The Radon Exhalation Rate and Dose Assessment of Granite Used as a Building Material in Serbia
<p>Schematic drawing of radon exhalation rate measurement.</p> "> Figure 2
<p>The build-up of radon exhaling from Sample 1 in a 30 L accumulation chamber. Experimental data are fitted on a theoretical curve given by Equation (1). From the fit, values of <span class="html-italic">E<sub>S</sub></span>, <span class="html-italic">C</span><sub>0</sub>, and <span class="html-italic">λ<sub>eff</sub></span> are extracted.</p> "> Figure 3
<p>Radon and thoron surface exhalation rates from 10 different granite samples obtained using the closed-chamber accumulation method.</p> "> Figure 4
<p>Specific activities of <sup>226</sup>Ra, <sup>232</sup>Tn, and <sup>40</sup>K of 10 selected granite samples.</p> "> Figure 5
<p>The annual effective doses due to the inhalation of radon (<span class="html-italic">λ<sub>v</sub></span> = 0.2 h<sup>−1</sup>) and thoron (EECT), as well as due to the exposure to external radiation.</p> "> Figure 6
<p>External hazard index.</p> ">
Abstract
:1. Introduction
- To estimate internal exposure to 222Rn radon and 220Rn thoron exhaling from the selected granite samples commonly used in Serbia, especially in the context of the reduced air exchange rate in homes that have undergone energy-efficient retrofits;
- To estimate effective doses due to exposure to radionuclides from selected granite samples.
2. Materials and Methods
2.1. Radon and Thoron Exhalation Rate
2.2. Gamma Spectrometry
2.3. Dose Assessment and Radiation Hazard Indices
3. Results and Discussion
3.1. Radon and Thoron Exhalation Rates
3.2. Gamma Spectrometry
3.3. Dose Assessment and Radiation Hazard Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ 2005, 330, 223. [Google Scholar] [CrossRef] [PubMed]
- European Council. Council Directive 2013/59/Euratom of 5 December 2013 Laying Down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off. J. Eur. Union 2014, 57, 1–73. Available online: https://eur-lex.europa.eu/eli/dir/2013/59/oj (accessed on 5 November 2024).
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, K.J.; Cinelli, G.; Gruber, V. Qualitative overview of indoor radon surveys in Europe. J. Environ. Radioactiv. 2019, 204, 163–174. [Google Scholar] [CrossRef] [PubMed]
- UNFCCC. Paris Agreement; UNFCCC: Paris, France, 2015; Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 5 November 2024).
- Hamilton, I.; Milner, J.; Chalabi, Z.; Payel, D.; Jones, B.; Shrubsole, C. Health effects of home energy efficiency interventions in England: A modelling study. BMJ Open 2015, 5, e007298. [Google Scholar] [CrossRef] [PubMed]
- Symonds, P.; Rees, D.; Daraktchieva, Z.; McColl, N.; Bradley, J.; Hamilton, I.; Davies, M. Home energy efficiency and radon: An observational study. Indoor Air 2019, 29, 854–864. [Google Scholar] [CrossRef]
- Collignan, B.; Powaga, E. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration. J. Environ. Radioactiv. 2019, 196, 268–273. [Google Scholar] [CrossRef]
- Oreszczyn, T.; Mumovic, D.; Ridley, I.; Davies, M. The reduction in air infiltration due to window replacement in UK dwellings: Results of a field study and telephone survey. Int. J. Vent. 2005, 4, 71–77. [Google Scholar] [CrossRef]
