Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review
Abstract
:1. Introduction
2. Effect of Salt Stress on Morphology, Growth, Forage Yield and Nutritive Value
3. Effect of Salt Stress on Physiological Responses in Alfalfa
4. Effect of Salt Stress on Oxidative Stress and Anti-Oxidative Activities
5. Effect of Salt Stress on Ion Uptake in Alfalfa Plants
6. Proteome and Transcriptomic Analyses
7. Breeding for Salt Tolerance
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lesins, K.A.; Lesins, I. Genus Medicago (Leguminosae): A Taxogenetic Study; Dr. W. Junk bv Publishers: The Hague, The Netherlands, 1979; p. 228. [Google Scholar]
- Bolton, J.L. Alfalfa Botany, Cultivation and Utilization; Leonard Hill Ltd.: London, UK; Interscience Publishers, Inc.: New York, NY, USA, 1962. [Google Scholar]
- Goplen, B.P.; Baenziger, H.; Bailey, L.D.; Gross, A.T.H.; Hanna, M.R.; Michaud, R.; Richards, K.W.; Waddington, J. Agriculture Canada: Growing and Managing Alfalfa in Canada; Publication 1705/E; Agriculture Canada: Ottawa, ON, Canada, 1982. [Google Scholar]
- Coburn, F.D. The Book of Alfalfa: History, Cultivation and Merits. Its Uses as a Forage and Fertilizer; Orange Judd Co: New York, NY, USA, 1907. [Google Scholar]
- Yuegao, H.; Cash, D. Global status and development trends of alfalfa. In Alfalfa Management. Guide for Ningxia; Cash, D., Ed.; United Nations Food and Agriculture Organization: Beijing, China, 2009; pp. 1–14. [Google Scholar]
- Statistics Canada. Census of Agriculture, Hay and Field Crops. Table 32-10-0416-01. 2016. Available online: http://www.statcan.gc.ca/eng (accessed on 5 February 2020).
- USDA–NASS. Crop Production 2018 Summary. USDA–NASS. 2018. Available online: http://www.nass.usda.gov (accessed on 9 February 2020).
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar]
- Flowers, T.J. Improving crop salt tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Szabolcs, I. Salt-Affected Soils; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassas, M. Seven paths to desertification. Desert. Control Bull. 1987, 15, 24–26. [Google Scholar]
- Thomas, D.S.G.; Middleton, N.J. Salinization: New perspectives on a major desertification issue. J. Arid Environ. 1993, 24, 95–105. [Google Scholar] [CrossRef]
- Tanji, K.K. Nature and extent of agricultural salinity. In Agricultural Salinity Assessment and Management; Tanji, K.K., Ed.; American Society Civil Engineers: New York, NY, USA, 1990; pp. 1–13. [Google Scholar]
- FAO. Global Network on Integrated Soil Management for Sustainable Use of Salt-Affected Soils; FAO Land and Plant Nutrition Management Service: Rome, Italy, 2005; Available online: http://www.fao.org/ag/agl/agll/spush (accessed on 11 February 2020).
