Effects of Climatic Conditions and Agronomic Practices on Health, Tuber Yield, and Mineral Composition of Two Contrasting Potato Varieties Developed for High and Low Input Production Systems
<p>Bi-plot resulting from the RDA showing the associations between climate and agronomic explanatory variables/drivers and potato health and tuber yield response variables for the varieties Santé and Sarpo mira. Data included were from three growing seasons/years (2010, 2011, 2012). For the variety Santé, the horizontal axis 1 explains 31.7% of the variation and the vertical axis 2 a further 10.2%. For the variety Sapro mira, the horizontal axis 1 explains 24.4% of the variation and the vertical axis 2 a further 12.9%. NC, not computed. <b>Continuous explanatory variables (△): PRE</b>, precipitation; <b>RAD</b>, radiation; <b>TEMP</b>, temperature. <b>Fixed explanatory variables (▲): CP</b>, conventional crop protection; <b>OP</b>, organic crop protection; <b>CF</b>, conventional fertilization (mineral NPK); <b>OF</b>, organic fertilization (farmyard manure). <b>Response variables (<span style="color:#FF0000">▲</span>):</b> <span class="html-italic">fwy</span>, fresh weight yield, <span class="html-italic">dwy</span>, dry weight yield; <span class="html-italic">my+ST</span>, marketable fresh weight yield including tubers with scab; <span class="html-italic">my-ST</span>, marketable fresh weight yield excluding tubers with scab; <span class="html-italic">fb</span>, foliar blight (AUDPC); <span class="html-italic">tb</span>, % of tubers with tuber blight; <span class="html-italic">sc</span>, % of tubers with scab; <span class="html-italic">sl</span>, % of tubers with slug damage; gt, % of green tubers; ct, % cracked tubers.</p> "> Figure 2
<p>Bi-plot resulting from the RDA showing the associations between climate and agronomic explanatory variables/drivers and potato health and tuber yield response variables for the varieties Santé and Sarpo mira. Data included were from three growing seasons/years (2010, 2011, 2012). For the variety Santé, the horizontal axis 1 explains 34.7% of the variation and vertical axis 2 a further 10.0%. For the variety Sapro mira, horizontal axis 1 explains 25.6% of the variation and vertical axis 2 a further 8.0%. NC, not computed. <b>Continuous explanatory variables (△): PRE</b>, precipitation; <b>RAD</b>, radiation; <b>TEMP</b>, temperature. <b>Fixed explanatory variables (▲): CP</b>, conventional crop protection; <b>OP</b>, organic crop protection; <b>CF</b>, conventional fertilization (mineral NPK); <b>OF,</b> organic fertilization (farmyard manure). <b>Response variables (<span style="color:#FF0000">▲</span>): <span class="html-italic">Macronutrients</span>:</b> <span class="html-italic">N</span>, nitrogen; <span class="html-italic">P</span>, phosphorus; <span class="html-italic">K</span>, potassium; <span class="html-italic">S</span>, sulfur; <span class="html-italic">Ca</span>, calcium; <span class="html-italic">Mg</span>, magnesium. <b><span class="html-italic">Micronutrients</span>:</b> <span class="html-italic">B</span>, boron; <span class="html-italic">Cu</span>, copper; <span class="html-italic">Fe</span>, iron; <span class="html-italic">Zn</span>, zinc; <b><span class="html-italic">Toxic metals</span>:</b> <span class="html-italic">Al</span>, aluminum; <span class="html-italic">Cd</span>, cadmium; <span class="html-italic">Ni</span>, nickel; <span class="html-italic">Pb</span>, lead.</p> ">
Abstract
:1. Introduction
- compare crop health, tuber yield, mineral nutrient, and toxic metal concentrations in two varieties (Santé and Sarpo mira) that were developed for high- and low-input production systems in contrasting agronomic background conditions (rotation design, fertilization regime, and crop protection methods) used in organic and conventional farming systems;
- investigate the potential to reduce the yield gap between organic and conventional production by using a variety (Sarpo mira) developed for low-input production systems;
- identify associations between climatic and agronomic explanatory variables/drivers and selected potato health (foliar and tuber blight, scab and slug damage), yield, and nutritional quality parameters in the two varieties.
