, sea-ice | 4 models: atmospheric, land-surface, oceanic, sea-ice | Models: atmosphere- ocean; land- vegetation | 4 models: atmospheric, land-surface, oceanic, sea-ice | Models: Terrestrial carbon–nitrogen; ocean biogeochemistry |
Proceeding GCMs | Follows CCSM2 | Follows BCC-CSM | Subset of CESM1 |
County | Historical Population Growth (2000–2010) | Future Population Growth (2010–2040) |
---|---|---|
Berks | 1.50% | 20.30% |
Bucks | 0.50% | 1.50% |
Montgomery | 3.30% | 17.20% |
Philadelphia | 3.60% | 21.70% |
Schuylkill | −3.90% | 12.10% |
County | Historical Change in Impervious Cover (2001–2011) | As-Is Scenario (Historical Trends Projected into Future) (2010–2040) | Sprawl Growth Scenario (25% More Impervious Area than As-Is Scenario) (2010–2040) | Smart Growth Scenario (25% Less Impervious Area than As-Is Scenario) (2010–2040) |
---|---|---|---|---|
Berks | 0.74% | 10.05% | 12.56% | 7.54% |
Bucks | 1.92% | 5.76% | 7.20% | 4.32% |
Montgomery | 0.60% | 3.14% | 3.93% | 2.36% |
Philadelphia | 0.19% | 1.12% | 1.40% | 0.84% |
Norristown | Blue Marsh | ||
---|---|---|---|
Calibration (October 2007–2008) | |||
RMSE | 603.42 | RMSE | 1,891,819.24 |
R2 | 0.59 | R2 | 0.65 |
NSE | 0.53 | NSE | 0.46 |
MAPE | 49.26 | MAPE | 4.83 |
Validation (October 2008–2010) | |||
RMSE | 566.08 | RMSE | 1,995,865.83 |
R2 | 0.58 | R2 | 0.62 |
NSE | 0.69 | NSE | 0.49 |
MAPE | 43.80 | MAPE | 5.18 |
Historical Streamflow Availability | 89.8% | |
---|---|---|
Emission Scenarios | ||
GCM Inputs to STELLA | RCP 4.5 | RCP 8.5 |
GCM-1 | 70.2% | 75.0% |
GCM-2 | 76.6% | 75.4% |
GCM-3 | 76.9% | 75.6% |
GCM-4 | 67.7% | 67.2% |
GCM-5 | 74.3% | 75.1% |
GCM-6 | 74.3% | 74.7% |
Gage Name | Historical CN | As-Is Scenario Curve Number | Sprawl Growth Scenario Curve Number | Smart Growth Scenario Curve Number |
---|---|---|---|---|
Reading | 74.30 | 74.60 | 74.67 | 74.52 |
Little Schuylkill | 69.39 | 69.53 | 69.55 | 69.49 |
Blue Marsh | 74.79 | 74.98 | 75.03 | 74.94 |
Manatawny | 72.17 | 72.37 | 72.39 | 72.30 |
Tulpehocken | 75.57 | 76.02 | 76.13 | 75.91 |
Spangsville | 71.91 | 72.01 | 72.04 | 71.99 |
Upper Perkiomen | 71.79 | 71.84 | 71.86 | 71.83 |
Skippack | 77.03 | 77.23 | 77.30 | 77.19 |
Norristown | 76.24 | 76.43 | 76.48 | 76.38 |
Schwenksville | 76.11 | 76.26 | 76.30 | 76.22 |
Pottstown | 73.12 | 73.25 | 73.28 | 73.22 |
Graterford | 72.58 | 72.65 | 72.67 | 72.64 |
Dublin | 73.53 | 73.57 | 73.58 | 73.56 |
Philadelphia | 85.39 | 85.58 | 85.63 | 85.53 |
Wissahickon | 79.15 | 79.25 | 79.28 | 79.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kali, S.E.; Amur, A.; Champlin, L.K.; Olson, M.S.; Gurian, P.L. Climate Change Scenarios Reduce Water Resources in the Schuylkill River Watershed during the Next Two Decades Based on Hydrologic Modeling in STELLA. Water 2023, 15, 3666. https://doi.org/10.3390/w15203666
Kali SE, Amur A, Champlin LK, Olson MS, Gurian PL. Climate Change Scenarios Reduce Water Resources in the Schuylkill River Watershed during the Next Two Decades Based on Hydrologic Modeling in STELLA. Water. 2023; 15(20):3666. https://doi.org/10.3390/w15203666
Chicago/Turabian StyleKali, Suna Ekin, Achira Amur, Lena K. Champlin, Mira S. Olson, and Patrick L. Gurian. 2023. "Climate Change Scenarios Reduce Water Resources in the Schuylkill River Watershed during the Next Two Decades Based on Hydrologic Modeling in STELLA" Water 15, no. 20: 3666. https://doi.org/10.3390/w15203666
APA StyleKali, S. E., Amur, A., Champlin, L. K., Olson, M. S., & Gurian, P. L. (2023). Climate Change Scenarios Reduce Water Resources in the Schuylkill River Watershed during the Next Two Decades Based on Hydrologic Modeling in STELLA. Water, 15(20), 3666. https://doi.org/10.3390/w15203666