MIESTC: A Multivariable Spatio-Temporal Model for Accurate Short-Term Wind Speed Forecasting
<p>Research area and five research sites.</p> "> Figure 2
<p>Correlation analysis of different factors with wind speed across five locations. A, B, C, D, and E represent the five research locations in the study. The chart shows that the correlation between the wind speed and various factors differs significantly across locations. The factors u10, v10, and t2m exhibit strong correlations with the wind speed at multiple locations, suggesting their importance as primary influencing factors, whereas sp and tp show relatively strong correlations at specific locations.</p> "> Figure 3
<p>An overview of the MIESTC model’s architecture. Subfigure (<b>a</b>) illustrates the overall workflow, including the independent encoding of multiple meteorological variables (WS, U10, V10, T2M, TP, SP), spatio-temporal feature extraction through the MSTC module to capture the spatio-temporal relationships between variables, and finally the decoding and prediction using the predictor module. The skip connection aids in preserving features from earlier stages. Subfigures (<b>b</b>–<b>d</b>) present the detailed structures of the encoder block, MSTC block, and predictor block.</p> "> Figure 4
<p>The data distribution of the meteorological variables. These variables clearly exhibit significant differences in their distributions, with distinct scales and semantic units.</p> "> Figure 5
<p>Model performance comparison. This figure presents the performances of various models at different prediction time horizons, evaluated with RMSE, PCC, MAE, and SSIM metrics. The results indicate that the MIESTC model consistently surpasses other models across all time steps and evaluation metrics, highlighting its superior effectiveness in short-term wind speed forecasting.</p> "> Figure 6
<p>Visual representation of wind speed prediction results across different models. The red boxes indicate areas where the prediction deviates significantly from the ground truth, highlighting the deficiencies in different models.</p> "> Figure 7
<p>Attention weight distribution of wind speed prediction variables. This heatmap illustrates the attention weight distribution of each meteorological variable (U10, V10, T2M, SP, TP, WS) across eight attention heads in the MSTC module. The attention heads (Head 1 to Head 8) represent different perspectives of the model in capturing variable relationships. Darker colors indicate higher attention weights, highlighting the relative importance of each variable for wind speed prediction.</p> ">
Abstract
:1. Introduction
- An innovative end-to-end framework is developed for forecasting wind speed utilizing multiple atmospheric variables. The framework is divided into three parts: first, an independent spatio-temporal encoder that separately encodes each variable; second, a spatio-temporal feature extractor that analyzes the spatio-temporal correlations of the input sequences across the entire study area; and finally, a predictor that integrates the extracted features to generate wind speed predictions. Through this design, the framework effectively captures the characteristics and interrelationships of each variable while avoiding the introduction of noise due to differences in semantics and scales between variables, thereby improving the accuracy of the wind speed prediction.
- This study presents a multivariate spatio-temporal correlation (MSTC) feature extraction module, which enables the model to more effectively comprehend the relationships between different variables, thereby further enhancing the accuracy and reliability of the information that is required for wind speed prediction.
- The proposed framework outperforms state-of-the-art algorithms, achieving superior forecasting performance. This outcome validates the effectiveness of the framework as the most reliable approach for wind speed forecasting using multiple atmospheric variables. A detailed analysis was also conducted on the impact on the wind speed prediction of adding different variables. The results indicate that U10, V10, and T2M play dominant roles in wind speed forecasting, while TP has a relatively lower impact, consistent with the findings of the correlation analysis.