2. Materials and Methods
2.1. Experimental Site and Trial Design
2.2. Soil Analyses
2.3. Crop Management and Yield Assessments
2.4. Pest and Disease Assessments
2.5. Nutritional Analyses
2.6. Statistical Analyses
3. Results
3.1. Effects of Year/Growing Season (and Associated Climatic Conditions) on Crop Performance
3.2. Effects of Crop Protection, Fertilization, and Variety on Crop Health and Tuber Yield
3.3. Effects of Crop Protection, Fertilization, and Variety on Tuber Macronutrient Concentrations
3.4. Effects of Crop Protection, Fertilization, and Variety on Tuber Micronutrient Concentrations
3.5. Effects of Crop Protection, Fertilization, and Variety on Tuber Toxic Metal Concentrations
3.6. Effects of Preceding Crop, Crop Protection, Fertilization, and Variety on Tuber Toxic Metal Concentrations
3.7. Associations Between Climate, Agronomic and Variety Drivers, and Crop Performance
3.7.1. Associations with Crop Health and Performance Parameters
3.7.2. Associations with Tuber Macro- and Micronutrient and Toxic Metal Concentrations
4. Discussion
4.1. Effects of Agronomic Factors
4.1.1. Crop Health and Performance
4.1.2. Mineral Macronutrient Concentrations in Tubers
4.1.3. Mineral Micronutrient and Toxic Metal Concentrations
4.2. Effect of Variety
4.3. Confounding Effects of Climatic Conditions During the Growing Season
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devaux, A.; Goffart, J.P.; Kromann, P.; Andrade-Piedra, J.; Polar, V.; Hareau, G. The Potato of the Future: Opportunities and Challenges in Sustainable Agri-food Systems. Potato Res. 2021, 64, 681–720. [Google Scholar] [CrossRef] [PubMed]
- USDA. Food Data Central. Potatoes, Boiled, Cooked in Skin, Flesh, Without Salt. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170438/nutrients (accessed on 11 December 2024).
- Swain, E.Y.; Orr, C.H.; Rempelos, L.; Hall, G.; Chapman, R.; Almadni, M.; Stockdale, E.A.; Leifert, C.; Cooper, J.M. Optimizing nutrient use efficiency in wheat and potatoes: Interactions between genotypes and agronomic practices. Euphytica 2014, 199, 119–136. [Google Scholar] [CrossRef]
- Palmer, M.W.; Cooper, J.; Tétard-Jones, C.; Dominika Średnicka-Tober, D.; Barański, M.; Eyre, M.; Shotton, P.; Volakakis, N.; Cakmak, I.; Ozturk, L.; et al. The influence of organic and conventional fertilisation and crop protection practices, preceding crop, harvest year and weather conditions on yield and quality of potato (Solanum tuberosum) in a long-term management trial. Eur. J. Agron. 2013, 49, 83–92. [Google Scholar] [CrossRef]
- Rempelos, L.; Baránski, M.; Sufar, E.K.; Gilroy, J.; Shotton, P.; Leifert, H.; Srednicka-Tober, D.; Hasanaliyeva, G.; Rosa, E.A.S.; Hajslova, J.; et al. Effect of Climatic Conditions, and Agronomic Practices Used in Organic and Conventional Crop Production on Yield and Nutritional Composition Parameters in Potato, Cabbage, Lettuce and Onion; Results from the Long-Term NFSC-Trials. Agronomy 2023, 13, 1225. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity and grain yield in organic and conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, M.S.B.; Barański, M.; Tetard-Jones, C.; Barkla, B.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; Hall, G.; et al. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector. Field Crops Res. 2020, 254, 107822. [Google Scholar] [CrossRef]
- Bilsborrow, P.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Shotton, P.; Volakakis, N.; Cakmak, I.; Ozturk, L.; et al. The effect of organic and conventional crop production systems on the yield and quality of wheat (Triticum aestivum) grown in a long-term field trial. Eur. J. Agron. 2013, 51, 71–80. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields in organic and conventional agriculture. Nature 2012, 485, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Ponti, T.; Rijk, B.; van Ittérsum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- EC. QualityLowInputFoods. Improving the Quality and Safety and Reduction of Cost in the European Organic and ‘Low Input’ Supply Chains. Available online: https://cordis.europa.eu/article/id/89044-food-of-the-future (accessed on 11 December 2024).
- Zanoli, R.; François, M.; Midmore, P.; O’Doherty-Jensen, K.; Ritson, C. Determining Consumer Expectations, Attitudes and Buying Behaviour Towards “Low Input” and Organic Foods. 2007. Available online: https://orgprints.org/id/eprint/10442/ (accessed on 11 December 2024).
