Beyond Temperature Peaks: The Growing Persistence and Intensity of Tmin and Tmax Heatwaves in Portugal’s Changing Climate (1980/1981–2022/2023)
<p>Geographical distribution and temperature data across mainland Portugal: (<b>a</b>) topography, highlighting some provinces, and the ERA5-Land 1012 grid-points used for analysis; (<b>b</b>) average of minimum daily temperatures, T<sub>min</sub>, over the 43 hydrological years from 1980/1981 to 2022/2023, with the names of the 15 focal grid-points indicated; (<b>c</b>) average of maximum daily temperatures, T<sub>max</sub>, for the same period, with the corresponding location codes shown. Maps in (<b>b</b>,<b>c</b>) were produced using the 1012 grid-points and Inverse Distance Weighting with a power of 2 (IDW2).</p> "> Figure 2
<p>Averages of annual minimum daily temperatures from 1980/1981 to 2022/2023: (<b>a</b>) for the minimum temperatures (AMIN T<sub>min</sub>), with the names of the 15 focal Portuguese locations indicated; (<b>b</b>) for the maximum temperatures (AMIN T<sub>max</sub>) for the same period, with corresponding location codes shown. Maps were produced using the 1012 grid-points and IDW2.</p> "> Figure 3
<p>Averages of annual maximum daily temperatures from 1980/1981 to 2022/2023: (<b>a</b>) for the minimum temperatures (AMAX T<sub>min</sub>), with the names of the 15 focal Portuguese locations indicated; (<b>b</b>) for the maximum temperatures (AMAX T<sub>max</sub>) for the same period, with corresponding location codes shown. Maps were produced using the 1012 grid-points and IDW2.</p> "> Figure 4
<p>Heatwave thresholds (<math display="inline"><semantics> <msub> <mi>A</mi> <mi>d</mi> </msub> </semantics></math>) for (<b>a</b>) T<sub>min</sub> and (<b>b</b>) T<sub>max</sub> across 15 focal grid-points in mainland Portugal. Thresholds were calculated as the 90th percentile of daily temperatures for the hydrological years 1980/1981 to 2022/2023. The grid-points, listed from north to south and west to east, include (codes between brackets): Bragança (BGCA), Braga (BRGA), Porto (PRTO), Aveiro (AVRO), Guarda (GRDA), Coimbra (CMBR), Castelo Branco (CABO), Nazaré (NZRE), Portalegre (PTLG), Santarém (STRM), Lisbon (LISB), Évora (EVRA), Beja (BEJA), Lagos (LGOS), and Faro (FARO).</p> "> Figure 5
<p>Temporal evolution of annual number of heatwave days (ANDH) for (<b>a</b>) T<sub>min</sub> and (<b>b</b>) T<sub>max</sub> across 15 focal grid-points in mainland Portugal, based on the Mann-Kendall-Sneyers (MKS) test. The progressive statistic <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> is shown, with Kendall’s normalised tau on the <span class="html-italic">y</span>-axis. Tau values outside the range ±1.96 indicate statistically significant trends at the <math display="inline"><semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics></math> confidence level.</p> "> Figure 6
<p>Temporal evolution of annual average temperature during heatwaves (AATW) for (<b>a</b>) T<sub>min</sub> and (<b>b</b>) T<sub>max</sub> across 15 focal grid-points in mainland Portugal, based on the Mann-Kendall-Sneyers (MKS) test. The progressive statistic <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> is shown, with Kendall’s normalised tau on the <span class="html-italic">y</span>-axis. Tau values outside the range ±1.96 indicate statistically significant trends at the <math display="inline"><semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics></math> confidence level.</p> "> Figure 7
<p>Temporal evolution of annual intensity of heatwave events (AIHD) for (<b>a</b>) T<sub>min</sub> and (<b>b</b>) T<sub>max</sub> across 15 focal grid-points in mainland Portugal, based on the Mann-Kendall-Sneyers (MKS) test. The progressive statistic <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> is shown, with Kendall’s normalised tau on the <span class="html-italic">y</span>-axis. Tau values outside the range ±1.96 indicate statistically significant trends at the <math display="inline"><semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics></math> confidence level.</p> "> Figure 8
<p>Decadal trends based on Sen’s slope and 43 annual means, from 1980/1981 to 2022/2023, of (<b>a</b>) T<sub>min</sub>, with the names of 15 focal grid-points indicated; and (<b>b</b>) T<sub>max</sub>, with corresponding region codes shown. Maps were produced using 1012 grid-points and IDW2 interpolation.</p> "> Figure 9
<p>Decadal trends based on Sen’s slope and 43 annual values, from 1980/1981 to 2022/2023, in (<b>a</b>) AMIN T<sub>min</sub>, with the names of 15 focal grid-points indicated; and (<b>b</b>) AMIN T<sub>max</sub>, with corresponding region codes shown. Maps were produced using 1012 grid-points and IDW2 interpolation.</p> "> Figure 10
<p>Decadal trends based on Sen’s and the 43 annual values, from 1980/1981 to 2022/2023, in (<b>a</b>) AMAX T<sub>min</sub>, with the names of 15 focal grid-points indicated; and (<b>b</b>) AMAX T<sub>max</sub>, with corresponding region codes shown. Maps were produced using 1012 grid-points and IDW2 interpolation.</p> ">
Abstract
:1. Introduction
- The temporal changes in various heatwave characteristics, including the number of heatwave days, mean heatwave temperature, and heatwave intensity.