- Steppuhn, H.; Acharya, S.N.; Iwaasa, A.D.; Gruber, M.; Miller, D.R. Inherent responses to root-zone salinity in nine alfalfa populations. Can. J. Plant Sci. 2012, 92, 235–248. [Google Scholar] [CrossRef]
- Steppuhn, H. What is soil salinity? In Proceedings Soil Salinity Assessment Workshop; Alberta Agriculture: Lethbridge, AB, Canada, 1996; pp. 1–5. [Google Scholar]
- Wiebe, B.H.; Eilers, R.G.; Eilers, W.D.; Brierley, J.A. Application of a risk indicator for assessing trends in dryland salinization risk on the Canadian Prairies. Can. J. Soil Sci. 2007, 87, 213–224. [Google Scholar] [CrossRef]
- Martinez, J.; Manzur, C.L. Overview of salinity problems in the world and FAO strategies to address the problem. In Proceedings of the International Salinity Forum, Riverside, CA, USA, 25–27 April 2005; pp. 311–313. [Google Scholar]
- FAO; IIASA; ISRIC; ISS-CSA; JRC. Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2008. [Google Scholar]
- Munns, R. A leaf elongation assay detects an unknown growth inhibitor in xylem sap from wheat and barley. Aust. J. Plant Physiol. 1992, 19, 127–135. [Google Scholar] [CrossRef]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 654–663. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Lauchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef] [Green Version]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuteja, N. Mechanisms of high salinity tolerance in plants. Methods Enzymol. 2007, 428, 419–438. [Google Scholar]
- Schachtman, D.; Liu, W.H. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci. 1999, 4, 282–287. [Google Scholar] [CrossRef]
- Bhandal, I.S.; Malik, C.P. Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plant. Int. Rev. Cytol. 1998, 110, 205–254. [Google Scholar]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environment: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Maximova, E.; Fuggi, A.; Carillo, P. Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front. Plant Sci. 2017, 7, 2035. [Google Scholar] [CrossRef] [Green Version]
- Carillo, P.; Cirillo, C.; De Micco, V.; Arena, C.; De Pascale, S.; Rouphaelb, Y. Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes. Agric. Water Manag. 2019, 212, 12–22. [Google Scholar] [CrossRef]
- Smith, S.E. Salinity and the production of alfalfa (Medicago sativa L.). In Handbook of Crop Stress; Pessarakli, M., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1993; pp. 431–448. [Google Scholar]
- Peel, M.D.; Waldron, B.L.; Jensen, K.B.; Chatterton, N.J.; Horton, H.; Dudley, L.M. Screening for salinity tolerance in alfalfa. Crop Sci. 2004, 44, 2049–2053. [Google Scholar] [CrossRef]
- Soltanpour, P.N.; Ippolito, J.A.; Rodriguez, J.B.; Self, J.; Gillaume, M.; Al-Wardy, M.M.; Mathews, D. Chloride versus sulfate salinity effects on alfalfa shoot growth and ionic balance. Soil Sci. Soc. Am. J. 1999, 63, 111–116. [Google Scholar] [CrossRef]
- Cornacchione, M.V.; Suarez, D.L. Evaluation of alfalfa (Medicago sativa L.) populations’ response to salinity stress. Crop Sci. 2017, 57, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Azhdari, G.; Tavili, A.; Zare, M.A. Effects of various salts on the germination of two cultivars of Medicago sativa. Front. Agric. China 2010, 4, 63–68. [Google Scholar] [CrossRef]
- Soltani, A.; Khodarahmpour, Z.; Jafari, A.A.; Nakhjavan, S. Selection of alfalfa (Medicago sativa L.) cultivars for salt stress tolerance using germination indices. Afr. J. Biotechnol. 2012, 11, 7899–7905. [Google Scholar]
- Cornacchione, M.V.; Suarez, D.L. Emergence, forage production, and ion relations of alfalfa in response to saline waters. Crop Sci. 2015, 55, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Al-Niemi, T.S.; Campbell, W.F.; Rumbaugh, M.D. Response of alfalfa cultivars to salinity during germination and post-germination growth. Crop Sci. 1992, 32, 976–980. [Google Scholar] [CrossRef]
