Attribution Identification of Runoff Changes Based on the Budyko Elasticity Coefficient Method: A Case Study of the Middle and Upper Reaches of the Jinghe River in the Yellow River Basin
<p>Distribution of hydrological and meteorological stations in the study area.</p> "> Figure 2
<p>Steps used to process and analyze data, i.e., our research framework.</p> "> Figure 3
<p>Trends of <math display="inline"><semantics> <mrow> <mi>Q</mi> </mrow> </semantics></math> (runoff depth), <math display="inline"><semantics> <mrow> <mi>P</mi> </mrow> </semantics></math> (precipitation), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>E</mi> <mi>T</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> (potential evapotranspiration), and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>C</mi> </mrow> </semantics></math> (runoff coefficient) at three hydrological stations in the upper and middle reaches of the Jinghe River. (<b>a</b>–<b>c</b>) <math display="inline"><semantics> <mrow> <mi>Q</mi> </mrow> </semantics></math> (runoff depth), (<b>d</b>–<b>f</b>) <math display="inline"><semantics> <mrow> <mi>P</mi> </mrow> </semantics></math> (precipitation), (<b>g</b>–<b>i</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>E</mi> <mi>T</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> (potential evapotranspiration), and (<b>j</b>–<b>l</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>C</mi> </mrow> </semantics></math> (runoff coefficient). PL, JC and YJP denote the Pingliang, Jingchuan, and Yangjiaping hydrological stations, respectively.</p> "> Figure 4
<p>Trends in the interannual variability of the elasticity coefficients of (<b>a</b>–<b>c</b>) precipitation <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>P</mi> </mrow> </msub> </mrow> </semantics></math>, (<b>d</b>–<b>f</b>) potential evapotranspiration <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <msub> <mrow> <mi>E</mi> <mi>T</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math>, and (<b>g</b>–<b>i</b>) surface condition <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>. PL, JC, and YJP denote the Pingliang, Jingchuan, and Yangjiaping hydrological stations, respectively.</p> "> Figure 5
<p>Volume and contribution of each element to runoff changes at three hydrological stations in the middle (<b>b</b>,<b>c</b>,<b>e</b>,<b>f</b>) and upper (<b>a</b>,<b>d</b>) reaches of the Jinghe River, 1971–2020. PL, JC, and YJP denote the Pingliang, Jingchuan, and Yangjiaping hydrological stations, respectively.</p> "> Figure 6
<p>Relationship between the parameter <span class="html-italic">n</span> and the vegetation cover NDVI at the YJP hydrological station in the middle and upper reaches of the Jinghe River from 1986 to 2020. (<b>a</b>) Trend plot of surface parameter n; (<b>b</b>) Trend plot of NDVI; (<b>c</b>) Scatter plot of surface parameter n fitted to NDVI.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing and Research Framework
2.3. Methods
2.3.1. Trends in the Evolution of Hydrological Elements and Tests for Mutations
2.3.2. Budyko Elasticity Coefficient Method
3. Results
3.1. Analysis of Changes in Runoff and Meteorological Factors
3.2. Elasticity of Runoff with Respect to Environmental Factors
3.3. Attribution Analysis of Runoff Changes
4. Discussion
5. Conclusions
- During the study period from 1971 to 2020, there was a significant decreasing trend in precipitation at the PL and JC stations, and a significant decreasing trend in runoff depth at the YJP station in the middle and upper reaches of the Jinghe River, with no significant changes in the remaining elements. Runoff at the PL, JC, and YJP stations changed abruptly around 1986, with the second subperiod at the three hydrological stations showing a 31%, 25%, and 29% decrease in multi-year average annual runoff depth, respectively, compared to the first subperiod.
- The contribution of the elasticity coefficients of runoff depth to precipitation at three hydrological stations, PL, JC, and YJP, in the upper and middle reaches of the Jinghe River was the largest and showed an increasing trend, while potential evapotranspiration and subsurface changes showed a decreasing trend. Spatially, the changes in elasticity coefficients were largest at the YJP station, with smaller changes upstream of the PL and JC stations. A comparison between the elasticity coefficients of the elements in the first and second subperiods showed that the runoff depth in the second subperiod was more sensitive to both climate change and changes in subsurface conditions.
