Dual Oxidase, a Hydrogen-Peroxide-Producing Enzyme, Regulates Neuronal Oxidative Damage and Animal Lifespan in Drosophila melanogaster
<p>Extension of male lifespan with <span class="html-italic">duox</span> heterozygosity and neuronal <span class="html-italic">duox</span> knockdown. (<b>A</b>) Diagram showing the location of the P-element (KG07745), which is inserted in the second intron of <span class="html-italic">duox</span>. Empty and filled squares denote noncoding and coding regions of exons, respectively. Arrows denote primers used for RT-PCR. (<b>B</b>) Agarose-gel image of RT-PCR products following amplification of the <span class="html-italic">duox</span> gene from control (<span class="html-italic">w<sup>1118</sup></span>, denoted <span class="html-italic">duox</span><sup>+/+</sup>) and heterozygous (<span class="html-italic">duox <sup>KG07745/+</sup></span>, denoted <span class="html-italic">duox</span><sup>+/−</sup>) flies. <span class="html-italic">rp49</span> was used as a loading control. Three independent experiments carried out with similar results. (<b>C</b>) qRT-PCR of <span class="html-italic">duox</span> gene, with <span class="html-italic">rp-49</span> used as a control. Relative expression denotes <span class="html-italic">duox</span> transcript level. Averages and standard errors were derived from three independent experiments. Student’s <span class="html-italic">t</span>-test, *** <span class="html-italic">p</span> < 0.001. (<b>D</b>) Lifespan of wild-type and <span class="html-italic">duox</span> heterozygous male flies. Twenty flies/vial, total twenty vials. Log-rank test, **** <span class="html-italic">p</span>< 0.0001. <span class="html-italic">duox</span><sup>+/+</sup> denotes <span class="html-italic">w<sup>1118</sup></span> flies. <span class="html-italic">duox</span><sup>+/−</sup> denotes <span class="html-italic">duox<sup>+/kG07745</sup></span> flies, which were isogenized ten times with control flies (<span class="html-italic">w<sup>1118</sup></span>). (<b>E</b>) Lifespans of <span class="html-italic">elav-Gal4 > UAS-duox</span><span class="html-italic"><sup>RNAi</sup></span> flies. <span class="html-italic">elav/#38907</span> and <span class="html-italic">elav/#32903</span> denote <span class="html-italic">elav-Gal4 > UAS-duox</span><span class="html-italic"><sup>RNAi</sup></span> #38907, <span class="html-italic">elav-Gal4/+</span>; <span class="html-italic">UAS-duox<sup>RNAi</sup></span> #32903/+. Twenty flies/vial, total ten vials, male flies. Log-rank test, **** <span class="html-italic">p</span> < 0.0001. <span class="html-italic">UAS-duox<sup>RNAi</sup></span> (<span class="html-italic">#38907, 32903</span>) flies were isogenized with control <span class="html-italic">w<sup>1118</sup></span> flies ten times to reduce genetic background differences.</p> "> Figure 2
<p>Decrease in global ROS and H<sub>2</sub>O<sub>2</sub> levels with <span class="html-italic">duox</span> heterozygosity and neuronal <span class="html-italic">duox</span> knockdown. Global ROS (<b>A</b>,<b>B</b>) and H<sub>2</sub>O<sub>2</sub> (<b>C</b>,<b>D</b>) levels normalized to protein concentration were derived for whole-fly extracts (<b>A</b>,<b>C</b>) and head extracts (<b>B</b>,<b>D</b>). Values for <span class="html-italic">duox</span><sup>+/+</sup> (<b>A</b>,<b>C</b>) and <span class="html-italic">elav</span>/+ (<b>B</b>,<b>D</b>) were set to 100%. Error bars represent SEM of three replicates using 5-day-old male flies. Student’s <span