Comparison of Endoplasmic Reticulum Stress and Pyroptosis Induced by Pathogenic Calcium Oxalate Monohydrate and Physiologic Calcium Oxalate Dihydrate Crystals in HK-2 Cells: Insights into Kidney Stone Formation
<p>Synthesis and characterization of COM and COD. (<b>A</b>) SEM; (<b>B</b>) the particle size distributions fitted to normal distribution curves (The red curve is a normal fitting distribution); (<b>C</b>) crystal XRD pattern; (<b>D</b>) zeta potential. Calcium oxalate monohydrate, COM. Calcium oxalate dihydrate, COD. Scanning electron microscope, SEM. X-ray diffraction, XRD. Data were extracted from independent samples, and experiments were performed in triplicate.</p> "> Figure 2
<p>Cytotoxicity of COM and COD and their differences in adhesion to HK-2 cells. (<b>A</b>) Cell viability was measured by CCK8; (<b>B</b>) microscope images of crystal adhesion after 1 h and 48 h exposure to HK-2 cells. Control: normal control group; COM: 3 μm COM with a concentration of 300 μg/mL; COD: 3 μm COD with a concentration of 300 μg/mL; comparison among different groups, * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001. Scale bar: 20 μm. Calcium oxalate monohydrate, COM. Calcium oxalate dihydrate, COD. Data were extracted from independent samples, and experiments were performed in triplicate. The white box is the enlarged area, and the images pointed by the arrow is the enlarged images in the white box area.</p> "> Figure 3
<p>ERS induced by COM and COD. (<b>A</b>) The expression of GRP78 was observed by immunofluorescence (scale: 20 μm); (<b>B</b>) semi-quantitative analysis of GRP78 fluorescence images; (<b>C</b>,<b>G</b>) Western blot analysis of endoplasmic reticulum stress-related proteins; (<b>D</b>–<b>F</b>,<b>H</b>) semi-quantitative analysis histograms of IRE1α, ATF6, CHOP, and P-PERK, respectively. Control: normal control group; COM: 3 μm COM with a concentration of 300 μg/mL; COD: 3 μm COD with a concentration of 300 μg/mL; comparison among different groups, * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; and *** <span class="html-italic">p</span> < 0.001. Calcium oxalate monohydrate, COM. Calcium oxalate dihydrate, COD. Glucose-regulated protein 78, GRP78. 4,6-diamino-2-phenylindole, DAPI. Inositol requiring enzyme 1α, IRE1α. Activating transcription factor-6, ATF6. C/EBP homologous protein, CHOP. Phosphorylated PERK, p-PERK. Data were extracted from independent samples, and experiments were performed in triplicate.</p> "> Figure 4
<p>COM- and COD-induced pyroptosis and their differences. (<b>A</b>) Double staining flow quantitative analysis of caspase-1/PI; (<b>B</b>) quantitative statistical histogram of pyroptosis; (<b>C</b>) caspase-1/PI double dye confocal observation, scale: 50 μm; (<b>D</b>) semi-quantitative analysis of IL-18 in supernatant after cell injury by Elisa. (<b>E</b>,<b>H</b>) Western blot analysis of pyroptosis related pathway proteins. (<b>F</b>,<b>G</b>,<b>I</b>,<b>J</b>) semi-quantitative histograms of NLRP3, pro-caspase-1, GSDMD-N, and Pro-IL-1β, respectively. Control: normal control group; COM: 3 μm COM with a concentration of 300 μg/mL; COD: 3 μm COD with a concentration of 300 μg/mL; comparison among different groups, * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001. Calcium oxalate monohydrate, COM. Calcium oxalate dihydrate, COD. Propidium iodide, PI. N-terminal cleavage product of GSDMD, GSDMD-N. Interleukin-1β, IL-1β. NOD-like receptor thermal protein domain associated protein 3, NLRP3. Data were extracted from independent samples, and experiments were performed in triplicate. The FLICA-YVAD probe binds to caspase-1 and is excited as green fluorescence. PI binds to the nuclei of the cells with membrane rupture and was excited as red fluorescence. DAPI bound to the nuclei of all cells and was excited as blue fluorescence. More intense green and red fluorescence represents more intense pyroptosis.</p> "> Figure 5