- The identification of potential regions more susceptible to extreme heat events.
- The assessment of long-term trends in heatwave characteristics.
2. Study Area and Data Preparation
3. Methods
3.1. Heat Wave Magnitude Index
- Annual number of days experiencing heatwaves, denoted as ANDH
- Annual average temperature of days experiencing heatwaves, denoted as AATW
- Annual intensity of heatwave days, denoted as AIHD
3.2. Trend Analysis
3.3. Sequential Mann-Kendall Test
4. Results
4.1. Trends in Tmin Heatwave Characteristics
4.2. Trends in Tmax Heatwave Characteristics
4.3. Temporal Evolution of Heatwave Characteristics
5. Discussion
5.1. Persistence of Heatwave Days
5.2. Intensity of Heatwave Events
5.3. Implications of Nighttime Temperature Trends
5.4. Statistical Significance and Climate Signals
5.5. Spatial Patterns of Temperature Trends Across Mainland Portugal
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marx, W.; Haunschild, R.; Bornmann, L. Heat waves: A hot topic in climate change research. Theor. Appl. Climatol. 2021, 146, 781–800. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Heatwaves: Does global research reflect the growing threat in the light of climate change? Glob. Health 2023, 19, 56. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.; Amraoui, M.; Fischer, E.M. Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Sci. Total Environ. 2018, 631, 534–549. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Moreira Freitas, L.M.; Gharbia, S. Addressing the Spatiotemporal Patterns of Heatwaves in Portugal with a Validated ERA5-Land Dataset (1980–2021). Water 2023, 15, 3102. [Google Scholar] [CrossRef]
- Andrade, C.; Fraga, H.; Santos, J. Climate change multi-model projections for temperature extremes in Portugal. Atmos. Sci. Lett. 2014, 15, 149–156. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Rodrigues, M.; Santana, P.; Rocha, A. Statistical Modelling of Temperature-Attributable Deaths in Portuguese Metropolitan Areas under Climate Change: Who Is at Risk? Atmosphere 2020, 11, 159. [Google Scholar] [CrossRef]
- Lee, V.; Zermoglio, F.; Ebi, K.; Chemonics International Inc. Heat Waves and Human Health—Emerging Evidence and Experience to Inform Risk Management in a Warming World. United States Agency for International Development, 2019. Available online: https://www.climatelinks.org/sites/default/files/asset/document/2019_USAID-ATLAS_Heat-Waves-and-Human-Health.pdf (accessed on 10 May 2024).