- O’Doherty Jensen, K.; Denver, S.; Zanoli, R. Actual and potential development of consumer demand on the organic food market in Europe. NJAS Wagening. J. Life Sci. 2011, 58, 79–84. [Google Scholar] [CrossRef]
- Rana, J.; Paul, J. Consumer behavior and purchase intention for organic food: A review and research agenda. J. Retail. Consum. Serv. 2017, 38, 157–165. [Google Scholar] [CrossRef]
- Gundala, R.R.; Singh, A. What motivates consumers to buy organic foods? Results of an empirical study in the United States. PLoS ONE 2021, 16, e0257288. [Google Scholar] [CrossRef]
- EC. Blight-MOP. Development of a Systems Approach for the Management of Late Blight in EU Potato Production. Available online: https://cordis.europa.eu/article/id/85029-controlling-late-blight-with-resistant-potatoes (accessed on 11 December 2024).
- EC. NUE-Crops. Improving Nutrient Efficiency in Major European Food, Feed and Biofuel Crops to Reduce the Negative Environmental Impact of Crop Production. Available online: https://cordis.europa.eu/project/id/222645/reporting (accessed on 11 December 2024).
- Hospers-Brands, A.J.T.M.; Ghorbani, R.; Bremer, E.; Bain, R.; Litterick, A.; Halder, F.; Leifert, C.; Wilcockson, S.J. Effects of pre-sprouting, planting date, plant population and configuration on late blight and yield of organic potato crops grown with different cultivars. Pot. Res. 2008, 51, 131–150. [Google Scholar] [CrossRef]
- Speiser, B.; Tamm, L.; Amsler, T.; Lambion, J.; Bertrand, C.; Hermansen, A.; Ruissen, M.A.; Haaland, P.; Zarb, J.; Santos, J.; et al. Field tests of blight control methods for organic farming: Tolerant varieties and copper fungicides. Biol. Agric. Hortic. 2006, 23, 393–412. [Google Scholar] [CrossRef]
- EC. Identifying Nutrient-Efficient Crops. Available online: https://cordis.europa.eu/article/id/88796-identifying-nutrientefficient-crops (accessed on 11 December 2024).
- Tiwari, J.K.; Buckseth, T.; Singh, R.K.; Kumar, M.; Kant, S. Prospects of Improving Nitrogen Use Efficiency in Potato: Lessons From Transgenics to Genome Editing Strategies in Plants. Front. Plant. Sci. 2020, 11, 597481. [Google Scholar]
- EC. Ecobreeds. Increasing the Efficiency and Competitiveness of Organic Crop Breeding. Available online: https://cordis.europa.eu/project/id/771367 (accessed on 11 December 2024).
- Blatnik, E.; Horvat, M.; Berne, S.; Humar, M.; Dolničar, P.; Meglič, V. Late Blight Resistance Conferred by Rpi-Smira2/R8 in Potato Genotypes In Vitro Depends on the Genetic Background. Plants 2022, 11, 1319. [Google Scholar] [CrossRef]
- Hailu, G.; Nigussie, D.; Ali, M.; Derbew, B. Nitrogen and Phosphorus Use Efficiency in Improved Potato (Solanum tuberosum L.) Cultivars in Southern Ethiopia. Am. J. Potato Res. 2017, 94, 617–631. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Tai, G.; Tarn, R.; de Jong, H.; Milburn, P.H. Nitrogen use efficiency characteristics of commercial potato cultivars. Can. J. Plant Sci. 2004, 84, 589–598. [Google Scholar] [CrossRef]
- Getahun, B.B.; Kassie, M.M.; Visser, R.G.F.; van der Linden, C.G. Genetic Diversity of Potato Cultivars for Nitrogen Use Efficiency Under Contrasting Nitrogen Regimes. Potato Res. 2020, 63, 267–290. [Google Scholar] [CrossRef]
- Trehan, S.P.; Singh, B.P. Nutrient Efficiency of Different Crop Species and Potato Varieties—In Retrospect and Prospect. Potato J. 2013, 40, 1–21. [Google Scholar]
