Demethylation of Wheat Straw Alkali Lignin for Application in Phenol Formaldehyde Adhesives
"> Figure 1
<p>Three kinds of phenyl propane monomer units of lignin, including (<b>a</b>) p-hydroxyphenyl propane (H); (<b>b</b>) guaiacyl propane (G), and (<b>c</b>) syringyl propane (S).</p> "> Figure 2
<p>Sample schematic for lap-shear testing (100 mm × 25 mm × 4.0 mm), with two layers of pine veneers coated with one layer of adhesive.</p> "> Figure 3
<p>FTIR spectra of acetylated WSAL and D-WSAL with 0 (<b>a</b>), 5:1 (<b>b</b>), 10:1 (<b>c</b>), 12:1 (<b>d</b>) and 15:1 (<b>e</b>) molar ratio of ICH to lignin, prepared at 145 °C for 3 h with 4 mL DMF under nitrogen atmosphere.</p> "> Figure 4
<p>FTIR spectra of D-WSAL prepared with 2.5 mL (<b>a</b>), 4 mL (<b>b</b>), and 5.5 mL (<b>c</b>) DMF with 12:1 molar ratio of ICH to lignin, at 145 °C for 3 h under nitrogen atmosphere.</p> "> Figure 5
<p>FTIR spectra of D-WSAL synthesized at 135 °C (<b>a</b>), 145 °C (<b>b</b>), and 155 °C (<b>c</b>) with 12:1 molar ratio of ICH to lignin for 3 h with 4 mL of DMF under nitrogen atmosphere.</p> "> Figure 6
<p>FTIR spectra of WSAL prepared for 7 h (<b>a</b>), 5 h (<b>b</b>), 3 h (<b>c</b>), and 2 h (<b>d</b>) with 12:1 molar ratio of ICH to lignin with 4 mL DMF at 145 °C under nitrogen atmosphere.</p> "> Figure 7
<p>FTIR spectra of WSAL (<b>a</b>) and D-WSAL (<b>b</b>) prepared under the optimum demethylation condition: 12:1 molar ratio of ICH to lignin, 145 °C, 4 mL DMF, 3 h reaction time under nitrogen atmosphere.</p> "> Figure 8
<p><sup>1</sup>H NMR spectra of WSAL (<b>a</b>) and D-WSAL (<b>b</b>) prepared under the optimum demethylation condition: the demethylation process was carried out with 12 molar ratio of ICH to lignin, prepared at 145 °C with 4 mL DMF for 3 h under nitrogen atmosphere.</p> "> Figure 9
<p>GPC spectrum of D-WSAL prepared under the optimum demethylation condition: 12:1 molar ratio of ICH to lignin, 145 °C, 4 mL DMF, for 3 h under nitrogen atmosphere.</p> "> Scheme 1
<p>Demethylation route of WSAL (<b>R</b> represents H, OH or –OCH<sub>3</sub>). (demethylation was carried out with 10; 1 molar ratio of ICH to lignin at 145 °C for 3 h with 4 mL DMF under nitrogen atmosphere).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Demethylation of WSAL
2.3. Preparation of Adhesives
2.3.1. Preparation of PF Adhesive
2.3.2. Preparation of LPF or D-LPF Adhesive
2.4. Preparation of Plywood
2.5. Characterization
2.5.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.2. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.5.3. Average Molecular Weight Determination by Gel Permeation Chromatography (GPC)
2.5.4. Quantification of Hydroxyl Groups
2.5.5. Properties of the Adhesives
2.5.6. Bonding Strength of Lap-Shear Specimens
3. Results and Discussion
3.1. Optimization of the Demethylation Process
3.1.1. Iodocyclohexane Dosage
3.1.2. Effect of Solvent Amount
3.1.3. Effect of Reaction Temperature
3.1.4. Effect of Reaction Time
3.2. Characterization of Demethylated Lignin
3.3. Properties of LPF and D-LPF Adhesives