- Kikstra, J.S.; Nicholls, Z.R.; Smith, C.J.; Lewis, J.; Lamboll, R.D.; Byers, E.; Sandstad, M.; Meinshausen, M.; Gidden, M.J.; Rogelj, J.; et al. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: From emissions to global temperatures. Geosci. Model Dev. 2022, 15, 9075–9109. [Google Scholar] [CrossRef]
- IPCC. Annex II: Glossary. In Climate Change 2022—Impacts, Adaptation and Vulnerability; Möller, V., van Diemen, R., Matthews, J.B.R., Méndez, C., Semenov, S., Fuglestvedt, J.S., Reisinger, A., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Coughlan de Perez, E.; Arrighi, J.; Marunye, J. Challenging the universality of heatwave definitions: Gridded temperature discrepancies across climate regions. Clim. Chang. 2023, 176, 167. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12,500–12,512. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Perkins-Kirkpatrick, S.; Lewis, S. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.; Nairn, J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Gibson, P.B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 2017, 7, 12256. [Google Scholar] [CrossRef]
- Waha, K.; Krummenauer, L.; Adams, S.; Aich, V.; Baarsch, F.; Coumou, D.; Fader, M.; Hoff, H.; Jobbins, G.; Marcus, R.; et al. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Reg. Environ. Chang. 2017, 17, 1623–1638. [Google Scholar] [CrossRef]
- Ramos, A.M.; Trigo, R.M.; Santo, F.E. Evolution of extreme temperatures over Portugal: Recent changes and future scenarios. Clim. Res. 2011, 48, 177–192. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.; Lima, D.C.; Miranda, P.M. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Clim. Dyn. 2019, 52, 129–157. [Google Scholar] [CrossRef]
- Medeiros, E.J.R. EU Funding to Promote Climate Change Adaptation and Risk Prevention and Management in Portugal: Potential Effects on Mitigating Health Hazards. In Climate Change and Health Hazards: Addressing Hazards to Human and Environmental Health from a Changing Climate; Springer: Berlin/Heidelberg, Germany, 2023; pp. 331–348. [Google Scholar]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Gouveia, C.; Bastos, A.; Trigo, R.; DaCamara, C. Drought impacts on vegetation in the pre-and post-fire events over Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 2012, 12, 3123–3137. [Google Scholar] [CrossRef]
- Gaupp, F.; Hall, J.; Hochrainer-Stigler, S.; Dadson, S. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Chang. 2020, 10, 54–57. [Google Scholar] [CrossRef]
- IPMA. Relatório Julho 2022: Incêndios Rurais Análise Meteorológica & Índices de Perigo e de Risco; Instituto Português do Mar e da Atmosfera; Lisbon, Portugal, 2022; 33p, Available online: https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20220920/aLPaHsIyJXBPjLidMnfC/met_20220701_20220731_fog_mm_co_pt.pdf (accessed on 15 April 2024).
- Pereira, M.G.; Gonçalves, N.; Amraoui, M. The Influence ofWildfire Climate onWildfire Incidence: The Case of Portugal. Fire 2024, 7, 234. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Country-level risk factors for the incidence of non-communicable diseases in rural India. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Nairn, J.; Fawcett, R. The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public Health 2015, 12, 227–253. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin/Heidelberg, Germany, 2001; Volume 208. [Google Scholar]
- Carvalho, A.; Schmidt, L.; Santos, F.D.; Delicado, A. Climate change research and policy in Portugal. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 199–217. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Gharbia, S. Assessing Changes in Exceptional Rainfall in Portugal Using ERA5-Land Reanalysis Data (1981/1982–2022/2023). Water 2024, 16, 628. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- European Centre for Medium-RangeWeather Forecasts (ECMWF). ERA5-Land: A New Dataset for Land Surface Temperature and Other Variables; Technical Memorandum 877; ECMWF: Reading, UK, 2021. [Google Scholar]
