Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials
<p>Non-wood lignocellulosic materials.</p> "> Figure 2
<p>Raw materials used for the surface layers of the hybrid particleboard produced in this work.</p> "> Figure 3
<p>Calculation of contact angle. Description: a: liquid (adhesive), b: fiber diameter, c: distance between fibers, d: contact angle of water with fiber, e: depression from the meniscus formed by water.</p> "> Figure 4
<p>Three-layer particleboard.</p> "> Figure 5
<p>Alpha-cellulose content in non-wood lignocellulosic materials. L1: banana stem; L2: rice straw; L3: coconut husk; L4: bagasse; L5: snakefruit palm frond FVB.</p> "> Figure 6
<p>Hemicellulose content in non-wood lignocellulosic materials. L1: banana stem; L2: rice straw; L3: coconut husk; L4: bagasse; L5: snakefruit palm frond FVB.</p> "> Figure 7
<p>Holocellulose content in non-wood lignocellulosic materials. L1: banana stem; L2: rice straw; L3: coconut husk; L4: bagasse; L5: snakefruit palm frond FVB.</p> "> Figure 8
<p>Lignin content in non-wood lignocellulosic materials. L1: banana stem; L2: rice straw; L3: coconut husk; L4: bagasse; L5: snakefruit palm frond FVB.</p> "> Figure 9
<p>Extractive substance contents in non-wood lignocellulosic materials. L1: banana stem; L2: rice straw; L3: coconut husk; L4: bagasse; L5: snakefruit palm frond FVB.</p> "> Figure 10
<p>Ash content of non-wood lignocellulosic materials. L1: banana stem; L2: rice straw; L3: coconut husk; L4: bagasse; L5: snakefruit palm frond FVB.</p> "> Figure 11
<p>Fiber images of banana stems and coconut husks.</p> "> Figure 12
<p>Banana stem and rice straw lumens.</p> "> Figure 13
<p>Contact angle values for the non-wood lignocellulosic materials: L1: banana stem, L2: rice straw, L3: coconut husk, L4: bagasse, L5: snakefruit palm frond FVB.</p> "> Figure 14
<p>Density of SPb fabricated from non-wood lignocellulosic materials and various types of surface layers. P0: without surface layers, P1: 1 mm bamboo strand, P2: 3 mm bamboo strand, P3: 1 mm wood strand, P4: 3 mm wood strand, P5: veneer, L1: banana stem, L2: rice straw, L3: coconut husk, L4: bagasse, L5: snakefruit palm fronds FVB.</p> "> Figure 15
<p>Moisture content of SPb fabricated from non-wood lignocellulosic materials and various types of surface layers. P0: without surface layers, P1: 1 mm bamboo strand, P2: 3 mm bamboo strand, P3: 1 mm wood strand, P4: 3 mm wood strand, P5: veneer, L1: banana stem, L2: rice straw, L3: coconut husk, L4: bagasse, L5: snakefruit palm fronds FVB.</p> "> Figure 16
<p>Water absorption of SPb fabricated from non-wood lignocellulosic materials and various types of surface layers. P0: without surface layers, P1: 1 mm bamboo strand, P2: 3 mm bamboo strand, P3: 1 mm wood strand, P4: 3 mm wood strand, P5: veneer, L1: banana stem, L2: rice straw, L3: coconut husk, L4: bagasse, L5: snakefruit palm fronds FVB.</p> "> Figure 17
<p>Thickness swelling of SPb fabricated from non-wood lignocellulosic materials and various types of surface layers. P0: without surface layers, P1: 1 mm bamboo strand, P2: 3 mm bamboo strand, P3: 1 mm wood strand, P4: 3 mm wood strand, P5: veneer, L1: banana stem, L2: rice straw, L3: coconut husk, L4: bagasse, L5: snakefruit palm fronds FVB.</p> "> Figure 18
<p>MOE of SPb fabricated from non-wood lignocellulosic materials and various surface layers. P0: without surface layers, P1: 1 mm bamboo strand, P2: 3 mm bamboo strand, P3: 1 mm wood strand, P4: 3 mm wood strand, P5: veneer, L1: banana stem, L2: rice straw, L3: coconut husk, L4: bagasse, L5: snakefruit palm fronds FVB.</p> "> Figure 19
<p>MORs of SPb fabricated from non-wood lignocellulosic materials and various surface layers. P0: without surface layers, P1: 1 mm bamboo strand, P2: 3 mm bamboo strand, P3: 1 mm wood strand, P4: 3 mm wood strand, P5: veneer, L1: banana stem, L2: rice straw, L3: coconut husk, L4: bagasse, L5: snakefruit palm fronds FVB.</p> "> Figure 20