- Vasilyev, A.V.; Yarmoshenko, I.V.; Zhukovsky, M.V. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings. Radiat. Prot. Dosim. 2015, 164, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Yarmoshenko, I.V.; Vasilyev, A.V.; Onishchenko, A.D.; Kiselev, S.M.; Zhukovsky, M.V. Indoor radon problem in energy efficient multi-storey buildings. Radiant. Prot. Dosim. 2014, 160, 53–56. [Google Scholar] [CrossRef]
- Jiranek, M.; Kacmarikova, V. Dealing with the increased radon activity concentration in thermally retrofitted buildings. J. Radiat. Prot. Dosim. 2014, 160, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Nuccetelli, C.; Leonardi, F.; Trevisi, R. Building material radon emanation and exhalation rate: Need of a shared measurement protocol from the European database analysis. J. Environ. Radioactiv. 2020, 225, 106438. [Google Scholar] [CrossRef] [PubMed]
- Tuccimei, P.; Moroni, M.; Norcia, D. Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: Influence of particle size, humidity and precursors concentration. Appl. Radiat. Isotopes 2006, 64, 254–263. [Google Scholar] [CrossRef]
- Saad, A.F.; Al-Awami, H.H.; Hussein, N.A. Radon exhalation from building materials used in Libya. Radiat. Phys. Chem. 2014, 101, 15–19. [Google Scholar] [CrossRef]
- Walley El-Dine, N.; El-Shershaby, A.; Ahmed, F.; Abdel-Haleem, A.S. Measurement of radioactivity and radon exhalation rate in different kinds of marbles and granites. Appl. Radiat. Isot. 2001, 55, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Frutos-Puerto, S.; Pinilla-Gil, E.; Andrade, E.; Reis, M.; Madruga, M.J.; Miró Rodríguez, C. Radon and thoron exhalation rate, emanation factor and radioactivity risks of building materials of the Iberian Peninsula. PeerJ 2000, 8, e10331. [Google Scholar] [CrossRef]
- Prasad, G.; Ishikawa, T.; Hosoda, M.; Sahoo, S.K.; Kavasi, N.; Sorimachi, A.; Tokonami, S.; Uchida, S. Measurement of radon/thoron exhalation rates and gamma-ray dose rate in granite areas in Japan. Radiat. Prot. Dosim. 2012, 152, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Moura, C.L.; Artur, A.C.; Bonotto, D.M.; Guedes, S.; Martinelli, C.D. Natural radioactivity and radon exhalation rate in Brazilian igneous rocks. Appl. Rad. Isot. 2011, 69, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Claro, F.; Paschuk, S.; Corrêa, J.; Mazer, W.; Narloch, D.; Martin, A.; Denyak, V. Radon exhalation from granitic rocks. Braz. J. Radiat. Sci. 2019, 7, 1–19. [Google Scholar] [CrossRef]
- Saleh, E.E.; Al-Sobahi, A.M.A.; El-Fiki, S.A.E. Assessment of radon exhalation rate, radon concentration and annual effective dose of some building materials samples used in Yemen. Acta Geophys. 2021, 69, 1325–1333. [Google Scholar] [CrossRef]
- Aykamış, Ş.A.; Turhan, Ş.; Ugur, F.A.; Baykan, U.N.; Kılıç, A.M. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey. Radiat. Prot. Dosim. 2013, 157, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, J.; Yoon, S.; Lee, C. 222Rn Exhalation Rates from Some Granite and Marble Used in Korea: Preliminary Study. Atmosphere 2021, 12, 1057. [Google Scholar] [CrossRef]
- Tene, T.; Gomez, C.V.; Usca, G.T.; Suquillo, B.; Bellucci, S. Measurement of radon exhalation rate from building materials: The case of Highland Region of Ecuador. Constr. Build. Mater. 2021, 293, 123282. [Google Scholar] [CrossRef]