class="html-italic">t</span>-test, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. <span class="html-italic">duox</span><sup>+/+</sup> and <span class="html-italic">duox</span><sup>+/−</sup> denote <span class="html-italic">w<sup>1118</sup></span> and <span class="html-italic">duox<sup>+/kG07745</sup></span>. <span class="html-italic">elav</span>/#<span class="html-italic">38907, 32903</span> denotes <span class="html-italic">elav-Gal4</span>/<span class="html-italic">UAS-duox<sup>RNAi</sup> #38907, elav-Gal4/+</span>; <span class="html-italic">UAS-duox<sup>RNAi</sup></span> #32903/+.</p> "> Figure 3
<p>Decrease in oxidative damage with <span class="html-italic">duox</span> heterozygosity and neuronal <span class="html-italic">duox</span> knockdown. Relative protein and DNA oxidation levels in whole-fly extracts (<b>A</b>,<b>C</b>) and in head extracts (<b>B</b>,<b>D</b>). Data were set to <span class="html-italic">duox</span><sup>+/+</sup> (<b>A</b>,<b>C</b>) and elav/+ (<b>B</b>,<b>D</b>) at 100%. Error bars represent SEM of three replicates using 60-day-old (<b>A</b>) and 45-day-old male flies (<b>B</b>–<b>D</b>). Three replicates. Error bars represent SEM. Student’s <span class="html-italic">t</span>-test, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001. <span class="html-italic">duox</span><sup>+/+</sup> and <span class="html-italic">duox</span><sup>+/−</sup> denote <span class="html-italic">w<sup>1118</sup></span> and <span class="html-italic">duox<sup>+/kG07745</sup></span>, respectively. <span class="html-italic">elav</span>/#<span class="html-italic">38907, 32903</span> denotes <span class="html-italic">elav-Gal4</span>/ <span class="html-italic">UAS-duox<sup>RNAi</sup> #38907, elav-Gal4/+</span>; <span class="html-italic">UAS-duox<sup>RNAi</sup></span> #32903/+.</p> "> Figure 4
<p>ROS resistance associated with <span class="html-italic">duox</span> heterozygosity. Survival of 5-day-old male flies on food containing 10 mM paraquat (<b>A</b>) and 10% hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) (<b>B</b>). <span class="html-italic">n</span> = 200 (20 flies/vial, total 10 vials). Log-rank test, **** <span class="html-italic">p</span> < 0.0001. <span class="html-italic">duox</span><sup>+/+</sup> denotes <span class="html-italic">w<sup>1118</sup></span> flies. <span class="html-italic">duox</span><sup>+/−</sup> denotes <span class="html-italic">duox<sup>+/kG07745</sup></span> flies, which were isogenized ten times with control flies (<span class="html-italic">w<sup>1118</sup></span>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Strains and Maintenance
2.2. Lifespan and Oxidative Stress Assays
2.3. Locomotive Activity
2.4. RT-PCR and Real-Time PCR
2.5. Determination of Total ROS Levels
2.6. Determination of H2O2 Levels
2.7. Determination of Protein Oxidation
2.8. Determination of DNA Oxidation
2.9. TUNEL Labeling
2.10. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bedard, K.; Krause, K.H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Van der Vliet, A.; Janssen-Heininger, Y.M. Hydrogen peroxide as a damage signal in tissue injury and inflammation: Murderer, mediator, or messenger? J. Cell. Biochem. 2014, 115, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colavitti, R.; Finkel, T. Reactive Oxygen Species as Mediators of Cellular Senescence. IUBMB Life 2005, 57, 277–281. [Google Scholar] [CrossRef]