<p>Activation effects of COM and COD on TXNIP. (<b>A</b>) Western blot analysis of TXNIP; (<b>B</b>) semi-quantitative analysis histogram of TXNIP; (<b>C</b>) visualization of the colocalization of NLRP3 and TXNIP in HK-2 cells by laser confocal microscopy, scale: 10 μm; (<b>D</b>) copositioning curve analysis diagram for the white line region of figure (<b>C</b>). Control: normal control group; COM: 3 μm COM with a concentration of 300 μg/mL; COD: 3 μm COD with a concentration of 300 μg/mL; comparison among different groups, *** <span class="html-italic">p</span> < 0.001. Calcium oxalate monohydrate, COM. Calcium oxalate dihydrate, COD. Thioredoxin-interacting protein, TXNIP. NOD-like receptor thermal protein domain associated protein 3, NLRP3. Data were extracted from independent samples, and experiments were performed in triplicate. TXNIP is observed as red fluorescence. NLRP3 is observed as green fluorescence. DAPI binding nuclei is observed as blue fluorescence. The image on the far right is a magnified view of the red box.</p> "> Figure 6
<p>The mechanism of COM and COD damages HK-2 cells through the ERS–NLRP3 pyroptosis pathway and promotes the formation of kidney stones (by Figdraw). Calcium oxalate monohydrate, COM. Calcium oxalate dihydrate, COD. Glucose-regulated protein 78, GRP78. Endoplasmic reticulum stress, ERS. Activating transcription factor-6, ATF6. Inositol requiring enzyme 1α, IRE1α. C/EBP homologous protein, CHOP. Thioredoxin-interacting protein, TXNIP. NOD-like receptor thermal protein domain associated protein 3, NLRP3. N-terminal cleavage product of GSDMD, GSDMD-N. Interleukin-18, IL-18. Interleukin-1β, IL-1β. Arrows indicate activation or upregulation effects.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis and Characterization of COM and COD
2.3. Cell Culture and Injury Model Construction
2.3.1. Cell Culture
2.3.2. Cell Damage
- (1)
- Normal control group (NC): cells were cultured in serum-free DMEM-F12 medium for 48 h;
- (2)
- COM crystal damage group: cells were cultured in serum-free medium containing COM at the final concentration of 300 μg/mL for 48 h;
- (3)
- COD crystal damage group: cells were cultured in serum-free medium containing COD at the final concentration of 300 μg/mL for 48 h.
2.4. Observation of Cytotoxicity and Crystal Adhesion of COM and COD Crystals
2.4.1. Cell Viability Detected by CCK8 Assay
2.4.2. Crystal Cell Adhesion Experiment
2.5. COM and COD Crystal Induced ERS
2.5.1. Immunofluorescence Analysis of GRP78
2.5.2. Western Blot Analysis for IRE1α, CHOP, ATF6, Phospho-PERK and β-Tubulin
2.6. COM and COD Crystal Induced Pyroptosis
2.6.1. The Level of IL-18 Was Detected by ELISA
2.6.2. Active Caspase-1 Detected by Flow Cytometry
2.6.3. Detection of Active Caspase-1
2.6.4. Western Blot Analysis for NLRP3, Pro-Caspase-1, GSDMD-N, IL-1β and β-Tubulin
2.7. Interaction Between TXNIP and NLRP3
2.7.1. Western Blot Analysis for TXNIP
2.7.2. NLRP3 Colocalizes with TXNIP
2.8. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of COM and COD
3.2. Cytotoxicity and Cell Adhesion of COM and COD
3.3. Detection of ERS in HK-2 Cells Induced by COM and COD
3.4. COM- and COD-Induced Pyroptosis
3.5. COM Causes Pyroptosis by Inducing TXNIP Activation and Interacting with NLRP3