- Milroy, S.P.; Wang, P.; Sadras, V.O. Defining upper limits of nitrogen uptake and nitrogen use efficiency of potato in response to crop N supply. Field Crops Res. 2019, 239, 38–46. [Google Scholar] [CrossRef]
- Wacker-Fester, K.; Uptmoor, R.; Pfahler, V.; Dehmer, K.J.; Bachmann-Pfabe, S.; Kavka, M. Genotype-Specific Differences in Phosphorus Efficiency of Potato (Solanum tuberosum L.). Front. Plant Sci. 2019, 10, 1029. [Google Scholar] [CrossRef]
- White, P.J.; Bradshaw, J.E.; Brown, L.K.; Dale, M.F.B.; Dupuy, L.X.; George, T.S.; Hammond, J.P.; Subramanian, N.K.; Thompson, J.A.; Wishart, J.; et al. Juvenile root vigour improves phosphorus use efficiency of potato. Plant Soil 2018, 432, 45–63. [Google Scholar] [CrossRef]
- Lee, W.C.; Liu, G.; Alva, A.K. Potato Cultivar Evaluation for Phosphorus-Use Efficiency. J. Crop Improv. 2013, 27, 617–626. [Google Scholar] [CrossRef]
- Gitari, H.I.; Karanja, N.N.; Gachene, C.K.K.; Kamau, S.; Sharma, K.; Schulte-Geldermann, E. Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems. Field Crops Res. 2018, 222, 78–84. [Google Scholar] [CrossRef]
- Shepherd, L.V.T.; Hackett, C.A.; Alexander, C.J.; Sungurtas, J.A.; Pont, S.D.A.; Steward, D.; McNicol, J.W.; Wilkinson, S.J.; Leifert, C.; Davies, H.V. Effect of agricultural production systems on the potato metabolome. Metabolomics 2014, 10, 212–224. [Google Scholar] [CrossRef]
- Tétard-Jones, C.; Shotton, P.N.; Rempelos, L.; Cooper, J.; Eyre, M.; Orr, C.; Leifert, C.; Gatehouse, A.M.R. Quantitative proteomics to study the response of wheat to contrasting fertilisation regimes. Mol. Breed. 2013, 31, 379–393. [Google Scholar] [CrossRef]
- Rempelos, L.; Cooper, J.; Wilcockson, S.; Eyre, M.; Shotton, P.; Volakakis, N.; Orr, C.H.; Leifert, C.; Gatehouse, A.M.R.; Tétard-Jones, C. Quantitative proteomics to study the response of potato to contrasting fertilisation regimes. Mol. Breed. 2013, 31, 363–378. [Google Scholar] [CrossRef]
- van Dijk, J.P.; Cankar, K.; Hendriksen, P.J.M.; Beenen, H.G.; Zhu, M.; Scheffer, S.; Shepherd, L.V.T.; Stewart, D.; Davies, H.V.; Leifert, C.; et al. The assessment of differences in the transcriptomes of organically and conventionally grown potato tubers. J. Agric. Food Chem. 2012, 60, 2090–2101. [Google Scholar] [CrossRef] [PubMed]
- Tatarowska, B.; Milczarek, D.; Plich, J. The Content of Total Carotenoids, Vitamin C and Antioxidant Properties of 65 Potato Cultivars Characterised under the European Project ECOBREED. Int. J. Mol. Sci. 2023, 24, 11716. [Google Scholar] [CrossRef]
- Avery, B.W. Soil Classification for England and Wales (Higher Categories). In British Soil Survey, Technical Monograph No. 14.; British Soil Survey: Harpenden, UK, 1980. [Google Scholar]
- FAO. World Reference Base for Soil Resources; Food and Agricultural Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 12, 1409–1416. [Google Scholar] [CrossRef]
- Almadi, M.A. Impact of Agricultural Management on Risks of Nitrate Leaching in Crop Rotations with Potatoes and Cereals. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2016. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-Plus; Springer: New York, NY, USA, 2000. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org/ (accessed on 11 December 2024).