- Johnson, D.W.; Smith, S.E.; Dobrenz, A.K. Selection for increased forage yield in alfalfa at different NaCl levels. Euphytica 1992, 60, 27–35. [Google Scholar]
- Torabi, M.; Halim, M.R.A. Variation of root and shoot growth and free proline accumulation in Iranian alfalfa ecotypes under salt stress. J. Food Agric. Environ. 2010, 8, 323–327. [Google Scholar]
- Shannon, M.C.; Grieve, C.M.; Francois, L.E. Whole-plant response to salinity. In Handbook of Plant-Environment Interactions; Wilkinson, R.E., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1994; pp. 199–244. [Google Scholar]
- Khavarinejad, R.A.; Chaparzadeh, N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica 1998, 35, 461–466. [Google Scholar] [CrossRef]
- Valizadeh, M.; Moharamnejad, S.; Ahmadi, M.; Jalaly, H.M. Changes in activity profile of some antioxidant enzymes in alfalfa half-sib families under salt stress. J. Agric. Sci. Technol. 2013, 15, 801–809. [Google Scholar]
- Sibole, J.V.; Cabot, C.; Poschenrieder, C.; Barcelo, J. Ion allocation in two different salt-tolerant Mediterranean Medicago species. J. Plant Physiol. 2003, 160, 1361–1365. [Google Scholar] [CrossRef]
- Hanley, M.E.; Sanders, S.K.D.; Stanton, H.M.; Billington, R.A.; Boden, R. A pinch of salt: Response of coastal grassland plants to simulated seawater inundation treatments. Ann. Bot. 2020, 125, 265–275. [Google Scholar] [CrossRef]
- Tootoonchi, M.; Gettys, L.A. Testing salt stress on aquatic plants: Effect of salt source and substrate. Aquat. Ecol. 2019, 53, 325–334. [Google Scholar] [CrossRef]
- Sandhu, D.; Cornacchione, M.V.; Ferreira, J.F.S.; Suarez, D.L. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Sci. Rep. 2017, 7, 42958. [Google Scholar] [CrossRef]
- Lei, Y.; Xu, Y.; Hettenhausen, C.; Lu, C.; Shen, G.; Zhang, C.; Li, J.; Song, J.; Lin, H.; Wu, J. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biol. 2018, 18, 35. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, A.; Dhont, C.; Bipfubusa, M.; Chalifour, F.P.; Drouin, P.; Beauchamp, C.J. Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl. Soil Ecol. 2015, 87, 108–117. [Google Scholar] [CrossRef]
- Robinson, P.H.; Grattan, S.R.; Getachew, G.; Grieve, C.M.; Poss, J.A.; Suarez, D.L.; Benes, S.E. Biomass accumulation and potential nutritive value of some forages irrigated with saline-sodic drainage water. Anim. Feed Sci. Technol. 2004, 111, 175–189. [Google Scholar] [CrossRef]
- Al-Khatib, M.; McNeilly, T.; Collins, J. The potential of selection and breeding for improved salt tolerance in lucerne (Medicago sativa L.). Euphytica 1992, 65, 43–51. [Google Scholar] [CrossRef]
- Suyama, H.; Benes, S.E.; Robinson, P.H.; Grattan, S.R.; Grieve, C.M.; Getachew, G. Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation. Agric. Water. Manag. 2007, 88, 159–172. [Google Scholar] [CrossRef]
- Xiong, J.; Sun, Y.; Yang, Q.; Tian, H.; Zhang, H.; Liu, Y.; Chen, M. Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots. Proteome Sci. 2017, 15, 19. [Google Scholar] [CrossRef] [Green Version]
- Smethurst, C.F.; Rix, K.; Garnett, T.; Auricht, G.; Bayart, A.; Lane, P.; Wilson, S.J.; Shabala, S. Multiple traits associated with salt tolerance in lucerne: Revealing the underlying cellular mechanisms. Funct. Plant Biol. 2008, 35, 640–650. [Google Scholar] [CrossRef]
- Shone, M.G.T.; Gale, J. Effects of sodium chloride stress and nitrogen source on respiration, growth and photosynthesis in lucerne (Medicaqo sativa L.). J. Exp. Bot. 1983, 34, 1117–1125. [Google Scholar] [CrossRef]