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jin, Y.Q.; Cheng, X.S.; Zheng, Z.B. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresour. Technol. 2010, 101, 2046–2048. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Ashraf, S.M.; Malhotra, V.P. Eucalyptus bark lignin substituted phenol formaldehyde adhesives: A study on optimization of reaction parameters and characterization. J. Appl. Polym. Sci. 2004, 92, 3514–3523. [Google Scholar] [CrossRef]
- Mourant, D.; Riedl, B.; Rodrigue, D.; Yang, D.Q.; Roy, C. Phenol-formaldehyde-pyrolytic oil resins for wood preservation: A rheological study. J. Appl. Polym. Sci. 2007, 106, 1087–1094. [Google Scholar] [CrossRef]
- Hoong, Y.B.; Paridah, M.T.; Luqman, C.A.; Koh, M.P.; Loh, Y.F. Fortification of sulfited tannin from the bark of Acacia mangium with phenol-formaldehyde for use as plywood adhesive. Ind. Crops Prod. 2009, 30, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Ashraf, S.M. Development and characterization of a lignin-phenol-formaldehyde wood adhesive using coffee bean shell. J. Adhes. Sci. Technol. 2005, 19, 493–509. [Google Scholar] [CrossRef]
- Feng, S.H.; Yuan, Z.S.; Leitch, M. Adhesives formulated from bark bio-crude and phenol formaldehyde resole. Ind. Crops Prod. 2015, 76, 258–268. [Google Scholar] [CrossRef]
- Özçifçi, A. Effects of boron compounds on the bonding strength of phenol-formaldehyde and melamine-formaldehyde adhesives to impregnated wood materials. J. Adhes. Sci. Technol. 2006, 20, 1147–1153. [Google Scholar] [CrossRef]
- Effendi, A.; Gerhauser, H.; Brindgwater, A.V. Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renew. Sustain. Energy Rev. 2008, 12, 2092–2116. [Google Scholar] [CrossRef]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Evtuguin, D.; Cordeiro, N. Structural characterization of stalk lignin from banana plant. Ind. Crops Prod. 2009, 29, 86–95. [Google Scholar] [CrossRef]
- Yang, H.P.; Yan, R.; Chen, H.P.; Lee, D.H.; Zheng, C.G. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Baucher, M.; Monties, B.; Montagu, M.V.; Boerjan, W. Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci. 2010, 17, 125–197. [Google Scholar] [CrossRef]
- Ouyang, X.P.; Zhu, G.D.; Huang, X.Z.; Qiu, X.Q. Microwave assisted liquefaction of wheat straw alkali lignin for the production of mono-phenolic compounds. J. Energy Chem. 2015, 24, 72–76. [Google Scholar] [CrossRef]
- Buranov, A.U.; Mazza, G. Lignin in straw of herbaceous crops. Ind. Crops Prod. 2008, 28, 237–259. [Google Scholar] [CrossRef]
- Ibrahim, M.N.M.; Zakaria, N.; Sipaut, C.S.; Sulaiman, O.; Hashim, R. Chemical and thermal properties of lignin from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr. Polym. 2011, 86, 112–119. [Google Scholar] [CrossRef]
- Hu, L.H.; Pan, H.; Zhou, Y.; Zhang, M. Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. Bioresources 2011, 6, 3515–3525. [Google Scholar]
- Alonso, M.V.; Oliet, M.; Pérez, J.M.; Echeverrı́A, J.; Rodrı́Guez, F. Determination of curing kinetic parameters of lignin-phenol-formaldehyde resole resins by several dynamic differential scanning calorimetry methods. Thermochim. Acta 2004, 419, 161–167. [Google Scholar] [CrossRef]