- Ujić, P.; Čeliković, I.; Kandić, A.; Vukanac, I.; Đurašević, M.; Dragosavac, D.; Žunić, Z.S. Internal exposure from building materials exhaling 222Rn and 220Rn as compared to external exposure due to their natural radioactivity content. Appl. Radiat. Isotopes. 2010, 68, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Čeliković, I.T.; Pantelić, G.K.; Živanović, M.Z.; Vukanac, I.S.; Krneta Nikolić, J.D.; Kandić, A.B.; Lončar, B.B. Radon and thoron exhalation rate measurements from building materials used in Serbia. Nukleonika 2020, 65, 111–114. [Google Scholar] [CrossRef]
- Kuzmanović, P.; Todorović, N.; Nikolov, J.; Hansman, J.; Vraničar, A.; Knežević, J.; Miljević, B. Assessment of radiation risk and radon exhalation rate for granite used in the construction industry. J. Radioanal. Nucl. Chem. 2019, 321, 565–577. [Google Scholar] [CrossRef]
- Kuzmanović, P.; Todorović, N.; Filipović Petrović, L.; Mrđa, D.; Forkapić, S.; Nikolov, J.; Knežević, J. Radioactivity of building materials in Serbia and assessment of radiological hazard of gamma radiation and radon exhalation. J. Radioanal. Nucl. Chem. 2020, 324, 1077–1087. [Google Scholar] [CrossRef]
- Vukanac, I.; Janković, M.; Rajačić, M.; Todorović, D.; Ujić, P.; Pantelić, G.; Sarap NKrneta-Nikolić, J. Assessment of natural radioactivity levels and radon exhalation rate potential from various building materials. Nucl. Technol. Radiat. 2020, 35, 64–73. [Google Scholar] [CrossRef]
- Stajic, J.; Nikezic, D. Measurement of Radon Exhalation Rates From Some Building Materials Used in Serbian Construction. J. Radioanal. Nucl. Chem. 2015, 303, 1943–1947. [Google Scholar] [CrossRef]
- Ujić, P.; Čeliković, I.; Kandić, A.; Žunić, Z. Standardization and difficulties of the thoron exhalation rate measurements using an accumulation chamber. Radiat. Meas. 2008, 43, 1396–1401. [Google Scholar] [CrossRef]
- Petropolous, M.P.; Anagnostakis, M.J.; Simopolous, S.E. Building materials radon exhalation rates: ERRICA intercomparison exercise results. Sci. Total Environ. 1999, 272, 109–118. [Google Scholar] [CrossRef]
- RTM 1688-2: Radon and Thoron Monitor. Available online: https://www.sarad.de/cms/media/docs/handbuch/man-rtm1688-2-en.pdf (accessed on 4 December 2024).
- Samuelson, C. The closed-can exhalation method for measuring radon. J. Res. Natl. Inst. Stand. Technol. 1990, 95, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Han, G.; Hu, C.; Chen, Y.; Liu, J.; Tang, F.; He, L. Enhancing time-resolution for radon measurements using airflow-through scintillation cells based on a compartmental model approach. Radiat. Prot. Dosim. 2024, 200, 1706–1710. [Google Scholar] [CrossRef] [PubMed]
- Vukanac, I.; Đurašević, M.; Nikolić Krneta, J.; Pantelić, G.; Rajačić, M.; Janković, M.; Sarap, N.; Todorović, D. Preparation and validation of laboratory radioactive standards for experimental calibration in gamma ray spectrometry. Radiat. Phys. Chem. 2021, 183, 109407. [Google Scholar] [CrossRef]
- CMI (Czech Metrological Institute). Radioactive Standard Solutions; ER X 1035-SE-40507-22; CMI: Prague, Czech Republic, 2022. [Google Scholar]
- Genie 2000, Version 3.2; Canberra Industries, Inc., Canberra France HQ & Europe Coordination Bois Mouton: Meriden, CT, USA, 2005.
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation 1; UNSCEAR: New York, NY, USA, 2000. [Google Scholar]