- Sohal, R.S.; Orr, W.C. The redox stress hypothesis of aging. Free Radic. Biol. Med. 2012, 52, 539–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.M.; Sykiotis, G.P.; Nishimura, M.; Bodmer, R.; Bohmann, D. Declining signal dependence ofNrf2-MafS-regulated gene expression correlates with aging phenotypes. Aging Cell 2013, 12, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Kubben, N.; Zhang, W.; Wang, L.; Voss, T.C.; Yang, J.; Qu, J.; Liu, G.-H.; Misteli, T. Repression of the Antioxidant NRF2 Pathway in Premature Aging. Cell 2016, 165, 1361–1374. [Google Scholar] [CrossRef] [Green Version]
- Rego, A.C.; Oliveira, C.R. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochem. Res. 2003, 28, 1563–1574. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev. 2017, 2017, 2525967. [Google Scholar] [CrossRef]
- Spiers, J.G.; Breda, C.; Robinson, S.; Giorgini, F.; Steinert, J.R. Drosophila Nrf2/Keap1 Mediated Redox Signaling Supports Synaptic Function and Longevity and Impacts on Circadian Activity. Front. Mol. Neurosci. 2019, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Orr, W.C.; Radyuk, S.; Prabhudesai, L.; Toroser, D.; Benes, J.J.; Luchak, J.M.; Mockett, R.J.; Rebrin, I.; Hubbard, J.G.; Sohal, R.S. Overexpression of Glutamate-Cysteine Ligase Extends Life Span in Drosophila melanogaster. J. Biol. Chem. 2005, 280, 37331–37338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.C.; Bohmann, D.; Jasper, H. JNK Signaling Confers Tolerance to Oxidative Stress and Extends Lifespan in Drosophila. Dev. Cell 2003, 5, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Buvelot, H.; Jaquet, V.; Krause, K.H. Mammalian NADPH Oxidases. Methods Mol. Biol. 2019, 1982, 17–36. [Google Scholar] [CrossRef]
- De Deken, X.; Corvilain, B.; Dumont, J.E.; Miot, F. Roles of DUOX-Mediated Hydrogen Peroxide in Metabolism, Host Defense, and Signaling. Antioxid. Redox Signal. 2014, 20, 2776–2793. [Google Scholar] [CrossRef]
- Geiszt, M.; Witta, J.; Baffi, J.; Lekstrom, K.; Leto, T.L. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 2003, 17, 1–14. [Google Scholar] [CrossRef]
- Damiano, S.; Fusco, R.; Morano, A.; De Mizio, M.; Paternò, R.; De Rosa, A.; Spinelli, R.; Amente, S.; Frunzio, R.; Mondola, P.; et al. Reactive Oxygen Species Regulate the Levels of Dual Oxidase (Duox1-2) in Human Neuroblastoma Cells. PLoS ONE 2012, 7, e34405. [Google Scholar] [CrossRef]
- Weaver, C.J.; Leung, Y.F.; Suter, D.M. Expression dynamics of NADPH oxidases during early zebrafish development. J. Comp. Neurol. 2015, 524, 2130–2141. [Google Scholar] [CrossRef]
- Conner, G.E. Regulation of dual oxidase hydrogen peroxide synthesis results in an epithelial respiratory burst. Redox Biol. 2021, 41, 101931. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, W.J. Role of DUOX in gut inflammation: Lessons from Drosophila model of gut-microbiota interactions. Front. Cell. Infect. Microbiol. 2014, 3, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razzell, W.; Evans, I.R.; Martin, P.; Wood, W. Calcium Flashes Orchestrate the Wound Inflammatory Response through DUOX Activation and Hydrogen Peroxide Release. Curr. Biol. 2013, 23, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirokmány, G.; Pató, A.; Zana, M.; Donkó, Á.; Bíró, A.; Nagy, P.; Geiszt, M. Epidermal growth factor-induced hydrogen peroxide production is mediated by dual oxidase 1. Free Radic. Biol. Med. 2016, 97, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Ha, E.M.; Lee, K.A.; Park, S.H.; Kim, S.H.; Nam, H.J.; Lee, H.Y.; Kang, D.; Lee, W.J. Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev. Cell. 2009, 16, 386–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juarez, M.T.; Patterson, R.A.; Sandoval-Guillen, E.; McGinnis, W. Duox, Flotillin-2, and Src42A Are Required to Activate or Delimit the Spread of the Transcriptional Response to Epidermal Wounds in Drosophila. PLoS Genet. 2011, 7, e1002424. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Huang, M.; Fan, C.; Zuo, F. DUOX2 participates in skin aging induced by UVB in HSF2 cells by activating NF-kappaB signaling. Exp. Ther. Med. 2021, 21, 157. [Google Scholar] [CrossRef]