- An analysis of the elasticity coefficient method based on the Budyko hypothesis framework showed that the combination of human activities and climate change has led to a significant reduction in the volume of runoff in the middle and upper reaches of the Jinghe River, with the contribution of human activities amounting to about 70%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Yan, Z.; Ding, Y.; Zhai, P.; Song, L.C.; Cao, L.; Li, Z. Re-assessing climatic warming in China since the last century. Acta Meteorol. Sin. 2020, 78, 370–378. [Google Scholar]
- Wang, S.W.; Gong, D.Y. Enhancement of the warming trend in China. Geophys. Res. Lett. 2000, 27, 2581–2584. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Yang, S.; Wu, R.G. Long-term climate variations in China and global warming signals. J. Geophys. Res.-Atmos. 2003, 108, 4614. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, G.; Jin, J.; He, R.; Liu, C. Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956–2018. Adv. Water Sci. 2020, 31, 153–161. [Google Scholar]
- Li, D.L.; Wang, W.S.; Hu, S.X.; Li, Y.Q. Characteristics of annual runoff variation in major rivers of China. Hydrol. Process. 2012, 26, 2866–2877. [Google Scholar] [CrossRef]
- Ning, T.T.; Li, Z.; Liu, W.Z. Separating the impacts of climate change and land surface alteration on runoff reduction in the Jing River catchment of China. Catena 2016, 147, 80–86. [Google Scholar] [CrossRef]
- Xu, J.J.; Gao, X.C.; Yang, Z.Y.; Xu, T.Y. Trend and Attribution Analysis of Runoff Changes in the Weihe River Basin in the Last 50 Years. Water 2022, 14, 47. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.S.; Shen, X.J. Quantitative analysis for the response of streamflow variation to driving factors in seven major basins across China. Ecol. Indic. 2023, 148, 110081. [Google Scholar] [CrossRef]
- Zhong, D.Y.; Dong, Z.C.; Fu, G.B.; Bian, J.Q.; Kong, F.H.; Wang, W.Z.; Zhao, Y. Trend and change points of streamflow in the Yellow River and their attributions. J. Water Clim. Chang. 2021, 12, 136–151. [Google Scholar] [CrossRef]
- Mikaeili, O.; Shourian, M. Assessment of the Analytic and Hydrologic Methods in Separation of Watershed Response to Climate and Land Use Changes. Water Resour. Manage 2023, 37, 2575–2591. [Google Scholar] [CrossRef]
- Jehanzaib, M.; Shah, S.A.; Yoo, J.; Kim, T.W. Investigating the impacts of climate change and human activities on hydrological drought using non-stationary approaches. J. Hydrol. 2020, 588, 125052. [Google Scholar] [CrossRef]
- Dey, P.; Mishra, A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Yokoo, Y.; Sivapalan, M.; Oki, T. Investigating the roles of climate seasonality and landscape characteristics on mean annual and monthly water balances. J. Hydrol. 2008, 357, 255–269. [Google Scholar] [CrossRef]
- Aragaw, H.M.; Goel, M.K.; Mishra, S.K. Hydrological responses to human-induced land use/land cover changes in the Gidabo River basin, Ethiopia. Hydrol. Sci. J.-J. Sci. Hydrol. 2021, 66, 640–655. [Google Scholar] [CrossRef]
- Song, X.M.; Zhang, J.Y.; Zhan, C.S.; Xuan, Y.Q.; Ye, M.; Xu, C.G. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef]