- Tokonami, S. Characteristics of Thoron (220Rn) and Its Progeny in the Indoor Environment. Int. J. Environ. Res. Public Health 2020, 17, 8769. [Google Scholar] [CrossRef] [PubMed]
- Katase, A.; Matsumoto, Y.; Sakae, T.; Ishibashi, K. Indoor concentrations of 220Rn and its decay products. Health Phys. 1988, 54, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, W.; Tokonami, S. Convenient Methods for Evaluation of Indoor Thoron Progeny Concentrations. In High Levels of Natural Radiation and Radon Areas: Radiation Dose and Health Effects; International Congress Series 1276; Elsevier: Amsterdam, The Netherlands, 2005; pp. 219–220. [Google Scholar]
- Stevanovic, N.; Markovic, V.M.; Nikezic, D. Depostion rates of unattached and attached radon progeny in room with turbulent airflow and ventilation. J. Environ. Radioact. 2009, 100, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Beretka, J.; Matthew, P.J. Natural Radioactivity of Australian Building Materials, Industrial Wastes and By-Products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef] [PubMed]
- de With, G.; Kovács, T.; Csordás, A.; Tschiersch, J.; Yang, J.; Sadler, S.W.; Meisenberg, O. Intercomparison on the measurement of the thoron exhalation rate from building materials. J. Environ. Radioact. 2021, 228, 106510. [Google Scholar] [CrossRef] [PubMed]
- Pantelic, G.; Todorovic, D.; Nikolic, J.; Rajacic, M.; Jankovic, M.; Sarap, N. Measurement of radioactivity in building materials in Serbia. J. Radioanal. Nucl. Chem. 2015, 303, 2517–2522. [Google Scholar] [CrossRef]
- Alnour, I.A.; Wagiran, H.; Ibrahim, N.; Laili, Z.; Omar, M.; Hamzah Bello, S.; Idi, Y. Natural radioactivity measurements in the granite rock of quarry sites, Johor, Malaysia. Radiat. Phys. Chem. 2012, 81, 1842–1847. [Google Scholar] [CrossRef]
- Srinivasa, E.; Rangaswamy, D.R.; Sannappa, J. Assessment of radiological hazards and effective dose from natural radioactivity in rock samples of Hassan district, Karnataka, India. Environ. Earth Sci. 2019, 78, 431. [Google Scholar] [CrossRef]
- Tzortzis, M.; Tsertos, H.; Christofides, S.; Christodoulides, G. Gamma radiation measurements and dose rates in commercially-used natural tiling rocks (granites). J. Environ. Radioact. 2003, 70, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-J.; Lin, Y.-M. Assessment of building materials for compliance with regulation of ROC. Environ. Int. 1995, 22, 221–226. [Google Scholar] [CrossRef]
- IAEA (International Atomic Energy Agency). Measurement and Calculation of Radon Releases from NORM Residues: Technical Reports Series No. 474. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/trs474_webfile.pdf (accessed on 7 November 2024).
- Paquet, F.; Bailey, M.R.; Leggett, R.W.; Lipsztein, J.; Marsh, J.; Fell, T.P.; Smith, T.; Nosske, D.; Eckerman, K.F.; Berkovski, V.; et al. ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3. Ann. ICRP 2017, 46, 1–486. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation: Sixty-Sixth Session (10–14 June 2019); United Nations: New York, NY, USA, 2019. [Google Scholar]
Sample ID | ERn (μBq m−2 s−1) | ETn (mBq m−2 s−1) | 226Ra (Bq kg−1) | 232Th (Bq kg−1) | 40K (Bq kg−1) |
---|---|---|---|---|---|
1 | 5220 ± 200 | 5140 ± 320 | 131.8 ± 9.4 | 120.8 ± 6.5 | 1288 ± 84 |
2 | 622 ± 21 | 112 ± 56 | 84.5 ± 6.1 | 39.2 ± 2.3 | 885 ± 64 |
3 | 670 ± 36 | 616 ± 35 | 37.9 ± 2.8 | 285 ± 15 | 1321 ± 86 |