- Chaparzadeh, N.; Mehrnejad, F. Oxidative markers in five Iranian alfalfa (Medicago sativa L.) cultivars under salinity stress. Iran. J. Plant Physiol. 2013, 3, 793–799. [Google Scholar]
- Campanelli, A.; Ruta, C.; Morone-Fortunato, I.; De Mastro, G. Alfalfa (Medicago sativa L.) clones tolerant to salt stress: In vitro selection. Cent. Eur. J. Biol. 2013, 8, 765–776. [Google Scholar] [CrossRef]
- Anower, R.M.; Mott, I.W.; Peel, M.D.; Wu, Y. Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiol. Biochem. 2013, 71, 103–111. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Babakhani, B.; Khavari-Nejad, R.A.; Hassan Sajedi, R.; Fahimi, H.; Saadatmand, S. Biochemical responses of Alfalfa (Medicago sativa L.) cultivars subjected to NaCl salinity stress. Afr. J. Biotechnol. 2011, 10, 11433–11441. [Google Scholar]
- Ashrafi, E.; Razmjoo, J.; Zahedi, M.; Pessarakli, M. Screening alfalfa for salt tolerance based on lipid peroxidation and antioxidant enzymes. Agron. J. 2015, 107, 167–173. [Google Scholar] [CrossRef]
- Wang, X.S.; Han, J.G. Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agric. Sci. China 2009, 8, 431–440. [Google Scholar] [CrossRef]
- Jain, M.; Tiwary, S.; Gadre, R. Sorbitol-induced changes in various growth and biochemical parameters in maize. Plant Soil Environ. 2010, 56, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Cen, H.; Wang, T.; Liu, H.; Tian, D.; Zhang, Y. Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity. Plants 2020, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Quan, W.L.; Liu, X.; Wang, H.Q.; Chan, Z.L. Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress. Plant Cell Tissue Organ Cult. 2016, 126, 105–115. [Google Scholar] [CrossRef]
- Tilbrook, J.; Roy, S.J. Salinity tolerance. In Plant Abiotic Stress, 2nd ed.; Jenks, M.A., Hasewaga, P.M., Eds.; Wiley-Blackwell: New York, NY, USA, 2014; pp. 134–178. [Google Scholar]
- Roy, S.J.; Negrão, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Ashrafi, E.; Razmjoo, J.; Zahedi, M. Effect of salt stress on Growth and Ion accumulation of alfalfa (Medicago sativa L.) cultivars. J. Plant Nutr. 2018, 41, 818–831. [Google Scholar] [CrossRef]
- Pessarakli, M.; Huber, T.C.; Nakabayashi, K. Growth response of barley and wheat to salt stress. J. Plant Nutr. 1991, 14, 331–340. [Google Scholar] [CrossRef]
- Khan, M.G.; Silberbush, M.; Lips, S.H. Physiological study on salinity and nitrogen interaction in alfalfa II photosystem and transpiration. J. Plant Nutr. 1994, 17, 669–684. [Google Scholar] [CrossRef]
- Vijayan, P.; Willick, I.R.; Lahlali, R.; Karunakaran, C.; Tanino, K.K. Synchrotron radiation sheds fresh light on plant research: The use of powerful techniques to probe structure and composition of plants. Plant Cell Physiol. 2015, 56, 1252–1263. [Google Scholar] [CrossRef]
- Duncan, W.; Williams, G. Infrared synchrotron radiation from electron storage rings. Appl. Opt. 1983, 22, 2914–2923. [Google Scholar] [CrossRef]
- Jiang, Y.; Lahlali, R.; Karunakaran, C.; Kumar, S.; Davis, A.R.; Bueckert, R.A. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ. 2015, 38, 2387–2397. [Google Scholar] [CrossRef]
- Lahlali, R.; Jiang, Y.; Kumar, S.; Karunakaran, C.; Liu, X.; Borondics, F.; Hallin, E.; Bueckert, R. ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front. Plant Sci. 2014, 5, 747. [Google Scholar] [CrossRef] [Green Version]
- Willick, I.R.; Lahlali, R.; Vijayan, P.; Muir, D.; Karunakaran, C.; Tanino, K.K. Wheat flag leaf epicuticular wax morphology and composition in response to moderate drought stress are revealed by SEM, FTIR-ATR and synchrotron X-ray spectroscopy. Physiol. Plant. 2017, 162, 316–332. [Google Scholar] [CrossRef] [Green Version]