2. Data
3. Methods
3.1. Problem Statement
3.2. Independent Encoding of Multiple Meteorological Variables
3.3. Spatio-Temporal Correlation Between Multiple Variables
3.4. Decoding Features for Wind Speed Prediction
4. Experiment
4.1. Implementation Details
4.2. Evaluation Metrics
4.3. Baseline Model
4.4. Comparison of Results
4.5. Case Study
4.6. Comparison Experiments of Relevant Variables
4.7. Module Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weihang, L.; Tao, Y.; Peijun, S.; Shuo, C. Advances in the study of climate change impact on crop producing risk. J. Nat. Disasters 2022, 31, 1–11. [Google Scholar]
- Tarhan, C.; Çil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Herbert, G.J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renew. Sustain. Energy Rev. 2007, 11, 1117–1145. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, Y.; Chen, S. Wind speed and generated power forecasting in wind farm. Proc. Chin. Soc. Electr. Eng. 2005, 25, 1. [Google Scholar]
- Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. Appl. Energy 2021, 304, 117766. [Google Scholar] [CrossRef]
- Singh, S.; Mohapatra, A. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting. Renew. Energy 2019, 136, 758–768. [Google Scholar]
- Pearre, N.S.; Swan, L.G. Statistical approach for improved wind speed forecasting for wind power production. Sustain. Energy Technol. Assess. 2018, 27, 180–191. [Google Scholar] [CrossRef]
- Jaseena, K.U.; Kovoor, B.C. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. Energy Convers. Manag. 2021, 234, 113944. [Google Scholar] [CrossRef]
- Skamarock, W.C. Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Weather Rev. 2004, 132, 3019–3032. [Google Scholar] [CrossRef]
- Cassola, F.; Burlando, M. Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Appl. Energy 2012, 99, 154–166. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Philip, S.Y. Deep learning for spatio-temporal data mining: A survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 3681–3700. [Google Scholar] [CrossRef]
- Alkhayat, G.; Mehmood, R. A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy AI 2021, 4, 100060. [Google Scholar] [CrossRef]
- Schultz, M.G.; Betancourt, C.; Gong, B.; Kleinert, F.; Langguth, M.; Leufen, L.H.; Mozaffari, A.; Stadtler, S. Can deep learning beat numerical weather prediction? Philos. Trans. R. Soc. A 2021, 379, 20200097. [Google Scholar] [CrossRef]
- Ubaid, A.M.; Dweiri, F.T.; Ojiako, U. Organizational excellence methodologies (OEMs): A systematic literature review. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 1395–1432. [Google Scholar] [CrossRef]
- Alrae, R.; Nasir, Q.; Abu Talib, M. Developing house of information quality framework for IoT systems. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 1294–1313. [Google Scholar] [CrossRef]
- Alketbi, A.; Nasir, Q.; Abu Talib, M. Novel blockchain reference model for government services: Dubai government case study. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 1170–1191. [Google Scholar] [CrossRef]
- Bera, S.; Gupta, G.S.; Kumar, D.; Shiva Kumar, S.; Gupta, K.K. LSTM-UKF framework for an effective global land-ocean index temperature prediction. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 2369–2384. [Google Scholar] [CrossRef]
- Yu, R.; Sun, Y.; Li, X.; Yu, J.; Gao, J.; Liu, Z.; Yu, M. Time series cross-correlation network for wind power prediction. Appl. Intell. 2023, 53, 11403–11419. [Google Scholar] [CrossRef]
- Chen, M.; Yang, H.; Li, S.; Qin, X. STAA: Spatio-Temporal Alignment Attention for Short-Term Precipitation Forecasting. IEEE Geosci. Remote Sens. Lett. 2024. [Google Scholar]