- Crawley, M.J. The R Book; John Wiley & Sons Ltd.: Chichester, UK, 2013. [Google Scholar]
- Wierzbowska, J.; Rychcik, B.; Światly, A. The effect of different production systems on the content of micronutrients and trace elements in potato tubers. Acta Agric. Scand. B Soil Plant Sci. 2018, 68, 701–708. [Google Scholar] [CrossRef]
- Wszelaki, A.L.; Delwiche, J.F.; Walker, S.D.; Liggett, R.E.; Scheerens, J.C.; Kleinhenz, M.D. Sensory quality and mineral and glycoalkaloid concentrations in organically and conventionally grown redskin potatoes (Solanum tuberosum). J. Sci. Food Agric. 2005, 85, 720–726. [Google Scholar] [CrossRef]
- Cooper, J.; Sanderson, R.; Cakmak, I.; Ozturk, L.; Shotton, P.; Carmichael, A.; Sadrabadi Haghighi, R.; Tetard-Jones, C.; Volakakis, N.; Eyre, M.; et al. Effect of organic and conventional crop rotation, fertilization and crop protection practices on metal contents in wheat (Triticum aestivum). J. Agric. Food Chem. 2011, 59, 4715–4724. [Google Scholar] [CrossRef] [PubMed]
- Burandt, Q.C.; Deising, H.B.; von Tiedemann, A. Further limitations of synthetic use and expansion of organic agriculture in Europe will increase the environmental and health risk of chemical crop protection caused by copper-containing fungicides. Environ. Toxicol. Chem. 2024, 43, 19–20. [Google Scholar] [CrossRef]
- Sinclair, A.; Edwards, T.; Coull, M. Management of Copper in Soils for Cereals. SRUC Technical Note TN657. Available online: https://www.sruc.ac.uk/media/u5hjmti2/tn657.pdf (accessed on 14 December 2024).
- Clarkson, A.H.; Paine, S.; Martín-Tereso, J.; Kendall, N.R. Copper physiology in ruminants: Trafficking of systemic copper, adaptation to variation in nutritional supply and thiomolybdate challenge. Nutr. Res. Rev. 2019, 33, 43–49. [Google Scholar] [CrossRef]
- Hasanaliyeva, G.; Sufar, E.K.; Wang, J.; Rempelos, L.; Volakakis, N.; Iversen, P.O.; Leifert, C. Effects of Agricultural Intensification on Mediterranean Diets: A Narrative Review. Foods 2023, 12, 3779. [Google Scholar] [CrossRef]
- White, P.J.; Bradshaw, J.E.; Finlay, M.; Dale, B.; Ramsay, G.; Hammond, J.P.; Broadley, M.R. Relationships Between Yield and Mineral Concentrations in Potato Tubers. HortScience 2009, 44, 6–11. [Google Scholar] [CrossRef]
- Cakmak, I.; Lambers, H.; Grant, C.A.; Zhao, F.J. Arbuscular mycorrhizal fungi: Key players in avoiding cadmium accumulation in food crops. Plant Soil 2023, 448, 13–32. [Google Scholar] [CrossRef]
- Ma, X.; Geng, Q.; Zhang, H.; Bian, C.; Chen, H.Y.; Jiang, D.; Xu, X. Global negative efects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. New Phytol. 2021, 229, 2957–2969. [Google Scholar] [CrossRef]
- Yazici, M.A.; Asif, M.; Tutus, Y.; Ortas, I.; Ozturk, L.; Lambers, H.; Cakmak, I. Reduced root mycorrhizal colonization as affected by phosphorus fertilization is responsible for high cadmium accumulation in wheat. Plant Soil 2021, 468, 19–35. [Google Scholar] [CrossRef]
- Wilkinson, A.; Wilkinson, J.N.; Shotton, P.; Sufar, E.K.; Hasanaliyeva, G.; Volakakis, N.; Cakmak, I.; Ozturk, L.; Bilsborrow, P.; Iversen, P.O.; et al. Improving Crop Health, Performance, and Quality in Organic Spring Wheat Production: The Need to Understand Interactions between Pedoclimatic Conditions, Variety, and Fertilization. Agronomy 2023, 13, 2349. [Google Scholar] [CrossRef]