- Ha, E.M.; Lee, K.A.; Seo, Y.Y.; Kim, S.H.; Lim, J.H.; Oh, B.H.; Kim, J.; Lee, W.J. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious mi-crobes in drosophila gut. Nat. Immunol. 2009, 10, 949–957. [Google Scholar] [CrossRef]
- Kizhedathu, A.; Chhajed, P.; Yeramala, L.; Sain Basu, D.; Mukherjee, T.; Vinothkumar, K.R.; Guha, A. Duox-generated reactive oxygen species activate ATR/Chk1 to induce G2 arrest in Drosophila tra-cheoblasts. eLife 2021, 10, e68636. [Google Scholar] [CrossRef]
- Fogarty, C.E.; Diwanji, N.; Lindblad, J.L.; Tare, M.; Amcheslavsky, A.; Makhijani, K.; Brückner, K.; Fan, Y.; Bergmann, A. Extracellular Reactive Oxygen Species Drive Apoptosis-Induced Proliferation via Drosophila Macro-phages. Curr. Biol. 2016, 26, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Amcheslavsky, A.; Lindblad, J.L.; Bergmann, A. Transiently “Undead” Enterocytes Mediate Homeostatic Tissue Turnover in the Adult Drosophila Midgut. Cell Rep. 2020, 33, 108408. [Google Scholar] [CrossRef]
- Jang, W.; Baek, M.; Han, Y.S.; Kim, C. Duox mediates ultraviolet injury-induced nociceptive sensitization in Drosophila larvae. Mol. Brain 2018, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Rieger, S.; Sagasti, A. Hydrogen Peroxide Promotes Injury-Induced Peripheral Sensory Axon Regeneration in the Zebrafish Skin. PLoS Biol. 2011, 9, e1000621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.Q.; Chen, M.; Ren, D.L.; Hu, B. Dual Oxidase Mutant Retards Mauthner-Cell Axon Regeneration at an Early Stage via Modulating Mito-chondrial Dynamics in Zebrafish. Neurosci. Bull. 2020, 36, 1500–1512. [Google Scholar] [CrossRef] [PubMed]
- Slack, C.; Werz, C.; Wieser, D.; Alic, N.; Foley, A.; Stocker, H.; Withers, D.J.; Thornton, J.M.; Hafen, E.; Partridge, L. Regulation of Lifespan, Metabolism, and Stress Responses by the Drosophila SH2B Protein, Lnk. PLoS Genet. 2010, 6, e1000881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, Y.O.; Escala, W.; Ruan, K.; Zhai, R.G. Assaying Locomotor, Learning, and Memory Deficits in Drosophila Models of Neurodegeneration. J. Vis. Exp. 2011, 49, e2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casani, S.; Gómez-Pastor, R.; Matallana, E.; Paricio, N. Antioxidant compound supplementation prevents oxidative damage in a Drosophila model of Parkinson’s disease. Free Radic. Biol. Med. 2013, 61, 151–160. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Korolainen, M.A.; Nyman, T.; Nyyssonen, P.; Hartikainen, E.S.; Pirttila, T. Multiplexed Proteomic Analysis of Oxidation and Concentrations of Cerebrospinal Fluid Proteins in Alzheimer Disease. Clin. Chem. 2007, 53, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.A.; Sayre, L.M.; Anderson, V.E.; Harris, P.L.; Beal, M.F.; Kowall, N.; Perry, G. Cytochemical Demonstration of Oxidative Damage in Alzheimer Disease by Immunochemical Enhancement of the Carbonyl Reaction with 2,4-Dinitrophenylhydrazine. J. Histochem. Cytochem. 1998, 46, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, A.; Hiraku, Y.; Oikawa, S.; Luxford, C.; Davies, M.J.; Kawanishi, S. Guanine-specific DNA damage induced by gamma-irradiated histone. Biochem. J. 2005, 388 Pt 3, 813–818. [Google Scholar] [CrossRef] [Green Version]