- Lahlali, R.; Karunakaran, C.; Wang, L.; Willick, I.; Schmidt, M.; Liu, X.; Borondics, F.; Forseille, L.; Fobert, P.R.; Tanino, K.; et al. Synchrotron based phase contrast X-ray imaging combined with FTIR spectroscopy reveals structural and biomolecular differences in spikelets play a significant role in resistance to Fusarium in wheat. BMC Plant Biol. 2015, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Lahlali, R.; Kumar, S.; Wang, L.; Forseille, L.; Sylvain, N.; Korbas, M.; Muir, D.; Swerhone, G.; Lawrence, J.R.; Fobert, P.R.; et al. Cell wall biomolecular composition plays a potential role in the host type II resistance to Fusarium head blight in wheat. Front. Microbiol. 2016, 7, 910. [Google Scholar] [CrossRef]
- Bhattarai, S.; Karunakaran, C.; Tanino, K.K.; Fu, Y.B.; Coulman, B.; Biligetu, B. Physiological and biochemical responses of alfalfa (Medicago sativa L.) to salt stress. In Proceedings of the Communicating Innovation in Plant Science, Plant Canada 2019, Guelph, ON, Canada, 7–10 July 2019; p. 158. [Google Scholar]
- Rahman, M.A.; Alam, I.; Kim, Y.G.; Ahn, N.Y.; Heo, S.H.; Lee, D.G.; Liu, G.; Lee, B.H. Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach. Plant Physiol. Biochem. 2015, 89, 112–122. [Google Scholar] [CrossRef]
- Long, R.; Li, M.; Zhang, T.; Kang, J.; Sun, Y.; Cong, L.; Gao, Y.; Liu, F.; Yang, Q. Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front. Plant Sci. 2016, 7, 424. [Google Scholar] [CrossRef] [Green Version]
- Postnikova, O.A.; Shao, J.; Nemchinov, L.G. Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol. 2013, 54, 1041–1055. [Google Scholar] [CrossRef]
- Luo, D.; Zhou, Q.; Wu, Y.G.; Chai, X.T.; Liu, W.X.; Wang, Y.R.; Yang, Q.C.; Wang, Z.Y.; Liu, Z.P. Full length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol. 2019, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Gruber, M.; Xia, J.; Yu, M.; Steppuhn, H.; Wall, K.; Messer, D.; Sharpe, A.; Acharya, S.; Wishart, D.; Johnson, D.; et al. Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population. Genome 2017, 60, 104–127. [Google Scholar] [CrossRef]
- Yacoubi, R.; Job, C.; Belghazi, M.; Chaibi, W.; Job, D. Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress. Seed Sci. Res. 2013, 23, 99–110. [Google Scholar] [CrossRef]
- Jin, H.; Sun, Y.; Yang, Q.; Chao, Y.; Kang, J.; Jin, H.; Li, Y.; Margaret, G. Screening of genes induced by salt stress from alfalfa. Mol. Biol. Rep. 2010, 37, 745–753. [Google Scholar] [CrossRef]
- Arshad, M.; Gruber, M.Y.; Wall, K.; Hannoufa, A. An insight into microRNA156 role in salinity stress responses of alfalfa. Front. Plant Sci. 2017, 8, 356. [Google Scholar] [CrossRef] [Green Version]
- National Alfalfa and Forage Alliance. Alfalfa Variety Ratings. 2020. Available online: https://www.alfalfa.org/pdf/2020_Alfalfa_Variety_Leaflet.pdf (accessed on 15 January 2020).
- Annicchiarico, P.; Barrett, B.; Brummer, E.C.; Julier, B.; Marshall, A.H. Achievements and challenges in improving temperate perennial forage legumes. Crit. Rev. Plant Sci. 2015, 34, 327–380. [Google Scholar] [CrossRef]
- Allen, S.G.; Dobrenz, A.K.; Schonhorst, M.H.; Stoner, J.E. Heritability of NaCl tolerance in germinating alfalfa seeds. Agron. J. 1985, 77, 99–101. [Google Scholar] [CrossRef]
- Benabderrahim, M.A.; Guiza, M.; Haddad, M. Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.). Acta Physiol. Plant. 2020, 42, 5. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, B.L.; Xia, T.; Yu, S.M.; Wu, Y.N.; Jin, H.; Li, J.R. Analysis of genetic diversity of salt-tolerant alfalfa germplasms. Genet. Mol. Res. 2015, 14, 4438–4447. [Google Scholar] [CrossRef] [PubMed]
- Azzam, C.R.; Naby, Z.M.A.E.; Mohamed, N.A. Salt tolerance associated with molecular markers in alfalfa. J. Biosci. Appl. Res. 2019, 5, 416–428. [Google Scholar]
- Munns, R.; James, R.A. Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant Soil. 2003, 253, 201–218. [Google Scholar] [CrossRef]