4. Discussion
4.1. Differences in Cytotoxicity and Adhesion Between COM and COD
4.2. Difference in ERS Induced by COM and COD
4.3. Differences in Pyroptosis Induced by COM and COD
4.4. TXNIP May Be a Potential Target to Mediate the Central Signal of Pyroptosis and Inhibit Stone Formation After COM-Induced ERS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wigner, P.; Grębowski, R.; Bijak, M.; Szemraj, J.; Saluk-Bijak, J. The molecular aspect of nephrolithiasis development. Cells 2021, 10, 1926. [Google Scholar] [CrossRef] [PubMed]
- Evan, A.P.; Worcester, E.M.; Coe, F.L.; Williams, J., Jr.; Lingeman, J.E. Mechanisms of human kidney stone formation. Urolithiasis 2015, 43 (Suppl. S1), 19–32. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 2019, 29, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, Y.; Kang, J.; He, Z.; Liu, Q.; Wu, J.; Li, D.; Wang, X.; Tao, Z.; Guan, X.; et al. Role of ROS-Induced NLRP3 inflammasome activation in the formation of calcium oxalate nephrolithiasis. Front. Immunol. 2022, 13, 818625. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos Cordeiro, J.M.; Santos, L.C.; Santos, B.R.; de Jesus Nascimento, A.E.; Santos, E.O.; Barbosa, E.M.; de Macêdo, I.O.; Mendonça, L.D.; Sarmento-Neto, J.F.; Pinho, C.S.; et al. Manganese porphyrin-based treatment improves fetal-placental development and protects against oxidative damage and NLRP3 inflammasome activation in a rat maternal hypothyroidism model. Redox Biol. 2024, 74, 103238. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyod. Nat. Rev. Mol. Cell Biol. 2012, 13, 89–102. [Google Scholar] [CrossRef]
- Yang, B.; Lu, X.; Li, Y.; Li, Y.; Yu, D.; Zhang, W.; Duan, C.; Taguchi, K.; Yasui, T.; Kohri, K.; et al. A proteomic network approach across the kidney stone disease reveals endoplasmic reticulum stress and crystal-cell Interaction in the Kidney. Oxid. Med. Cell. Longev. 2019, 2019, 9307256. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Sun, Y.; Deng, Y.; Liu, Q.; Li, D.; Liu, Y.; Guan, X.; Tao, Z.; Wang, X. Autophagy-endoplasmic reticulum stress inhibition mechanism of superoxide dismutase in the formation of calcium oxalate kidney stones. Biomed. Pharmacother. 2020, 121, 109649. [Google Scholar] [CrossRef] [PubMed]
- Ming, S.; Tian, J.; Ma, K.; Pei, C.; Li, L.; Wang, Z.; Fang, Z.; Liu, M.; Dong, H.; Li, W.; et al. Oxalate-induced apoptosis through ERS-ROS-NF-κB signalling pathway in renal tubular epithelial cell. Mol. Med. 2022, 28, 88. [Google Scholar] [CrossRef]
- Oslowski, C.M.; Hara, T.; O’Sullivan-Murphy, B.; Kanekura, K.; Lu, S.; Hara, M.; Ishigaki, S.; Zhu, L.J.; Hayashi, E.; Hui, S.T.; et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab. 2012, 16, 265–273. [Google Scholar] [CrossRef]
- Lerner, A.G.; Upton, J.P.; Praveen, P.V.; Ghosh, R.; Nakagawa, Y.; Igbaria, A.; Shen, S.; Nguyen, V.; Backes, B.J.; Heiman, M.; et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012, 16, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kim, Y.; Li, C.; Suh, J.; Sivapackiam, J.; Goncalves, T.M.; Jarad, G.; Zhao, G.; Urano, F.; Sharma, V.; et al. Blocking CHOP-dependent TXNIP shuttling to mitochondria attenuates albuminuria and mitigates kidney injury in nephrotic syndrome. Proc. Natl. Acad. Sci. USA 2022, 119, e2116505119. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.D.; Huang, Y.Y.; Wang, H.X.; Wu, Y.; Leng, Y.; Liu, M.; Sun, Q.; Xia, Z.Y. Thioredoxin-interacting protein mediates NLRP3 inflammasome activation involved in the susceptibility to ischemic acute kidney injury in diabetes. Oxid. Med. Cell. Longev. 2016, 2016, 2386068. [Google Scholar] [CrossRef]