- Klichko, V.I.; Orr, W.C.; Radyuk, S.N. The role of peroxiredoxin 4 in inflammatory response and aging. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2015, 1862, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Sykiotis, G.P.; Bohmann, D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell 2008, 14, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Pitoniak, A.; Wang, J.; Bohmann, D. Preserving transcriptional stress responses as an antiaging strategy. Aging Cell 2021, 20, e13297. [Google Scholar] [CrossRef] [PubMed]
- Sasakura, H.; Moribe, H.; Nakano, M.; Ikemoto, K.; Takeuchi, K.; Mori, I. Lifespan extension by peroxidase/dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in C. elegans. J. Cell Sci. 2017, 130, 2631–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewald, C.Y.; Hourihan, J.M.; Bland, M.S.; Obieglo, C.; Katic, I.; Mazzeo, L.E.M.; Alcedo, J.; Blackwell, T.K.; Hynes, N.E. NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans. eLife 2017, 6, e19493. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, T.K.; Steinbaugh, M.J.; Hourihan, J.M.; Ewald, C.Y.; Isik, M. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic. Biol. Med. 2015, 88, 290–301. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Quan, J.I.; Li, L.; Kinghorn, K.J.; Ivanov, D.K.; Tain, L.S.; Slack, C.; Kerr, F.; Nespital, T.; Thornton, J.; Hardy, J.; et al. Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis. Cell. Rep. 2016, 15, 638–650. [Google Scholar] [CrossRef] [Green Version]
- Przybysz, A.J.; Choe, K.P.; Roberts, L.J.; Strange, K. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech. Ageing Dev. 2009, 130, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Ungvari, Z.; Bailey-Downs, L.; Gautam, T.; Sosnowska, D.; Wang, M.; Monticone, R.E.; Telljohann, R.; Pinto, J.T.; de Cabo, R.; Sonntag, W.E.; et al. Age-associated vascular oxidative stress, Nrf2 dysfunction, and NF-κB activation in the nonhuman primate Macaca mulatta. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 866–875. [Google Scholar] [CrossRef]
- Barati, A.; Masoudi, R.; Yousefi, R.; Monsefi, M.; Mirshafiey, A. Tau and amyloid beta differentially affect the innate immune genes expression in Drosophila models of Alzheimer’s disease and β-D Mannuronic acid (M2000) modulates the dysregulation. Gene 2021, 808, 145972. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, M.; Jang, W.; Kim, C. Dual Oxidase, a Hydrogen-Peroxide-Producing Enzyme, Regulates Neuronal Oxidative Damage and Animal Lifespan in Drosophila melanogaster. Cells 2022, 11, 2059. https://doi.org/10.3390/cells11132059
Baek M, Jang W, Kim C. Dual Oxidase, a Hydrogen-Peroxide-Producing Enzyme, Regulates Neuronal Oxidative Damage and Animal Lifespan in Drosophila melanogaster. Cells. 2022; 11(13):2059. https://doi.org/10.3390/cells11132059
Chicago/Turabian StyleBaek, Minwoo, Wijeong Jang, and Changsoo Kim. 2022. "Dual Oxidase, a Hydrogen-Peroxide-Producing Enzyme, Regulates Neuronal Oxidative Damage and Animal Lifespan in Drosophila melanogaster" Cells 11, no. 13: 2059. https://doi.org/10.3390/cells11132059
APA StyleBaek, M., Jang, W., & Kim, C. (2022). Dual Oxidase, a Hydrogen-Peroxide-Producing Enzyme, Regulates Neuronal Oxidative Damage and Animal Lifespan in Drosophila melanogaster. Cells, 11(13), 2059. https://doi.org/10.3390/cells11132059