- Tiwari, R.; Mamrutha, H.M. Precision phenotyping for mapping of traits for abiotic stress tolerance in crops. In Biotechnology: Prospects and Applications; Salar, R., Gahlawat, S., Siwach, P., Duhan, J., Eds.; Springer: New Delhi, India, 2013. [Google Scholar]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Römer, C.; Wahabzada, M.; Ballvora, A.; Pinto, F.; Rossini, M.; Panigada, C.; Behmann, J.; Léon, J.; Thurau, C.; Bauckhage, C.; et al. Early drought stress detection in cereals: Simplex volume maximisation for hyperspectral image analysis. Funct. Plant Biol. 2012, 39, 878–890. [Google Scholar] [CrossRef]
- Naumann, J.C.; Young, D.R.; Anderson, J.E. Spatial variations in salinity stress across a coastal landscape using vegetation indices derived from hyperspectral imagery. Plant Ecol. 2009, 202, 285–297. [Google Scholar] [CrossRef]
- Behmann, J.; Steinrucken, J.; Plumer, L. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote Sens. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Sytar, O.; Brestic, M.; Zivcak, M.; Olsovska, K.; Kovar, M.; Shao, H.B.; He, X.L. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Sci. Total Environ. 2017, 578, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.P.; Hawkins, C.; Peel, M.D.; Yu, L.X. Genetic loci associated with salt tolerance in advanced breeding populations of tetraploid alfalfa using genome wide association studies. Plant Genome 2019, 12, 180026. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.X.; Liu, X.; Boge, W.; Liu, X.P. Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Front. Plant Sci. 2016, 7, 956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.P.; Yu, L.X. Genome-wide association mapping of loci associated with plant growth and forage production under salt stress in alfalfa (Medicago sativa L.). Front. Plant Sci. 2017, 8, 853. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, L.-X.; Zheng, P.; Li, Y.; Rivera, M.; Main, D.; Greene, S.L. Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa (Medicago sativa L.) using genome-wide association studies with genotyping by sequencing. PLoS ONE 2015, 10, e0138931. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar]
- Fu, Y.B.; Yang, M.H.; Zeng, F.; Biligetu, B. Searching for an accurate marker-based prediction of an individual quantitative trait in molecular plant breeding. Front. Plant Sci. 2017, 8, 1182. [Google Scholar] [CrossRef] [Green Version]
Alfalfa Genotype | Tissue | Salt Stress | Total Number of Differentially Expressed Genes/Proteins | Major Pathway/Function | Reference |
---|---|---|---|---|---|
NM-801 (tolerant), Vernal (intolerant) | root | 2-week-old seedlings treated with ~5, ~10 dS m−1 NaCl for 3 days | 83 | Ion homeostasis, protein turnover and signaling, protein folding, cell wall components, carbohydrate and energy metabolism, reactive oxygen species regulation and detoxification, and purine and fatty acid metabolism. | [81] |
Zhongmu-1 (M. sativa, tolerant), Jemalong A17 (M. truncatula, intolerant) | root | 1-month-old seedlings treated with ~30 dS m−1 NaCl for 8 h | 93 (tolerant) 30 (intolerant) | Molecule binding and catalytic activity. Defense against oxidative stress, metabolism, photosynthesis, protein synthesis and processing, and signal transduction. | [82] |
AZ-88NDC (intolerant), AZ-GERM SALT-II (tolerant) | root | 1-week-old seedlings treated with ~15 dS m−1 NaCl for 7 days | 288/273 and 468/337 up/down-regulated in intolerant and tolerant, respectively | Response to stress, kinase activity, hydrolase activity, oxidoreductase activity, and extracellular region. | [83] |