- Collignan, J.; Polcher, J.; Bastin, S.; Quintana-Segui, P. Budyko Framework Based Analysis of the Effect of Climate Change on Watershed Evaporation Efficiency and Its Impact on Discharge Over Europe. Water Resour. Res. 2023, 59, e2023WR034509. [Google Scholar] [CrossRef]
- Zhang, S.L.; Yang, Y.T.; McVicar, T.R.; Yang, D.W. An Analytical Solution for the Impact of Vegetation Changes on Hydrological Partitioning Within the Budyko Framework. Water Resour. Res. 2018, 54, 519–537. [Google Scholar] [CrossRef]
- Choudhury, B.J. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Zhang, S.L.; Yang, H.B.; Yang, D.W.; Jayawardena, A.W. Quantifying the effect of vegetation change on the regional water balance within the Budyko framework. Geophys. Res. Lett. 2016, 43, 1140–1148. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.Z.; Zhang, X.C.; Zheng, F.L. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Huang, M.B.; Zhang, L.; Gallichand, J. Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol. Process. 2003, 17, 2599–2609. [Google Scholar] [CrossRef]
- Jothityangkoon, C.; Sivapalan, M.; Farmer, D.L. Process controls of water balance variability in a large semi-arid catchment: Downward approach to hydrological model development. J. Hydrol. 2001, 254, 174–198. [Google Scholar] [CrossRef]
- McVicar, T.R.; Li, L.; Van Niel, T.G.; Zhang, L.; Li, R.; Yang, Q.; Zhang, X.; Mu, X.; Wen, Z.; Liu, W.; et al. Developing a decision support tool for China’s re-vegetation program: Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. For. Ecol. Manage. 2007, 251, 65–81. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Tang, Y.; Tang, Q.H.; Zhang, L. Derivation of Interannual Climate Elasticity of Streamflow. Water Resour. Res. 2020, 56, e2020WR027703. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate elasticity of streamflow in the United States. Water Resour. Res. 2001, 37, 1771–1781. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 2011, 47, W00G07. [Google Scholar] [CrossRef]
- Yang, H.B.; Yang, D.W. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff. Water Resour. Res. 2011, 47, W07526. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44, W00A07. [Google Scholar] [CrossRef]
- Zhao, G.J.; Tian, P.; Mu, X.M.; Jiao, J.Y.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Yan, R.; Cai, Y.P.; Li, C.H.; Wang, X.; Liu, Q. Hydrological Responses to Climate and Land Use Changes in a Watershed of the Loess Plateau, China. Sustainability 2019, 11, 1443. [Google Scholar] [CrossRef]
- Kang, Y.C.; Gao, J.N.; Shao, H.; Zhang, Y.Y. Quantitative Analysis of Hydrological Responses to Climate Variability and Land-Use Change in the Hilly-Gully Region of the Loess Plateau, China. Water 2020, 12, 82. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, Y.; Liu, Y.; Ma, X. Hydrometeorological evolution and its change attribution in Jinghe River Basin. Water Resour. Hydropower Eng. 2023, 54, 34–48. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; United Nations Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Br. J. Psychol. 1975, 25, 86–91. [Google Scholar] [CrossRef]
- He, Y.; Song, J.X.; Hu, Y.Y.; Tu, X.; Zhao, Y. Impacts of different weather conditions and landuse change on runoff variations in the Beiluo River Watershed, China. Sustain. Cities Soc. 2019, 50, 101674. [Google Scholar] [CrossRef]