- Wang, J.; Baranski, M.; Korkut, R.; Kalee, H.A.; Wood, L.; Willson, A.; Barkla, B.; Iversen, P.O.; Bilsborrow, P.; Rempelos, L.; et al. Effect of irrigation, fertiliser type and variety choice on grain yield and nutritional quality parameters in spelt wheat (Triticum spelta) grown under semi-arid conditions. Food Chem. 2021, 358, 129826. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.M.; Campbell, K.G.; Lyon, S.R.; Jones, S.S. Evidence of varietal adaptation to organic farming systems. Field Crops Res. 2007, 102, 172–177. [Google Scholar] [CrossRef]
- Rempelos, L.; Wang, J.; Sufar, E.K.; Almuayrifi, M.S.B.; Knutt, D.; Leifert, H.; Leifert, A.; Wilkinson, A.; Shotton, P.; Hasanaliyeva, G.; et al. Breeding Bread-Making Wheat Varieties for Organic Farming Systems: The Need to Target Productivity, Robustness, Resource Use Efficiency and Grain Quality Traits. Foods 2023, 12, 1209. [Google Scholar] [CrossRef]
- De Vita, P.D.; Avio, L.; Sbrana, C.; Laidò, G.; Marone, D.; Mastrangelo, A.M.; Cattivelli, L.; Giovannetti, M. Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat. Sci. Rep. 2018, 8, 10612. [Google Scholar] [CrossRef] [PubMed]
- Cooke, L.R.; Schepers, H.T.A.M.; Hermansen, A.; Bain, R.A.; Bradshaw, N.J.; Ritchie, F.; Shaw, D.S.; Evenhuis, A.; Kessel, G.J.T.; Wander, J.G.N.; et al. Epidemiology and Integrated Control of Potato Late Blight in Europe. Potato Res. 2011, 54, 183–222. [Google Scholar] [CrossRef]
- Tiwari, I.; Shah, K.K.; Tripathi, S.; Modi, B.; Subedi, S.; Shrestha, J. Late blight of potato and its management through the application of different fungicides and organic amendments: A review. J. Agric. Nat. Resour. 2021, 4, 301–320. [Google Scholar] [CrossRef]
- Suo-meng Dong, S.-M.; Zhou, S.G. Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies. J. Integr. Agric. 2022, 21, 3456–3466. [Google Scholar] [CrossRef]
- Yuen, J. Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Sec. 2023, 13, 247–253. [Google Scholar] [CrossRef]
- AHDB. Potato Irrigation. Available online: https://potatoes.ahdb.org.uk/knowledge-library/potato-irrigation (accessed on 17 March 2024).
- DEFRA. Water Management for Potatoes; A Guide for Growers. Available online: https://www.ukia.org/docs/booklets/water%20management%20for%20potatoes.pdf (accessed on 11 December 2024).
- Knox, J.; Daccache, A.; Weatherhead, K.; Stalham, M. Climate Change and Potatoes; The Risks, Impacts and Opportunities for UK Potato Production. Available online: https://potatoes.ahdb.org.uk/climate-change-impacts-on-uk-potato-production-industry-options-and-responses (accessed on 11 December 2024).
Crop Protection (P) | Fertilizer Type (F) | Variety (V) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | CON | ORG | CON | ORG | Santé | S. mira | Main Effects | 2-Way Interactions 1 | ||||
Assessed | (n = 48) | (n = 48) | (n = 48) | (n = 48) | (n = 48) | (n = 48) | P | F | V | P × F | P × V | F × V |
Health | ||||||||||||
Foliar blight (AUDPC) | 3.3 ±1.0 | 27.1 ±6.9 | 11.0 ±3.5 | 19.6 ±6.3 | 28.4 ±6.9 | 2.2 0.4 | ** | NS | *** | NS | ** 2 | NS |