- Wang, G.; Chen, H. Carbohydrate elimination of alkaline-extracted lignin liquor by steam explosion and its methylolation for substitution of phenolic adhesive. Ind. Crops Prod. 2014, 53, 93–101. [Google Scholar] [CrossRef]
- Ibrahim, V.; Mendoza, L.; Mamo, G.; Hatti-Kaul, R. Blue laccase from Galerina s-p.: Properties and potential for Kraft lignin demethylation. Process Biochem. 2011, 46, 379–384. [Google Scholar] [CrossRef]
- Liu, G.Y.; Qiu, X.Q.; Xing, D.S. Phenolation modification of wheat straw soda lignin and its utilization in preparation of lignin-based phenolic formaldehyde resins adhesive. J. Chem. Eng. Chin. Univ. 2007, 21, 678–684. [Google Scholar]
- An, X.N.; Schroeder, H.A. Demethylated kraft lignin as a substitute for phenol in wood adhesive. Chem. Ind. For. Prod. 1995, 3, 36–42. [Google Scholar]
- Wu, S.B.; Zhang, H.Y. Characteristics of demethylated wheat straw soda lignin and its utilization in lignin-based phenolic formaldehyde resins. Cell. Chem. Technol. 2001, 35, 253–262. [Google Scholar]
- Zuo, L.; Yao, S.Y. An efficient method for demethylation of aryl methyl ethers. Tetrahedron Lett. 2008, 49, 4054–4056. [Google Scholar] [CrossRef]
- Makara, G.M.; Klubek, K.; Anderson, W.K. An efficient synthesis of 5,7-dimethoxy-4-methylphthalide, a key intermediate in the synthesis of mycophenolic acid. J. Org. Chem. 2002, 60, 5717–5718. [Google Scholar] [CrossRef]
- Chung, H.Y.; Washburn, N.R. Improved lignin polyurethane properties with lewis acid treatment. ACS Appl. Mater. Interfaces 2012, 4, 2840–2846. [Google Scholar] [CrossRef] [PubMed]
- Ferhan, M.; Yan, N.; Sain, M. A new method for demethylation of lignin from woody biomass using biophysical methods. Chem. Eng. Technol. 2013, 4, 5. [Google Scholar]
- Mansouri, N.E.E.; Mail, Q.Y.; Huang, F. Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. Bioresources 2011, 6, 2647–2662. [Google Scholar]
- Kabuyah, R.N.T.M.; Dongen, B.E.V.; Bewsher, A.D. Decomposition of lignin in wheat straw in a sand-dune grassland. Soil Biol. Biochem. 2012, 45, 128–131. [Google Scholar] [CrossRef]
- Tabarsa, T.S.; Jahanshahi, S.; Ashori, A. Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol–formaldehyde adhesive. Compos. Part B 2011, 42, 176–180. [Google Scholar] [CrossRef]
- Qiu, X.Q.; Li, H.; Deng, Y.H. Acetylation of alkali lignin and preparation of spherical micelles. Acta Polym. Sin. 2014, 11, 1458–1464. [Google Scholar]
- Kurimoto, Y.; Doi, S.; Tamura, Y. Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 1999, 53, 617–622. [Google Scholar] [CrossRef]
- Qiu, X.Q.; Yang, D.J.; Zhou, H.F. Study on the activity of the activated alkali lignin by laccase. Acta Polym. Sin. 2013, 2, 232–240. [Google Scholar]
- Fang, Z.; Zhou, G.C.; Zheng, S.L. Lithium chloride-catalyzed selective demethylation of aryl methyl ethers under microwave irradiation. J. Mol. Catal. A Chem. 2007, 274, 16–23. [Google Scholar] [CrossRef]
- Hu, L.H.; Zhou, Y.H.; Pan, H.; Zhang, M.; Liu, R.J. Study on lignin demethylation and structural characterization of its products. Polym. Bull. 2012, 3, 77–84. [Google Scholar]