- Chen, M.; Yang, H.; Mao, B.; Xie, K.; Chen, C.; Dong, Y. An Ensemble Forecast Wind Field Correction Model with Multiple Factors and Spatio-Temporal Features. Atmosphere 2023, 14, 1650. [Google Scholar] [CrossRef]
- Lin, H.; Gao, Z.; Xu, Y.; Wu, L.; Li, L.; Li, S.Z. Conditional local convolution for spatio-temporal meteorological forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; Volume 36, pp. 7470–7478. [Google Scholar]
- Zeng, L.; Zhang, H.; Han, Q.; Tang, Y.; Ye, L.; Wu, Y.; Zu, H. An LSTM-based driving operation suggestion method for riding comfort-oriented critical zone. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 755–771. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z. Design of financial big data audit model based on artificial neural network. Int. J. Syst. Assur. Eng. Manag. 2021, 1–10. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Convers. Manag. 2018, 159, 54–64. [Google Scholar] [CrossRef]
- Yu, Y.; Han, X.; Yang, M.; Yang, J. Probabilistic prediction of regional wind power based on spatiotemporal quantile regression. In Proceedings of the 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 29 September–3 October 2019; pp. 1–16. [Google Scholar]
- Neshat, M.; Nezhad, M.M.; Abbasnejad, E.; Mirjalili, S.; Tjernberg, L.B.; Garcia, D.A.; Alexander, B.; Wagner, M. A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm. Energy Convers. Manag. 2021, 236, 114002. [Google Scholar] [CrossRef]
- Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent unit network. Energy 2020, 196, 117081. [Google Scholar] [CrossRef]
- Ding, M.; Zhou, H.; Xie, H.; Wu, M.; Nakanishi, Y.; Yokoyama, R. A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting. Neurocomputing 2019, 365, 54–61. [Google Scholar] [CrossRef]
- Nana, H.; Lei, D.; Lijie, W.; Ying, H.; Zhongjian, D.; Bo, W. Short-term wind speed prediction based on CNN_GRU model. In Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 2243–2247. [Google Scholar]
- Chen, Y.; Wang, Y.; Dong, Z.; Su, J.; Han, Z.; Zhou, D.; Zhao, Y.; Bao, Y. 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model. Energy Convers. Manag. 2021, 244, 114451. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.c. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Sun, H.; Song, T.; Li, Y.; Yang, K.; Xu, D.; Meng, F. EEMD-ConvLSTM: A model for short-term prediction of two-dimensional wind speed in the South China Sea. Appl. Intell. 2023, 53, 30186–30202. [Google Scholar] [CrossRef]
- Trebing, K.; Mehrkanoon, S. Wind speed prediction using multidimensional convolutional neural networks. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 713–720. [Google Scholar]
- Wu, H.; Meng, K.; Fan, D.; Zhang, Z.; Liu, Q. Multistep short-term wind speed forecasting using transformer. Energy 2022, 261, 125231. [Google Scholar] [CrossRef]
- He, J.; Yang, H.; Zhou, S.; Chen, J.; Chen, M. A Dual-Attention-Mechanism Multi-Channel Convolutional LSTM for Short-Term Wind Speed Prediction. Atmosphere 2022, 14, 71. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C. Data processing strategies in wind energy forecasting models and applications: A comprehensive review. Appl. Energy 2019, 249, 392–408. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, B.; Liang, Y.; Gao, H.; Lin, P.; Zhang, D.; Hu, G. Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables. Appl. Energy 2024, 353, 122155. [Google Scholar] [CrossRef]