- Potter, N.J.; Zhang, L. Interannual variability of catchment water balance in Australia. J. Hydrol. 2009, 369, 120–129. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Shi, C.X.; Fan, X.L.; Shao, W.W. The influence of climate change and anthropogenic activities on annual runoff of Huangfuchuan basin in northwest China. Theor. Appl. Climatol. 2015, 120, 137–146. [Google Scholar] [CrossRef]
- Shi, G.S.; Gao, B. Attribution Analysis of Runoff Change in the Upper Reaches of the Kaidu River Basin Based on a Modified Budyko Framework. Atmosphere 2022, 13, 1385. [Google Scholar] [CrossRef]
- Ma, Y.L.; Sun, D.Y.; Niu, Z.R.; Wang, X.F. Contribution of Climate Change and Human Activities to Runoff and Sediment Discharge Changes Based on Budyko Theory and Water-Sediment Relationships during 1960–2019 in the Taohe River Basin, China. Atmosphere 2023, 14, 1144. [Google Scholar] [CrossRef]
- Sun, L.; Bi, H.; Ma, Z.; Zhao, D.; Wang, N.; Liu, Z.; Wang, X. Runoff variation characteristics and attribution analysis of the upper and middle reaches of the Yellow River from 1951 to 2020. J. Beijing For. Univ. 2024, 46, 82–92. [Google Scholar]
- Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. Water Resour. Res. 2005, 41, W06007. [Google Scholar] [CrossRef]
- Zhang, L.; Potter, N.; Hickel, K.; Zhang, Y.Q.; Shao, Q.X. Water balance modeling over variable time scales based on the Budyko framework—Model development and testing. J. Hydrol. 2008, 360, 117–131. [Google Scholar] [CrossRef]
- Yang, H.B.; Qi, J.; Xu, X.Y.; Yang, D.W.; Lv, H.F. The regional variation in climate elasticity and climate contribution to runoff across China. J. Hydrol. 2014, 517, 607–616. [Google Scholar] [CrossRef]
- Huang, T.T.; Liu, Y.; Wu, Z.Y.; Xiao, P.Q.; Wang, J.S.; Sun, P.C. Quantitative analysis of runoff alteration based on the Budyko model with time-varying underlying surface parameters for the Wuding River Basin, Loess Plateau. Ecol. Indic. 2024, 158, 111377. [Google Scholar] [CrossRef]
- Gao, G.Y.; Fu, B.J.; Wang, S.; Liang, W.; Jiang, X.H. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557, 331–342. [Google Scholar] [CrossRef]
- Xu, X.Y.; Yang, D.W.; Yang, H.B.; Lei, H.M. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Wang, S.A.; Fu, B.J.; Piao, S.L.; Lu, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Yang, H.B.; Yang, D.W.; Hu, Q.F. An error analysis of the Budyko hypothesis for assessing the contribution of climate change to runoff. Water Resour. Res. 2014, 50, 9620–9629. [Google Scholar] [CrossRef]
River Name | Discharge Station | Longitude | Latitude | Basin Area (km2) | Data Series |
---|---|---|---|---|---|
Jinghe River | Pingliang | 106°38′ | 35°34′ | 1305 | 1971–2020 |
Jingchuan | 107°21′ | 35°20′ | 3145 | 1971–2020 | |
Yangjiaping | 107°44′ | 35°20′ | 14,124 | 1971–2020 |
Meteorological Station | Longitude | Latitude | Altitude (m) | Data Series |
---|---|---|---|---|
Liupanshan | 106°07′ | 35°24′ | 2841 | 1971–2020 |
Pingliang | 106°24′ | 35°20′ | 1347 | 1971–2020 |
Changwu | 107°29′ | 35°07′ | 1206 | 1971–2020 |
Station | Q/mm yr−1 | P/mm yr−1 | ET0/mm yr−1 | RC | n | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Value | Z Value | Mean Value | Z Value | Mean Value | Z Value | Mean Value | Z Value | Mean Value | Z Value | |