- Monteil-Rivera, F.; Phuong, M.; Ye, M.; Halasz, A. Isolation and characterization of herbaceous lignin for applications in biomaterials. Ind. Crops Prod. 2013, 41, 356–364. [Google Scholar] [CrossRef]
- Kubo, S.; Kadla, J.F. Hydrogen bonding in lignin: A fourier transform infrared model compound study. Biomacromolecules 2005, 6, 2815–2821. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Chen, X.; Yan, N. Novel catalytic systems to convert chitin and lignin into valuable chemicals. Catal. Surv. Asia 2014, 18, 164–176. [Google Scholar] [CrossRef]
- Fan, Y.M. Delignification mechanism and chemical reactions in the formic acid pulping process of wheat straw. Ph.D. Thesis, Beijing Forest University, Beijing, China, 2007. [Google Scholar]
- Hu, L.H. Study on the preparations and properties of lignin-based phenolic foam thermal insulation materials. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2012. [Google Scholar]
- Sun, Q.N.; Qin, T.F.; Li, G.Y. Chemical groups and structural characterization of brown-rotted pinusmassoniana lignin. Int. J. Polym. Anal. Charact. 2008, 14, 19–33. [Google Scholar] [CrossRef]
- Zhao, M.Z.; Jing, J.L.; Zhu, Y.C. Preparation and performance of lignin-phenol-formaldehyde adhesives. Int. J. Adhes. Adhes. 2016, 64, 163–167. [Google Scholar] [CrossRef]
- Ghaffar, S.H.; Fan, M. Lignin in straw and its applications as an adhesive. Int. J. Adhes. Adhes. 2014, 48, 92–101. [Google Scholar] [CrossRef]
ICH/lignin (mol/mol) | Relative values vs. reference peak | |||
---|---|---|---|---|
C–H stretching vibration of –CH3 and –CH2 | C–O deformation vibration of CH3–O– | C–O stretching vibration of Ar–OH | ||
0:1 | peak area ratio | A2,926/A1,506 | A1,457/A1,506 | A1,200/A1,506 |
relative value | 1.02 | 0.82 | 1.01 | |
5:1 | peak area ratio | A2,927/A1,509 | A1,462/A1,509 | A1,202/A1,509 |
relative value | 1.34 | 0.45 | 2.92 | |
10:1 | peak area ratio | A2,926/A1,506 | A1,459/A1,506 | A1,204/A1,506 |
relative value | 2.62 | 0.25 | 7.21 | |
12:1 | peak area ratio | A2,930/A1,505 | A1,460/A1,505 | A1,205/A1,505 |
relative value | 3.41 | 0.17 | 11.90 | |
15:1 | peak area ratio | A2,926/A1,506 | A1,459/A1,506 | A1,200/A1,508 |
relative value | 5.70 | 0.19 | 10.31 |
DMF/lignin (w/w) | Relative values based on reference peak | |||
---|---|---|---|---|
C–H stretching vibration of –CH3 and –CH2 | C–O deformation vibration of CH3–O– | C–O stretching vibration of Ar–OH | ||
11.9:1 | peak area ratio | A2,925/A1,504 | A1,452/A1,504 | A1,200/A1,504 |
relative value | 2.68 | 0.27 | 7.52 | |
19.0:1 | peak area ratio | A2,927/A1,503 | A1,454/A1,503 | A1,204/A1,503 |
relative value | 3.41 | 0.17 | 11.90 | |
26.1:1 | peak area ratio | A2,927/A1,505 | A1,457/A1,505 | A1,204/A1,505 |
relative value | 4.02 | 0.24 | 9.83 |
Temperature (°C) | Relative values based on reference peak | |||
---|---|---|---|---|
C–H stretching vibration of –CH3 and –CH2 | C–O deformation vibration of CH3–O– | C–O stretching vibration of Ar–OH | ||
130 | peak ratio | A2,926/A1,506 | A1,456/A1,506 | A1,203/A1,506 |
relative value | 2.98 | 0.23 | 7.92 | |