- De Marinis, Y.; Cai, M.; Bompada, P.; Atac, D.; Kotova, O.; Johansson, M.E.; Garcia-Vaz, E.; Gomez, M.F.; Laakso, M.; Groop, L. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int. 2016, 89, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.H.; Park, S.J. TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target. Exp. Mol. Med. 2023, 55, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Wang, W.; Peck, A.B.; Khan, S.R. Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys. J. Urol. 2015, 193, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Wang, W.; Khan, S.R. Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition. PLoS ONE 2017, 12, e0185009. [Google Scholar] [CrossRef]
- Elias, E.E.; Lyons, B.; Muruve, D.A. Gasdermins and pyroptosis in the kidney. Nat. Rev. Nephrol. 2023, 19, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Kesavardhana, S.; Malireddi, R.K.S.; Kanneganti, T.D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol. 2020, 38, 567–595. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, J.; Gong, B.; Cheng, S.; Liu, Y.; Chen, Y.; Feng, Q.; Li, J.; Qiu, M.; Yu, G.; et al. Polydatin protects against calcium oxalate crystal-induced renal injury through the cytoplasmic/mitochondrial reactive oxygen species-NLRP3 inflammasome pathway. Biomed. Pharmacother. 2023, 167, 115621. [Google Scholar] [CrossRef] [PubMed]
- Mulay, S.R.; Kulkarni, O.P.; Rupanagudi, K.V.; Migliorini, A.; Darisipudi, M.N.; Vilaysane, A.; Muruve, D.; Shi, Y.; Munro, F.; Liapis, H.; et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J. Clin. Investig. 2013, 123, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhang, Y.; Gong, B.; Xu, H.; Hao, Z.; Liang, C. Long noncoding RNA LINC00339 promotes renal tubular epithelial pyroptosis by regulating the miR-22-3p/NLRP3 axis in calcium oxalate-induced kidney stone. J. Cell. Biochem. 2019, 120, 10452–10462. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Zhao, T.; Li, Y.; Liu, Z.; Ding, J.; Ji, B.; Wang, Y.; Guo, Z. Vitexin exerts protective effects against calcium oxalate crystal-induced kidney pyroptosis in vivo and in vitro. Phytomedicine 2021, 86, 153562. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xue, X.; He, C.; Lai, Y.; Tong, L. Cell death-related molecules and targets in the progression of urolithiasis (Review). Int. J. Mol. Med. 2024, 53, 52. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Feng, X.; Zhou, Z.; Qin, S.; Chen, S.; Zhao, J.; Hou, J.; Liu, D. Ginsenoside compound K ameliorates osteoarthritis by inhibiting the chondrocyte endoplasmic reticulum stress-mediated IRE1α-TXNIP-NLRP3 axis and pyroptosis. J. Agric. Food. Chem. 2023, 71, 1499–1509. [Google Scholar] [CrossRef]
- Jiang, Y.; Dong, B.; Jiao, X.; Shan, J.; Fang, C.; Zhang, K.; Li, D.; Xu, C.; Zhang, Z. Nano selenium alleviates the pyroptosis of cardiovascular endothelial cells in chicken induced by decabromodiphenyl ether through ERS-TXNIP-NLRP3 pathway. Sci. Total Environ. 2024, 915, 170129. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Y.; Sun, J.; Shen, J.; Liu, F.; Ning, B.; Lu, Z.; Wei, L.; Jiang, X. Tanshinone IIA alleviates NLRP3 inflammasome-mediated pyroptosis in Mycobacterium tuberculosis-(H37Ra-) infected macrophages by inhibiting endoplasmic reticulum stress. J. Ethnopharmacol. 2022, 282, 114595. [Google Scholar] [CrossRef]