- Velikou, K.; Lazoglou, G.; Tolika, K.; Anagnostopoulou, C. Reliability of the ERA5 in Replicating Mean and Extreme Temperatures across Europe. Water 2022, 14, 543. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Matos, J.P. ERA5-Land Reanalysis Temperature Data Addressing Heatwaves in Portugal. In Proceedings of the International Congress on Engineering and Sustainability in the XXI Century, Faro, Portugal, 5–7 July 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 81–94. [Google Scholar]
- Belo-Pereira, M.; Dutra, E.; Viterbo, P. Climate in Portugal during the 20th century: A brief overview. Rev. Port. Meteorol. GeofíSica 2009, 5, 1–17. [Google Scholar]
- Santos, F.D.; Forbes, K.; Moita, R. Climate Change in Portugal. Scenarios, Impacts and Adaptation Measures—SIAM Project; Gradiva: Lisbon, Portugal, 2002; ISBN 972-662-843-1. [Google Scholar]
- Santos, J.A.; Malheiro, A.C.; Pinto, J.G.; Jones, G.V. Homogenization of Portuguese long-term temperature data series: Lisbon, Coimbra and Porto. Earth Syst. Sci. Data 2012, 4, 187–213. [Google Scholar] [CrossRef]
- Wu, S.; Luo, M.; Zhao, R.; Li, J.; Sun, P.; Liu, Z.; Wang, X.; Wang, P.; Zhang, H. Local mechanisms for global daytime, nighttime, and compound heatwaves. npj Clim. Atmos. Sci. 2023, 6, 36. [Google Scholar] [CrossRef]
- Copernicus European Drought Observatory. Heat and Cold Wave Index (HCWI); Edo Indicator Factsheet; European Commission: Brussels, Belgien, 2018. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- R Core Team. Mann-Kendall Trend Test and the Sen Slope; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Sneyers, R. On the Statistical Analysis of Series of Observations; Number 143 in WMO Technical Note; World Meteorological Organization: Geneva, Switzerland, 1990. [Google Scholar]
- Chen, X.; Wang, H.; Lyu, W.; Xu, R. The Mann-Kendall-Sneyers test to identify the change points of COVID-19 time series in the United States. BMC Med. Res. Methodol. 2022, 22, 233. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Brayshaw, D.J.; Rambeau, C.M.C.; Smith, S.J. Changes in the Mediterranean climate during the Holocene: Insights from global and regional climate modelling. Holocene 2011, 21, 5–31. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Sousa, P.M.; Trigo, R.M.; Barriopedro, D.; Soares, P.M.; Santos, J.A. European temperature responses to blocking and ridge regional patterns. Clim. Dyn. 2018, 50, 457–477. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Russo, E.; Domeisen, D.I. Increasing intensity of extreme heatwaves: The crucial role of metrics. Geophys. Res. Lett. 2023, 50, e2023GL103540. [Google Scholar] [CrossRef]
- Majeed, H.; Floras, J.S. Warmer summer nocturnal surface air temperatures and cardiovascular disease death risk: A populationbased study. BMJ Open 2022, 12, e056806. [Google Scholar] [CrossRef]
- Fenner, D.; Meier, F.; Bechtel, B.; Otto, M.; Scherer, D. Intra and inter local climate zone variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorol. Z. 2017, 26, 525–547. [Google Scholar] [CrossRef]
- Stahel, W.A. New relevance and significance measures to replace p-values. PLoS ONE 2021, 16, e0252991. [Google Scholar] [CrossRef] [PubMed]
- Portela, M.M.; Espinosa, L.A.; Zelenakova, M. Long-term rainfall trends and their variability in mainland Portugal in the last 106 years. Climate 2020, 8, 146. [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
Grid-Point | ANDH Tmin | AATW Tmin | AIHD Tmin | ||||||
---|---|---|---|---|---|---|---|---|---|