- Meka, R.; Alaeddini, A.; Bhaganagar, K. A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables. Energy 2021, 221, 119759. [Google Scholar] [CrossRef]
- Lv, S.X.; Wang, L. Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model. Energy 2023, 263, 126100. [Google Scholar] [CrossRef]
- Xie, A.; Yang, H.; Chen, J.; Sheng, L.; Zhang, Q. A short-term wind speed forecasting model based on a multi-variable long short-term memory network. Atmosphere 2021, 12, 651. [Google Scholar] [CrossRef]
- Chengqing, Y.; Guangxi, Y.; Chengming, Y.; Yu, Z.; Xiwei, M. A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks. Energy 2023, 263, 126034. [Google Scholar] [CrossRef]
- López, G.; Arboleya, P. Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador. Renew. Energy 2022, 183, 351–368. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Wang, L.; Liao, Y. A short-term hybrid wind speed prediction model based on decomposition and improved optimization algorithm. Front. Energy Res. 2023, 11, 1298088. [Google Scholar] [CrossRef]
- Bilal, M.; Birkelund, Y.; Homola, M.; Virk, M.S. Wind over complex terrain–Microscale modelling with two types of mesoscale winds at Nygårdsfjell. Renew. Energy 2016, 99, 647–653. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; proceedings, part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Guen, V.L.; Thome, N. Disentangling physical dynamics from unknown factors for unsupervised video prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11474–11484. [Google Scholar]
- Gao, Z.; Tan, C.; Wu, L.; Li, S.Z. Simvp: Simpler yet better video prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 3170–3180. [Google Scholar]
- Yang, X.; Dai, K.; Zhu, Y. Calibration of Gridded Wind Speed Forecasts Based on Deep Learning. J. Meteorol. Res. 2023, 37, 757–774. [Google Scholar] [CrossRef]
- Shivam, K.; Tzou, J.C.; Wu, S.C. Multi-step short-term wind speed prediction using a residual dilated causal convolutional network with nonlinear attention. Energies 2020, 13, 1772. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, J. Spatial-temporal offshore wind speed characteristics prediction based on an improved purely 2D CNN approach in a large-scale perspective using reanalysis dataset. Energy Convers. Manag. 2024, 299, 117880. [Google Scholar] [CrossRef]
Hour | ConvLSTM | UNET | PhyDNet | SimVP | MIESTC | IMP(%) | |
---|---|---|---|---|---|---|---|
RMSE | 1 | 0.24850 | 0.23230 | 0.24057 | 0.23688 | 0.21222 | 8.64 |
2 | 0.36172 | 0.33808 | 0.33354 | 0.33613 | 0.30499 | 8.56 | |
3 | 0.43101 | 0.40212 | 0.39661 | 0.40011 | 0.36284 | 8.51 | |
4 | 0.47660 | 0.44414 | 0.44154 | 0.44312 | 0.40340 | 8.64 | |
5 | 0.51051 | 0.47641 | 0.47652 | 0.47498 | 0.43540 | 8.33 | |
6 | 0.53945 | 0.50586 | 0.50592 | 0.49905 | 0.46439 | 6.95 | |
MAE | 1 | 0.17021 | 0.15861 | 0.16859 | 0.16469 | 0.14453 | 8.88 |
2 | 0.25295 | 0.23522 | 0.23311 | 0.23585 | 0.21333 | 8.48 | |
3 | 0.30233 | 0.27946 | 0.27473 | 0.27956 | 0.25318 | 7.84 | |
4 | 0.33451 | 0.30797 | 0.30352 | 0.30775 | 0.27996 | 7.76 | |
5 | 0.35822 | 0.33012 | 0.32603 | 0.32885 | 0.30105 | 7.66 | |
6 | 0.37836 | 0.35048 | 0.34522 | 0.34531 | 0.32055 | 7.15 | |
PCC | 1 | 0.96446 | 0.96934 | 0.96707 | 0.96735 | 0.97396 | 0.48 |
2 | 0.92486 | 0.93510 | 0.93687 | 0.93452 | 0.94603 | 0.98 | |
3 | 0.89323 | 0.90814 | 0.91148 | 0.90799 | 0.92423 | 1.40 | |
4 | 0.86915 | 0.88774 | 0.89074 | 0.88768 | 0.90676 | 1.80 | |
5 | 0.84971 | 0.87072 | 0.87288 | 0.87153 | 0.89167 | 2.15 | |
6 | 0.83241 | 0.85414 | 0.85665 | 0.85824 | 0.87681 | 2.16 | |
SSIM | 1 | 0.92865 | 0.93896 | 0.93214 | 0.93207 | 0.94693 | 0.85 |