Tuber blight (% FW yield) | 2.3 ±0.5 | 2.0 ±0.4 | 2.4 ±0.5 | 2.0 ±0.4 | 3.7 ±0.6 | 0.7 ±0.2 | NS | NS | *** | NS | NS 2 | NS |
Scab (% FW yield) | 3.0 ±0.7 | 4.1 ±0.9 | 3.5 ±0.8 | 3.7 ±0.8 | 0.3 ±0.2 | 6.7 ±0.9 | NS | NS | *** | NS | T | NS |
Slug damage (% FW yield) | 1.8 ±0.3 | 1.9 ±0.2 | 1.5 ±0.2 | 2.2 ±0.3 | 1.6 ±0.2 | 2.0 ±0.3 | NS | * | NS | NS | NS | NS |
Tuber yield (t/ha) | ||||||||||||
Total yield | 33 ±1 | 27 ±1 | 34 ±1 | 26 ±1 | 29 ±1 | 31 ±1 | *** | *** | *** | T | NS | NS |
Marketable yield +ST | 28 ±1 | 22 ±1 | 28 ±1 | 22 ±1 | 24 ±1 | 26 ±1 | *** | *** | ** | T | NS | NS |
Marketable yield −ST | 27 ±1 | 21 ±1 | 27 ±1 | 21 ±1 | 24 ±1 | 24 ±1 | *** | *** | NS | T | NS | NS |
Tuber DM yield (t/ha) | 7.5 ±0.3 | 6.3 ±0.3 | 7.6 ±0.3 | 6.2 ±0.3 | 6.4 ±0.3 | 7.4 ±0.3 | *** | *** | *** | NS | NS | NS |
Discarded tubers (% of yield) | ||||||||||||
Green | 1.1 ±0.2 | 1.6 ±0.2 | 1.4 ±0.2 | 1.2 ±0.2 | 1.6 ±0.2 | 1.1 ±0.2 | * | NS | * | NS | * 2 | NS |
mechanically damaged | 3.2 ±0.3 | 3.0 ±0.4 | 2.8 ±0.3 | 3.2 ±0.4 | 2.9 ±0.3 | 3.2 ±0.3 | NS | NS | NS | NS | NS | NS |
cracked | 0.5 ±0.2 | 2.2 ±0.8 | 1.2 ±0.5 | 1.6 ±0.7 | 2.6 ±0.8 | 0.1 0.1 | *** | NS | *** | NS | *** 2 | NS |
Parameter | Factor 1 | Factor 2 | Variety |
---|---|---|---|
Assessed | Crop Protection | Santé | Sharpo mira |
Foliar blight severity | Conventional | 5.3 ± 2.0 b | 1.6 ± 0.3 b |
(AUDPC) | Organic | 51.4 ± 12 a | 2.9 ± 0.8 b |
Tuber blight | Conventional | 4.0 ± 1.0 a | 0.7 ± 0.3 b |
(% of FW yield) | Organic | 3.4 ± 0.6 a | 0.7 ± 0.3 b |
Green tubers | Conventional | 1.1 ± 0.2 b | 1.1 ± 0.2 b |
(% of FW yield) | Organic | 2.1 ± 0.3 a | 1.1 ± 0.3 b |
Cracked tubers | Conventional | 0.9 ± 0.3 b | 0.2 ± 0.1 b |
(% of FW yield) | Organic | 4.3 ± 1.6 a | 0.1 ± 0.1 b |
Fe | Conventional | 9.6 ± 0.7 b | 12.3 ± 1.0 a |
(mg/kg) | Organic | 10.3 ± 1.1 b | 11.2 ± 0.6 ab |
Crop Protection (P) | Fertilizer Type (F) | Variety (V) | ANOVA Results (p-Values) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | CON | ORG | CON | ORG | Santé | S. mira | Main Effects | 2-Way Interactions 1 | ||||
Assessed | (n = 48) | (n = 48) | (n = 48) | (n = 48) | (n = 48) | (n = 48) | P | F | V | P × F | P × V | F × V |
Macro-nutrients | ||||||||||||
N (mg/g FW) | 2.1 ±0.1 | 2.0 ±0.1 | 2.1 ±0.1 | 1.9 ±0.1 | 2.0 ±0.1 | 2.0 ±0.1 | NS | ** | NS | NS | NS | NS |
P (mg/g FW) | 0.41 ±0.01 | 0.43 ±0.01 | 0.40 ±0.01 | 0.44 ±0.01 | 0.38 ±0.01 | 0.46 ±0.01 | ** | *** | *** | NS | NS | NS |
K (mg/g FW) | 3.3 ±0.1 | 3.4 ±0.1 | 3.2 ±0.1 | 3.4 ±0.1 | 3.0 ±0.1 | 3.6 ±0.1 | NS | *** | ** | NS | NS | NS |
S (mg/kg FW) | 256 ±5 | 251 ±4 | 244 ±4 | 264 ±5 | 245 ±4 | 262 ±5 | NS | *** | *** | NS | NS | NS |
Ca (mg/kg FW) | 65 ±2 | 66 ±2 | 66 ±2 | 65 ±2 | 56 ±2 | 74 ±1 | NS | NS | *** | NS | NS | NS |
Mg (mg/kg FW) | 193 ±4 | 198 ±4 | 192 ±4 | 199 ±4 | 188 ±4 | 203 ±4 | NS | * | *** | NS | NS | NS |
Crop Protection (P) | Fertilizer Type (F) | Variety (V) | ANOVA Results (p-Values) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | CON | ORG | CON | ORG | Santé | S. mira | Main Effects | 2-Way Interactions 1 | ||||
Assessed | (n = 48) | (n = 48) | (n = 48) | (n = 48) | (n = 48) | (n = 48) | P | F | V | P × F | P × V | F × V |