4 | <170 | 678 ± 81 | 30.9 ± 2.3 | 52.9 ± 2.9 | 1093 ± 72 |
5 | 1646 ± 49 | 2470 ± 150 | 93.5 ± 6.8 | 109.2 ± 5.6 | 1234 ± 63 |
6 | <185 | 514 ± 72 | 29.0 ± 2.2 | 39.2 ± 2.3 | 1108 ± 57 |
7 | 64 ± 14 | <7 | 57.3 ± 4.1 | 63.8 ± 3.5 | 691 ± 36 |
8 | <161 | <21 | 6.6 ± 0.5 | 2.3 ± 0.3 | 59.9 ± 3.2 |
9 | 257 ± 24 | <18 | 11.8 ± 0.9 | 0.5 ± 0.1 | 0.22 ± 0.01 |
10 | 243 ± 24 | 1240 ± 100 | 35.7 ± 2.6 | 53.3 ± 2.8 | 1223 ± 62 |
ERn (μBq m−2 s−1) | ETn (mBq m−2 s−1) | 226Ra (Bq kg−1) | 232Th (Bq kg−1) | 40K (Bq kg−1) | References |
---|---|---|---|---|---|
240–10,300 | 81–6290 | 97–294 | 183–470 | 85–264 | [14] |
41–471 | [15] | ||||
10–38 | 30–122 | 12–62 | 127–1335 | [16] | |
62–790 | 7.5–425 | 51–239 | 10–124 | [17] | |
3000–37,000 | 40–3330 | [18] | |||
67–1090 | 12–252 | 9.55–347.5 | 407.5–1615 | [19] | |
0.14–2650 | [20] | ||||
max: 258 | [21] | ||||
361–389 | 10–187 | 16–354 | 104–1630 | [22] | |
average: 138 | [23] | ||||
389–2175 | [24] | ||||
33.6- | 42.3 | [26] | |||
861–1039 | 23–280 | 77–426 | 550–2240 | [27] | |
161–5220 | <7–5140 | 6.6–131.8 | 0.5–120.8 | 0.22–1321 | This study |
Sample ID | CRn (Bq m−3) λv = 0.63 h−1 | CRn (Bq m−3) λv = 0.2 h−1 | CRn (Bq m−3) λv = 0.13 h−1 | EETC (Bq m−3) |
---|---|---|---|---|
1 | 47.7 ± 1.8 | 150.3 ± 5.8 | 231.3 ± 8.9 | 6.22 ± 0.39 |
2 | 5.7 ± 0.2 | 17.9 ± 0.6 | 27.6 ± 0.9 | 0.14 ± 0.07 |
3 | 6.1 ± 0.3 | 19.3 ± 1.0 | 29.7 ± 1.6 | 0.75 ± 0.04 |
4 | <1.5 | <4.9 | <7.5 | 0.82 ± 0.10 |
5 | 15.0 ± 0.4 | 47.4 ± 1.4 | 72.9 ± 2.2 | 2.99 ± 0.18 |
6 | <1.7 | <5.3 | <8.2 | 0.62 ± 0.09 |
7 | 0.6 ± 0.1 | 1.8 ± 0.4 | 2.8 ± 0.6 | - |
8 | <1.5 | <4.6 | <7.1 | 0.03 |
9 | 2.3 ± 0.2 | 7.4 ± 0.7 | 11.4 ± 1.1 | 0.02 |
10 | 2.2 ± 0.2 | 7.0 ± 0.7 | 10.8 ± 1.1 | 1.50 ± 0.12 |
Sample ID | DERn (mSv) | DETn (mSv) | DE (mSv) | Raeq | Hex |
---|---|---|---|---|---|
1 | 3.79 | 1.74 | 1.75 | 402.92 | 1.09 |
2 | 0.45 | 0.04 | 0.94 | 208.70 | 0.56 |
3 | 0.49 | 0.21 | 2.22 | 547.17 | 1.48 |
4 | 0.12 | 0.23 | 0.85 | 190.71 | 0.51 |
5 | 1.19 | 0.84 | 1.49 | 344.67 | 0.93 |
6 | 0.13 | 0.17 | 0.78 | 170.37 | 0.46 |
7 | 0.05 | 0.00 | 0.87 | 201.74 | 0.54 |
8 | 0.12 | 0.01 | 0.07 | 14.50 | 0.04 |
9 | 0.19 | 0.01 | 0.06 | 12.53 | 0.03 |
10 | 0.18 | 0.42 | 0.93 | 206.09 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabek, F.; Obradović, B.; Čeliković, I.; Đurašević, M.; Samolov, A.; Kolarž, P.; Janićijević, A. The Radon Exhalation Rate and Dose Assessment of Granite Used as a Building Material in Serbia. Atmosphere 2024, 15, 1495. https://doi.org/10.3390/atmos15121495
Shabek F, Obradović B, Čeliković I, Đurašević M, Samolov A, Kolarž P, Janićijević A. The Radon Exhalation Rate and Dose Assessment of Granite Used as a Building Material in Serbia. Atmosphere. 2024; 15(12):1495. https://doi.org/10.3390/atmos15121495
Chicago/Turabian StyleShabek, Fathya, Božidar Obradović, Igor Čeliković, Mirjana Đurašević, Aleksandra Samolov, Predrag Kolarž, and Aco Janićijević. 2024. "The Radon Exhalation Rate and Dose Assessment of Granite Used as a Building Material in Serbia" Atmosphere 15, no. 12: 1495. https://doi.org/10.3390/atmos15121495
APA StyleShabek, F., Obradović, B., Čeliković, I., Đurašević, M., Samolov, A., Kolarž, P., & Janićijević, A. (2024). The Radon Exhalation Rate and Dose Assessment of Granite Used as a Building Material in Serbia. Atmosphere, 15(12), 1495. https://doi.org/10.3390/atmos15121495