2 | 0.87265 | 0.89232 | 0.89216 | 0.88719 | 0.90409 | 1.32 | |
3 | 0.83878 | 0.86517 | 0.86727 | 0.86027 | 0.87924 | 1.38 | |
4 | 0.81767 | 0.84822 | 0.85045 | 0.84398 | 0.86276 | 1.45 | |
5 | 0.80228 | 0.83529 | 0.83732 | 0.83147 | 0.84979 | 1.49 | |
6 | 0.78881 | 0.82251 | 0.82586 | 0.82167 | 0.83657 | 1.30 |
Hour | ALL | −TP | −SP | −T2M | −U10 | −V10 | |
---|---|---|---|---|---|---|---|
RMSE | 1 | 0.21222 | 0.21717 | 0.21762 | 0.22225 | 0.22152 | 0.22333 |
2 | 0.30499 | 0.30841 | 0.30937 | 0.31802 | 0.31578 | 0.31613 | |
3 | 0.36284 | 0.36562 | 0.36606 | 0.37714 | 0.37417 | 0.37462 | |
4 | 0.40340 | 0.40640 | 0.40633 | 0.41799 | 0.41495 | 0.41553 | |
5 | 0.43540 | 0.43897 | 0.43882 | 0.44966 | 0.44758 | 0.44893 | |
6 | 0.46439 | 0.46832 | 0.46828 | 0.47804 | 0.47648 | 0.47851 | |
PCC | 1 | 0.97396 | 0.97295 | 0.97283 | 0.97150 | 0.97179 | 0.97147 |
2 | 0.94603 | 0.94501 | 0.94454 | 0.94128 | 0.94200 | 0.94195 | |
3 | 0.92423 | 0.92326 | 0.92281 | 0.91792 | 0.91896 | 0.91903 | |
4 | 0.90676 | 0.90564 | 0.90542 | 0.89939 | 0.90073 | 0.90083 | |
5 | 0.89167 | 0.89035 | 0.89023 | 0.88375 | 0.88507 | 0.88484 | |
6 | 0.87681 | 0.87534 | 0.87503 | 0.86838 | 0.87026 | 0.86936 |
Hour | WS | +U10,V10 | +T2M | +SP | +TP | |
---|---|---|---|---|---|---|
RMSE | 1 | 0.24133 | 0.22666 | 0.21887 | 0.21717 | 0.21222 |
2 | 0.35196 | 0.32662 | 0.31262 | 0.30841 | 0.30499 | |
3 | 0.42194 | 0.38869 | 0.37129 | 0.36562 | 0.36284 | |
4 | 0.47027 | 0.43163 | 0.41246 | 0.40640 | 0.40340 | |
5 | 0.50597 | 0.46456 | 0.44449 | 0.43897 | 0.43540 | |
6 | 0.53606 | 0.49406 | 0.47305 | 0.46832 | 0.46439 | |
PCC | 1 | 0.96698 | 0.97060 | 0.97242 | 0.97295 | 0.97396 |
2 | 0.92861 | 0.93856 | 0.94323 | 0.94501 | 0.94603 | |
3 | 0.89765 | 0.91365 | 0.92073 | 0.92326 | 0.92423 | |
4 | 0.87302 | 0.89387 | 0.90282 | 0.90564 | 0.90676 | |
5 | 0.85301 | 0.87724 | 0.88760 | 0.89035 | 0.89167 | |
6 | 0.83527 | 0.86075 | 0.87268 | 0.87534 | 0.87681 |
Hour | MIESTC | −MSTC | −IE | −SC | SimVP-Trans | |
---|---|---|---|---|---|---|
RMSE | 1 | 0.21222 | 0.23158 | 0.22216 | 0.22322 | 0.23444 |
2 | 0.30499 | 0.33417 | 0.31740 | 0.30523 | 0.33307 | |
3 | 0.36284 | 0.39848 | 0.37718 | 0.35953 | 0.39037 | |
4 | 0.40340 | 0.44469 | 0.41774 | 0.39970 | 0.42812 | |
5 | 0.43540 | 0.48145 | 0.45461 | 0.43235 | 0.45635 | |
6 | 0.46439 | 0.51456 | 0.48165 | 0.46187 | 0.48045 | |
PCC | 1 | 0.97396 | 0.96975 | 0.97184 | 0.97057 | 0.96897 |
2 | 0.94603 | 0.93610 | 0.94222 | 0.94548 | 0.93682 | |
3 | 0.92423 | 0.90867 | 0.91932 | 0.92516 | 0.91367 | |
4 | 0.90676 | 0.88583 | 0.90118 | 0.90810 | 0.89657 | |
5 | 0.89167 | 0.86628 | 0.88538 | 0.89295 | 0.88274 | |
6 | 0.87681 | 0.84828 | 0.87004 | 0.87793 | 0.86974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Chen, M.; Yi, L.; Lu, Q.; Yang, H. MIESTC: A Multivariable Spatio-Temporal Model for Accurate Short-Term Wind Speed Forecasting. Atmosphere 2025, 16, 67. https://doi.org/10.3390/atmos16010067
Li S, Chen M, Yi L, Lu Q, Yang H. MIESTC: A Multivariable Spatio-Temporal Model for Accurate Short-Term Wind Speed Forecasting. Atmosphere. 2025; 16(1):67. https://doi.org/10.3390/atmos16010067
Chicago/Turabian StyleLi, Shaohan, Min Chen, Lu Yi, Qifeng Lu, and Hao Yang. 2025. "MIESTC: A Multivariable Spatio-Temporal Model for Accurate Short-Term Wind Speed Forecasting" Atmosphere 16, no. 1: 67. https://doi.org/10.3390/atmos16010067
APA StyleLi, S., Chen, M., Yi, L., Lu, Q., & Yang, H. (2025). MIESTC: A Multivariable Spatio-Temporal Model for Accurate Short-Term Wind Speed Forecasting. Atmosphere, 16(1), 67. https://doi.org/10.3390/atmos16010067