43-Year Avg (Days) | Trend (Days/Decade) | p-Value | 43-Year Avg (°C) | Trend (°C/Decade) | p-Value | 43-Year Avg (°C) | Trend (°C/Decade) | p-Value | |
BGCA | 16.2 | 2.1 | 0.102 | 12.05 | 0.14 | 0.786 | 17.24 | 0.14 | 0.746 |
BRGA | 15.6 | 1.9 | 0.139 | 14.72 | 0.44 | 0.147 | 19.07 | 0.71 | 0.183 |
PRTO | 16.3 | 1.9 | 0.145 | 15.80 | 0.36 | 0.387 | 20.17 | 0.51 | 0.113 |
AVRO | 17.2 | 2.3 | 0.068 | 16.75 | −0.02 | 0.972 | 21.64 | 0.18 | 0.666 |
GRDA | 17.0 | 2.4 | 0.066 | 13.54 | 0.35 | 0.368 | 18.84 | 0.52 | 0.245 |
CMBR | 17.4 | 1.2 | 0.390 | 15.28 | 0.15 | 0.580 | 20.39 | 0.08 | 0.801 |
CABO | 16.2 | 2.1 | 0.183 | 16.41 | 0.46 | 0.448 | 21.39 | 0.48 | 0.186 |
NZRE | 15.5 | 0.8 | 0.432 | 15.72 | 0.19 | 0.408 | 19.49 | 0.02 | 0.898 |
PTLG | 16.9 | 2.7 | 0.024 | 16.55 | 0.51 | 0.328 | 21.34 | 0.75 | 0.072 |
STRM | 16.2 | 1.8 | 0.109 | 17.18 | 0.17 | 0.616 | 21.78 | 0.19 | 0.633 |
LISB | 18.0 | 1.9 | 0.201 | 17.55 | 0.31 | 0.374 | 21.65 | 0.14 | 0.737 |
EVRA | 17.9 | 2.0 | 0.080 | 17.27 | 0.44 | 0.288 | 22.46 | 0.55 | 0.186 |
BEJA | 17.2 | 2.9 | 0.006 | 17.20 | 0.72 | 0.090 | 21.53 | 0.90 | 0.010 |
LGOS | 16.7 | 2.3 | 0.013 | 17.71 | 0.03 | 0.900 | 21.62 | 0.25 | 0.379 |
FARO | 16.7 | 4.2 | 0.002 | 18.63 | 0.10 | 0.862 | 22.82 | 0.77 | 0.030 |
Grid-Point | ANDH Tmax | AATW Tmax | AIHD Tmax | ||||||
---|---|---|---|---|---|---|---|---|---|
43-Year Avg (Days) | Trend (Days/Decade) | p-Value | 43-Year Avg (°C) | Trend (°C/Decade) | p-Value | 43-Year Avg (°C) | Trend (°C/Decade) | p-Value | |
BGCA | 20.0 | 3.0 | 0.024 | 24.06 | 0.46 | 0.402 | 30.83 | 0.90 | 0.026 |
BRGA | 20.9 | 3.3 | 0.020 | 25.61 | −0.27 | 0.665 | 32.17 | 0.26 | 0.603 |
PRTO | 20.8 | 2.9 | 0.054 | 25.82 | −0.11 | 0.879 | 33.04 | 0.34 | 0.392 |
AVRO | 21.2 | 3.6 | 0.013 | 26.74 | 0.21 | 0.745 | 33.88 | 0.74 | 0.047 |
GRDA | 20.8 | 3.6 | 0.005 | 23.97 | 0.19 | 0.665 | 32.03 | 1.03 | 0.037 |
CMBR | 21.3 | 3.1 | 0.056 | 27.36 | 0.07 | 0.914 | 35.20 | 0.33 | 0.474 |
CABO | 20.6 | 3.8 | 0.016 | 28.61 | 0.79 | 0.172 | 36.60 | 1.14 | 0.008 |
NZRE | 22.4 | 2.2 | 0.104 | 25.57 | −0.07 | 0.802 | 33.06 | 0.23 | 0.572 |
PTLG | 21.1 | 3.0 | 0.082 | 27.45 | 0.68 | 0.179 | 36.02 | 0.80 | 0.106 |
STRM | 22.5 | 3.6 | 0.022 | 29.35 | −0.08 | 0.851 | 37.93 | 0.38 | 0.420 |
LISB | 20.0 | 4.2 | 0.019 | 26.56 | −0.15 | 0.884 | 34.07 | 0.46 | 0.185 |
EVRA | 20.3 | 3.3 | 0.025 | 29.22 | 0.81 | 0.049 | 37.99 | 1.23 | 0.014 |
BEJA | 19.4 | 3.5 | 0.040 | 30.12 | 0.96 | 0.059 | 37.68 | 1.19 | 0.006 |
LGOS | 17.9 | 4.4 | 0.001 | 27.31 | 0.34 | 0.603 | 33.44 | 0.98 | 0.013 |
FARO | 18.2 | 4.2 | 0.002 | 25.58 | 0.64 | 0.233 | 30.79 | 1.18 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, L.A.; Portela, M.M.; Ocampo-Guerrero, N. Beyond Temperature Peaks: The Growing Persistence and Intensity of Tmin and Tmax Heatwaves in Portugal’s Changing Climate (1980/1981–2022/2023). Atmosphere 2024, 15, 1485. https://doi.org/10.3390/atmos15121485
Espinosa LA, Portela MM, Ocampo-Guerrero N. Beyond Temperature Peaks: The Growing Persistence and Intensity of Tmin and Tmax Heatwaves in Portugal’s Changing Climate (1980/1981–2022/2023). Atmosphere. 2024; 15(12):1485. https://doi.org/10.3390/atmos15121485
Chicago/Turabian StyleEspinosa, Luis Angel, Maria Manuela Portela, and Nikte Ocampo-Guerrero. 2024. "Beyond Temperature Peaks: The Growing Persistence and Intensity of Tmin and Tmax Heatwaves in Portugal’s Changing Climate (1980/1981–2022/2023)" Atmosphere 15, no. 12: 1485. https://doi.org/10.3390/atmos15121485
APA StyleEspinosa, L. A., Portela, M. M., & Ocampo-Guerrero, N. (2024). Beyond Temperature Peaks: The Growing Persistence and Intensity of Tmin and Tmax Heatwaves in Portugal’s Changing Climate (1980/1981–2022/2023). Atmosphere, 15(12), 1485. https://doi.org/10.3390/atmos15121485