Period (1971–2020) | ||||||||||
PL | 85.9 | −1.15 | 659.8 | 0.23 | 1058.6 | −3.60 ** | 0.123 | −1.34 | 2.501 | 3.26 ** |
JC | 64.0 | −1.31 | 585.0 | 0.38 | 1064.6 | −3.80 ** | 0.104 | −2.31 * | 2.276 | 4.33 ** |
YJP | 39.3 | −2.29 * | 587.3 | 0.79 | 1047.6 | −1.89 | 0.065 | −4.23 ** | 2.923 | 3.40 ** |
First subperiod (1971–1986 for PL; 1971–1983 for JC; 1971–1986 for YJP) | ||||||||||
PL | 108.4 | 0.59 | 684.8 | 0.41 | 1112.5 | 0.32 | 0.154 | 0.68 | 2.071 | −0.14 |
JC | 78.8 | 0.06 | 587.4 | 0.43 | 1122.6 | 0.43 | 0.131 | −0.18 | 1.897 | 0.55 |
YJP | 49.1 | −0.05 | 589.7 | 0.32 | 1073.4 | −1.94 | 0.082 | −0.32 | 2.560 | 1.04 |
Second subperiod (1987–2020 for PL; 1984–2020 for JC; 1987–2020 for YJP) | ||||||||||
PL | 75.3 | 0.80 | 648.0 | 1.48 | 1033.2 | −2.46 ** | 0.108 | 0.09 | 2.704 | 1.72 |
JC | 58.8 | 0.77 | 584.1 | 1.29 | 1044.2 | −2.05 * | 0.095 | −0.59 | 2.410 | 2.29 * |
YJP | 34.8 | −0.06 | 586.2 | 1.63 | 1035.5 | −0.09 | 0.058 | −1.84 | 3.093 | 2.14 * |
Station | Year of Mutation | First Subperiod/108 m3 | Second Subperiod/108 m3 | Rate of Change/% |
---|---|---|---|---|
PL | 1986 | 1.4144 | 0.9824 | −31 |
JC | 1983 | 2.4767 | 1.8491 | −25 |
YJP | 1986 | 6.9279 | 4.9086 | −29 |
Station | |||
---|---|---|---|
Period (1971–2020) | |||
PL | 3.025 | −2.025 | −1.904 |
JC | 2.902 | −1.902 | −2.080 |
YJP | 3.555 | −2.555 | −2.378 |
First subperiod (1971–1986 for PL; 1971–1983 for JC; 1971–1986 for YJP) | |||
PL | 2.631 | −1.631 | −1.723 |
JC | 2.556 | −1.556 | −1.951 |
YJP | 3.195 | −2.195 | −2.230 |
Second subperiod (1987–2020 for PL; 1984–2020 for JC; 1987–2020 for YJP) | |||
PL | 3.211 | −2.211 | −1.989 |
JC | 3.024 | −2.024 | −2.126 |
YJP | 3.725 | −2.725 | −2.448 |
Station | ||||||
---|---|---|---|---|---|---|
Period (1971–2020) | ||||||
PL | −6.594 | 13.015 | −41.366 | 10.8 | −21.3 | 67.9 |
JC | 3.873 | 8.957 | −29.986 | −9.1 | −20.9 | 70.0 |
YJP | 3.444 | 3.640 | −17.076 | −14.3 | −15.1 | 70.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, H.; Huang, W.; Wei, L.; Liu, J.; Chen, R. Attribution Identification of Runoff Changes Based on the Budyko Elasticity Coefficient Method: A Case Study of the Middle and Upper Reaches of the Jinghe River in the Yellow River Basin. Atmosphere 2025, 16, 6. https://doi.org/10.3390/atmos16010006
Wang X, Li H, Huang W, Wei L, Liu J, Chen R. Attribution Identification of Runoff Changes Based on the Budyko Elasticity Coefficient Method: A Case Study of the Middle and Upper Reaches of the Jinghe River in the Yellow River Basin. Atmosphere. 2025; 16(1):6. https://doi.org/10.3390/atmos16010006
Chicago/Turabian StyleWang, Xueliang, Haolin Li, Weidong Huang, Lemin Wei, Junfeng Liu, and Rensheng Chen. 2025. "Attribution Identification of Runoff Changes Based on the Budyko Elasticity Coefficient Method: A Case Study of the Middle and Upper Reaches of the Jinghe River in the Yellow River Basin" Atmosphere 16, no. 1: 6. https://doi.org/10.3390/atmos16010006
APA StyleWang, X., Li, H., Huang, W., Wei, L., Liu, J., & Chen, R. (2025). Attribution Identification of Runoff Changes Based on the Budyko Elasticity Coefficient Method: A Case Study of the Middle and Upper Reaches of the Jinghe River in the Yellow River Basin. Atmosphere, 16(1), 6. https://doi.org/10.3390/atmos16010006