Micro-nutrients | ||||||||||||
B (mg/kg) | 1.46 ±0.04 | 1.48 ±0.03 | 1.43 ±0.03 | 1.51 ±0.03 | 1.33 ±0.03 | 1.61 ±0.03 | NS | *** | *** | NS | NS | NS |
Cu (mg/kg) | 0.93 ±0.02 | 1.04 ±0.03 | 0.98 ±0.03 | 1.00 ±0.02 | 0.90 ±0.02 | 1.08 ±0.02 | *** | NS | *** | NS | NS | NS |
Fe (mg/kg) | 10.9 ±0.6 | 10.8 ±0.6 | 10.9 ±0.6 | 10.8 ±0.6 | 10.0 ±0.6 | 11.7 ±0.6 | NS | NS | *** | NS | * 2 | ** 3 |
Zn (mg/kg) | 2.5 ±0.1 | 2.4 ±0.1 | 2.4 ±0.1 | 2.5 ±0.1 | 2.4 ±0.1 | 2.5 ±0.1 | NS | NS | * | NS | NS | NS |
Toxic metals | ||||||||||||
Al (mg/kg) | 11.2 ±1.1 | 11.1 ±1.0 | 11.3 ±1.1 | 11.0 ±1.0 | 10.4 ±1.0 | 11.9 ±11.0 | NS | NS | NS | NS | NS | ** 3 |
Cd (µg/kg) | 23 ±1 | 22 ±1 | 25 ±1 | 20 ±1 | 25 ±1 | 20 ±1 | NS | *** | *** | NS | NS | T 3 |
Ni (µg/kg) | 49 ±4 | 42 ±2 | 48 ±2 | 44 ±4 | 48 ±1 | 43 ±1 | NS | NS | NS | NS | NS | NS |
Pb (µg/kg) | 14.6 ±0.7 | 15.4 ±0.7 | 14.6 ±0.7 | 15.5 ±0.7 | 14.5 ±0.7 | 15.5 ±0.7 | NS | NS | T | NS | NS | NS |
Parameter | Factor 1 | Factor 2 | Variety |
---|---|---|---|
Assessed | Fertilization | Santé | Sharpo mira |
Fe | NPK | 9.5 ± 0.8 c | 12.3 ± 0.9 a |
(mg/kg) | FYM | 10.4 ± 1.0 bc | 11.1 ± 0.8 ab |
Al | NPK | 8.8 ± 1.1 b | 13.9 ± 1.8 a |
(mg/kg) | FYM | 12.1 ± 1.7 ab | 9.9 ± 0.8 ab |
Cd | NPK | 29 ± 2 a | 22 ± 1 b |
(μg/kg) | FYM | 21 ± 1 b | 18 ± 1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasanaliyeva, G.; Giannakopoulou, O.; Wang, J.; Barański, M.; Sufar, E.K.; Knutt, D.; Gilroy, J.; Shotton, P.; Leifert, H.; Średnicka-Tober, D.; et al. Effects of Climatic Conditions and Agronomic Practices on Health, Tuber Yield, and Mineral Composition of Two Contrasting Potato Varieties Developed for High and Low Input Production Systems. Agronomy 2025, 15, 89. https://doi.org/10.3390/agronomy15010089
Hasanaliyeva G, Giannakopoulou O, Wang J, Barański M, Sufar EK, Knutt D, Gilroy J, Shotton P, Leifert H, Średnicka-Tober D, et al. Effects of Climatic Conditions and Agronomic Practices on Health, Tuber Yield, and Mineral Composition of Two Contrasting Potato Varieties Developed for High and Low Input Production Systems. Agronomy. 2025; 15(1):89. https://doi.org/10.3390/agronomy15010089
Chicago/Turabian StyleHasanaliyeva, Gultekin, Ourania Giannakopoulou, Juan Wang, Marcin Barański, Enas Khalid Sufar, Daryl Knutt, Jenny Gilroy, Peter Shotton, Halima Leifert, Dominika Średnicka-Tober, and et al. 2025. "Effects of Climatic Conditions and Agronomic Practices on Health, Tuber Yield, and Mineral Composition of Two Contrasting Potato Varieties Developed for High and Low Input Production Systems" Agronomy 15, no. 1: 89. https://doi.org/10.3390/agronomy15010089
APA StyleHasanaliyeva, G., Giannakopoulou, O., Wang, J., Barański, M., Sufar, E. K., Knutt, D., Gilroy, J., Shotton, P., Leifert, H., Średnicka-Tober, D., Cakmak, I., Ozturk, L., Zhao, B., Iversen, P. O., Volakakis, N., Bilsborrow, P., Leifert, C., & Rempelos, L. (2025). Effects of Climatic Conditions and Agronomic Practices on Health, Tuber Yield, and Mineral Composition of Two Contrasting Potato Varieties Developed for High and Low Input Production Systems. Agronomy, 15(1), 89. https://doi.org/10.3390/agronomy15010089