Zhongmu No. 1 (tolerant) | root | 12-day-old seedlings treated with ~25 dS m−1 NaCl for 1, 3, 6, 12, 24 h | 8861 at one or more time points | Iron ion transport, ion homeostasis, antiporter, signal perception, signal transduction, transcriptional regulation, and antioxidative defense. | [84] |
Zhongmu No. 1 (tolerant) | root, shoot | 1-week-old seedlings treated with ~10, ~20 dS m−1 NaCl for 7 days | 26 (shoot) 35 (root) | Photosynthesis (31%) and stress and defense (20%) in the shoot. Defense (26%); metabolism (17%); and protein translation, processing, and degradation (17%) in the root. | [54] |
CW064027, Bridgeview (tolerant), Rangelander (intolerant) | shoot | 4th-cut treated with 1.53, 8, 15.6 dS m−1 maintained by sulphate- based sodium, calcium, and magnesium salts | 685/527, 368/139 up/down-regulated in CW064027 and Bridgeview at control, 537/949, 375/1045 up/down-regulated in CW064027 and Bridgeview at 8 dS m−1, 1129/1196, 843/1516 up/down-regulated in CW064027 and Bridgeview at 15.6 dS m−1 | Redox-related genes, B-ZIP transcripts, cell wall structural components, lipids, secondary metabolism, auxin and ethylene hormones, development, transport, signaling, heat shock, proteolysis, pathogenesis-response, abiotic stress, RNA processing, and protein metabolism. | [85] |
Zhongmu-1 (tolerant), Xingjiang Daye (intolerant) | leaf | 30-day-old plants treated with ~50 dS m−1 NaCl for 7 days | 1125 and 2237 between cultivars at control and stress, respectively | Response to stimulus, reactive oxygen species, responding to stress, and response to hormone and other stress-responsive processes. | [49] |
Variety | FD | ST | Variety | FD | ST |
---|---|---|---|---|---|
Foothold | 2 | G | GUNNER | 5 | G |
Spredor 5 | 2 | G | MPIII Max Q | 5 | G |
Hi-Gest 360 | 3 | G | RR NemaStar | 5 | G |
LegenDairy XHD | 3 | G | RR Tonnica | 5 | G |
HVX Tundra II | 3 | G | WL 365HQ | 5 | G |
LegenDairy AA | 3 | G | 6610N | 6 | G |
RR Presteez | 3 | G | Cisco II | 6 | G/F |
Rugged | 3 | G | Hi-Gest 660 | 6 | G |
WL 336HQ.RR | 3 | G | Revolt | 6 | G |
6401N | 4 | G | RRALF 6R200 | 6 | G |
6472A | 4 | G | WL 454HQ.RR | 6 | G/F |
6497R | 4 | G | 6829R | 7 | G |
AFX 457 | 4 | G | AFX 779 | 7 | G |
AFX 469 | 4 | G | AmeriStand 715NT RR | 7 | G/F |
AmeriStand 415NT RR | 4 | G | Sun Titan | 8 | G |
AmeriStand 427TQ | 4 | G | SW8421S | 8 | F |
AmeriStand 455TQ RR | 4 | G | WL 535HQ | 8 | G |
AmeriStand 457TQ RR | 4 | G | WL 552HQ.RR | 8 | G |
AmeriStand 480 HVXRR | 4 | G | 6906N | 9 | G |
Barricade SLT | 4 | G/F | AFX 960 | 9 | G |
DKA40-16 | 4 | G | AmeriStand 901TS | 9 | G |
DKA44-16RR | 4 | G | LG 9C300 | 9 | G |
Integra 8444R | 4 | G/F | PGI 908-S | 9 | G/F |
Magnum Salt | 4 | G/F | RRALF 9R100 | 9 | G |
Rebound AA | 4 | G | Sun Quest | 9 | G |
RR Stratica | 4 | G | SW 9215 | 9 | F |
RR VaMoose | 4 | G | SW 9720 | 9 | F |
WL 356HQ.RR | 4 | G | SW9215RRS | 9 | G/F |
6516R | 5 | G | WL 656HQ | 9 | G |
6547R | 5 | G/F | WL 668HQ.RR | 9 | G |
AFX 579 | 5 | G | 6015R | 10 | G |
Nimbus | 5 | F | AFX 1060 | 10 | G |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattarai, S.; Biswas, D.; Fu, Y.-B.; Biligetu, B. Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review. Agronomy 2020, 10, 577. https://doi.org/10.3390/agronomy10040577
Bhattarai S, Biswas D, Fu Y-B, Biligetu B. Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review. Agronomy. 2020; 10(4):577. https://doi.org/10.3390/agronomy10040577
Chicago/Turabian StyleBhattarai, Surendra, Dilip Biswas, Yong-Bi Fu, and Bill Biligetu. 2020. "Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review" Agronomy 10, no. 4: 577. https://doi.org/10.3390/agronomy10040577
APA StyleBhattarai, S., Biswas, D., Fu, Y. -B., & Biligetu, B. (2020). Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review. Agronomy, 10(4), 577. https://doi.org/10.3390/agronomy10040577