145 | peak ratio | A2,927/A1,503 | A1,454/A1,503 | A1,204/A1,503 |
relative value | 3.41 | 0.17 | 11.90 | |
155 | peak ratio | A2,928/A1,503 | A1,465/A1,503 | A1,206/A1,503 |
relative value | 4.11 | 0.22 | 7.63 |
Time (h) | Relative values based on reference peak | |||
---|---|---|---|---|
C–H stretching vibration of –CH3 and –CH2 | C–O deformation vibration of CH3–O– | C–O stretching vibration of Ar–OH | ||
2 | peak ratio | A2,927/A1,502 | A1,458/A1,502 | A1,204/A1,502 |
relative value | 2.15 | 0.18 | 11.00 | |
3 | peak ratio | A2,927/A1,503 | A1,454/A1,503 | A1,204/A1,503 |
relative value | 3.41 | 0.17 | 11.90 | |
5 | peak ratio | A2,936/A1,506 | A1,456/A1,506 | A1,204/A1,506 |
relative value | 4.06 | 0.17 | 11.77 | |
7 | peak ratio | A2,926/A1,506 | A1,456/A1,506 | A1,203/A1,506 |
relative value | 5.70 | 0.12 | 10.31 |
WSAL band position (cm−1) | D-WSAL band position (cm−1) | Assignments |
---|---|---|
3,430 | 3,438 | O–H stretching |
2,930 | 2,927 | C–H stretching of methyl and methylene group |
2,848 | 2848 | C–H stretching of methoxy group |
1,505 | 1,503 | Aromatic skeletal vibration |
1,468 | 1,459 | C–O deformation of methoxyl group |
1,372 | 1,373 | C–O of syringyl (S) ring |
1,264 | 1265 | C–O of guaiacy (G) ring |
1,205 | 1,203 | C–O stretching of phenolic hydroxyl group |
843 | 837 | C–O of p-hydroxyphenyl (H) propane |
Signal (ppm) | H% | Assignment | |
---|---|---|---|
WSAL | D-WSAL | ||
1.90–1.21 | 9.5 | 21.7 | C–H |
2.17–1.96 | 13.1 | 10.9 | R–OH |
2.40–2.17 | 5.2 | 16.0 | Ar–OH |
4.00–3.50 | 17.2 | 8.2 | CH3–O– |
Sample | Phenol hydroxyl content (%) | Alcohol hydroxyl content (%) | Total hydroxyl content (%) |
---|---|---|---|
WSAL | 1.89 | 4.74 | 6.63 |
D-WSAL | 6.10 | 4.16 | 10.26 |
Sample | Polydispersity | ||
---|---|---|---|
D-WSAL | 3,931 | 4,033 | 1.03 |
Sample | pH | Solids content (%) | Free formaldehyde content (%) | Free phenol content (%) | Gel time at 150 °C (s) | Dry bonding strength (MPa) | Wet bonding strength (MPa) |
---|---|---|---|---|---|---|---|
PF | 10.2 | 40.9 | 0.06% | 3.01 | 531 | 2.54 | 2.34 |
LPF a | 10.4 | 49.2 | 0.65% | 2.77 | 356 | 1.13 | 0.97 |
D-LPF b | 10.4 | 48.7 | 0.22% | 0.92 | 243 | 2.28 | 2.11 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wang, Z.; Yan, N.; Zhang, R.; Li, J. Demethylation of Wheat Straw Alkali Lignin for Application in Phenol Formaldehyde Adhesives. Polymers 2016, 8, 209. https://doi.org/10.3390/polym8060209
Song Y, Wang Z, Yan N, Zhang R, Li J. Demethylation of Wheat Straw Alkali Lignin for Application in Phenol Formaldehyde Adhesives. Polymers. 2016; 8(6):209. https://doi.org/10.3390/polym8060209
Chicago/Turabian StyleSong, Yan, Zhixin Wang, Ning Yan, Rong Zhang, and Jinchun Li. 2016. "Demethylation of Wheat Straw Alkali Lignin for Application in Phenol Formaldehyde Adhesives" Polymers 8, no. 6: 209. https://doi.org/10.3390/polym8060209
APA StyleSong, Y., Wang, Z., Yan, N., Zhang, R., & Li, J. (2016). Demethylation of Wheat Straw Alkali Lignin for Application in Phenol Formaldehyde Adhesives. Polymers, 8(6), 209. https://doi.org/10.3390/polym8060209