- Sun, X.Y.; Ouyang, J.M.; Liu, A.J.; Ding, Y.M.; Gan, Q.Z. Preparation, characterization, and in vitro cytotoxicity of COM and COD crystals with various sizes. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 57, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Peerapen, P.; Thongboonkerd, V. Differential bound proteins and adhesive capabilities of calcium oxalate monohydrate crystals with various sizes. Int. J. Biol. Macromol. 2020, 163, 2210–2223. [Google Scholar] [CrossRef]
- Gombedza, F.C.; Shin, S.; Kanaras, Y.L.; Bandyopadhyay, B.C. Abrogation of store-operated Ca2+ entry protects against crystal-induced ER stress in human proximal tubular cells. Cell Death Discov. 2019, 5, 124. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C.; Papa, F.R. The unfolded protein response and cell fate control. Mol. Cell 2018, 69, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Convento, M.B.; Pessoa, E.A.; Cruz, E.; da Glória, M.A.; Schor, N.; Borges, F.T. Calcium oxalate crystals and oxalate induce an epithelial-to-mesenchymal transition in the proximal tubular epithelial cells: Contribution to oxalate kidney injury. Sci. Rep. 2017, 7, 45740. [Google Scholar] [CrossRef]
- Yang, M.; Stipp, S.L.S.; Harding, J. Biological control on calcite crystallization by polysaccharides. Cryst. Growth Des. 2008, 8, 4066–4074. [Google Scholar] [CrossRef]
- Sheng, X.; Ward, M.D.; Wesson, J.A. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J. Am. Soc. Nephrol. 2005, 16, 1904–1908. [Google Scholar] [CrossRef] [PubMed]
- Priante, G.; Gianesello, L.; Ceol, M.; Del Prete, D.; Anglani, F. Cell death in the kidney. Int. J. Mol. Sci. 2019, 20, 3598. [Google Scholar] [CrossRef] [PubMed]
- Thongboonkerd, V. Proteomics of Crystal-Cell Interactions: A model for kidney stone research. Cells 2019, 8, 1076. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-Y.; Ouyang, J.-M.; Li, Y.-B.; Wen, X.-L. Mechanism of cytotoxicity of micron/nano calcium oxalate monohydrate and dihydrate crystals on renal epithelial cells. RSC Adv. 2015, 5, 45393–45406. [Google Scholar] [CrossRef]
- Sun, X.Y.; Gan, Q.Z.; Ouyang, J.M. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells. Sci. Rep. 2017, 7, 41949. [Google Scholar] [CrossRef]
- Vinaiphat, A.; Aluksanasuwan, S.; Manissorn, J.; Sutthimethakorn, S.; Thongboonkerd, V. Response of renal tubular cells to differential types and doses of calcium oxalate crystals: Integrative proteome network analysis and functional investigations. Proteomics 2017, 17, 1700192. [Google Scholar] [CrossRef]
- Cho, W.S.; Thielbeer, F.; Duffin, R.; Johansson, E.M.; Megson, I.L.; MacNee, W.; Bradley, M.; Donaldson, K. Surface functionalization affects the zeta potential, coronal stability and membranolytic activity of polymeric nanoparticles. Nanotoxicology 2014, 8, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Kang, J.; Guan, X.; Xu, H.; Wang, X.; Deng, Y. Regulation of endoplasmic reticulum stress on the damage and apoptosis of renal tubular epithelial cells induced by calcium oxalate crystals. Urolithiasis 2021, 49, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Bhardwaj, A.; Tandon, C.; Dhawan, D.K.; Bijarnia, R.K.; Kaur, T. Implication of hyperoxaluria on osteopontin and ER stress mediated apoptosis in renal tissue of rats. Exp. Mol. Pathol. 2017, 102, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tian, M.; Ding, C.; Yu, S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol. 2019, 9, 3083. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Y.; Wang, X.; Sun, N.; Gong, Y.H. Pathway network of pyroptosis and its potential inhibitors in acute kidney injury. Pharmacol. Res. 2021, 175, 106033. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, K.; Hou, L.; Liao, J.; Zhang, H.; Han, Q.; Guo, J.; Li, Y.; Hu, L.; Pan, J.; et al. Endoplasmic reticulum stress contributes to pyroptosis through NF-κB/NLRP3 pathway in diabetic nephropathy. Life Sci. 2023, 322, 121656. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, Y.; Zhang, H.; Li, L.; Wang, J.; Su, S.; Zhang, Y.; Song, L.; Zhou, K. Gypenoside XVII attenuates renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress and NLRP3 inflammasome-triggered pyroptosis. Eur. J. Pharmacol. 2024, 962, 176187. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, L.; Shi, H.; Xie, Z.Y.; Jiang, Z.L.; Xu, Z.Y.; Zhang, Z.J.; Wu, X.T. Endoplasmic reticulum stress-mediated autophagy alleviates lipopolysaccharide-induced nucleus pulposus cell pyroptosis by inhibiting CHOP signaling in vitro. J. Biochem. Mol. Toxicol. 2024, 38, e23523. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Yang, B.; Jia, M.; Yang, C.; Wang, S.; Mu, H.; Wang, J. DDIT3/CHOP promotes LPS/ATP-induced pyroptosis in osteoblasts via mitophagy inhibition. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119712. [Google Scholar] [CrossRef]
- Han, C.Y.; Rho, H.S.; Kim, A.; Kim, T.H.; Jang, K.; Jun, D.W.; Kim, J.W.; Kim, B.; Kim, S.G. FXR inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury. Cell Rep. 2018, 24, 2985–2999. [Google Scholar] [CrossRef]
- Mulay, S.R. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int. 2019, 96, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.G.; Wang, Z.H.; Xu, H.T. Mechanism of miRNA-141-3p in calcium oxalate-induced renal tubular epithelial cell injury via NLRP3-mediated pyroptosis. Kidney Blood Press. Res. 2022, 47, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, N.; Haseeb, M.; Kim, M.S.; Choi, S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int. J. Mol. Sci. 2021, 22, 2754. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, S.; Kong, H.; Wang, Q.; Chen, S.; Wang, X.; Chen, L.; Qi, S. Oxalate-induced renal pyroptotic injury and crystal formation mediated by NLRP3-GSDMD signaling in vitro and in vivo. Mol. Med. Rep. 2023, 28, 209. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R.; Canales, B.K.; Dominguez-Gutierrez, P.R. Randall’s plaque and calcium oxalate stone formation: Role for immunity and inflammation. Nat. Rev. Nephrol. 2021, 17, 417–433. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nong, W.-J.; Tong, X.-Y.; Ouyang, J.-M. Comparison of Endoplasmic Reticulum Stress and Pyroptosis Induced by Pathogenic Calcium Oxalate Monohydrate and Physiologic Calcium Oxalate Dihydrate Crystals in HK-2 Cells: Insights into Kidney Stone Formation. Cells 2024, 13, 2070. https://doi.org/10.3390/cells13242070
Nong W-J, Tong X-Y, Ouyang J-M. Comparison of Endoplasmic Reticulum Stress and Pyroptosis Induced by Pathogenic Calcium Oxalate Monohydrate and Physiologic Calcium Oxalate Dihydrate Crystals in HK-2 Cells: Insights into Kidney Stone Formation. Cells. 2024; 13(24):2070. https://doi.org/10.3390/cells13242070
Chicago/Turabian StyleNong, Wei-Jian, Xin-Yi Tong, and Jian-Ming Ouyang. 2024. "Comparison of Endoplasmic Reticulum Stress and Pyroptosis Induced by Pathogenic Calcium Oxalate Monohydrate and Physiologic Calcium Oxalate Dihydrate Crystals in HK-2 Cells: Insights into Kidney Stone Formation" Cells 13, no. 24: 2070. https://doi.org/10.3390/cells13242070
APA StyleNong, W. -J., Tong, X. -Y., & Ouyang, J. -M. (2024). Comparison of Endoplasmic Reticulum Stress and Pyroptosis Induced by Pathogenic Calcium Oxalate Monohydrate and Physiologic Calcium Oxalate Dihydrate Crystals in HK-2 Cells: Insights into Kidney Stone Formation. Cells, 13(24), 2070. https://doi.org/10.3390/cells13242070