<p>Internal bonds of SPb fabricated from non-wood lignocellulosic materials and various types of surface layers. P0: without surface layers, P1: 1 mm bamboo strand, P2: 3 mm bamboo strand, P3: 1 mm wood strand, P4: 3 mm wood strand, P5: veneer, L1: banana stem, L2: rice straw, L3: coconut husk, L4: bagasse, L5: snakefruit palm fronds FVB.</p> "> Figure 21
<p>Sound absorption coefficient values for the particleboard samples fabricated from non-wood lignocellulosic materials without surface layers. L1P0 (banana stem board without a surface layer), L1P0 (rice straw board without surface layers), L3P0 (coconut husk board without surface layers), L4P0 (bagasse board without a surface layer), and L5P0 (FVB snakefruit palm frond board without surface layers).</p> "> Figure 22
<p>Sound absorption coefficient values for the surface layers of snakefruit palm fronds.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Raw Materials
2.2.1. Sample Preparation and Chemical Characterization
2.2.2. Degree of Crystallinity and Fiber Dimensions
2.2.3. Contact Angle
2.3. Production of Sandwich Particleboard (SPb)
2.4. Characterization of Sandwich Particleboard
2.4.1. Physical and Mechanical Properties
2.4.2. Sound Absorption Properties
2.5. Data Analysis
2.5.1. Test of Chemical Properties
2.5.2. Completely Random Design of Sandwich Particleboard
3. Results and Discussion
3.1. Alpha-Cellulose
3.2. Hemicelluloses
3.3. Holocellulose
3.4. Lignin
3.5. Extractives
3.6. Ash Content
3.7. Degree of Crystallinity
3.8. Lignocellulosic Fiber Dimensions
3.9. Contact Angle
3.10. Physical Properties of the Particleboard
3.10.1. Density
3.10.2. Moisture Content
3.10.3. Water Absorption
3.10.4. Thickness Swelling
3.11. Mechanical Properties of the Particleboard
3.11.1. Modulus of Elasticity (MOE)
3.11.2. Bending Strength (MOR)
3.11.3. Internal Bond Strength
3.12. Acoustic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernández, D.; Fernández-Puratich, H.; Cataldo, F.; González, J. Particle boards made with Prunus avium fruit waste. Case Stud. Constr. Mater. 2020, 12, e00336. [Google Scholar] [CrossRef]
- Pędzik, M.; Janiszewska, D.; Rogoziński, T. Alternative lignocellulosic raw materials in particleboard production: A review. Ind. Crops Prod. 2021, 174, 114162. [Google Scholar] [CrossRef]
- Ramesh, M.; Rajeshkumar, L.; Sasikala, G.; Balaji, D.; Saravanakumar, A.; Bhuvaneswari, V.; Bhoopathi, R. A Critical Review on Wood-Based Polymer Composites. Polymers 2022, 14, 589. [Google Scholar] [CrossRef]
- Tye, Y.Y.; Lee, K.T.; Wan Abdullah, W.N.; Leh, C.P. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew. Sustain. Energy Rev. 2016, 60, 155–172. [Google Scholar] [CrossRef]
- Iswanto, A.H.; Hakim, A.R.; Azhar, I.; Wirjosentono, B.; Prabuningrum, D.S. The Physical, Mechanical, and Sound Absorption Properties of Sandwich Particleboard (SPb). J. Korean Wood Sci. Technol. 2020, 48, 32–40. [Google Scholar] [CrossRef]
- JIS (2003) JIS A 5908 2003; Japanese Industrial Standard for Particleboard. Japanese Industrial Standard: Tokyo, Japan, 2003.
- Silva, M.R.; Pinheiro, R.V.; Panzera, T.H.; Antonio, F.; Lahr, R.; Etnodiversidade, F.D.; Imperial, J. Hybrid Sandwich Particleboard Made with Sugarcane, Pínus Taeda Thermally Treated and Malva Fibre from Amazon. Mater. Res. 2017, 21, e20170724. [Google Scholar] [CrossRef]
- Kariuki, S.W.; Wachira, J.; Kawira, M.; Murithi, G. Crop residues used as lignocellulose materials for particleboards formulation. Heliyon 2020, 6, e05025. [Google Scholar] [CrossRef]
- Iswanto, A.; Aritonang, W.; Azhar, I.; Supriyanto; Fatriasari, W. The physical, mechanical and durability properties of sorghum bagasse particleboard by layering surface treatment. J. Indian Acad. Wood Sci. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Iswanto, A.H.; Anjarani, H.D. The properties of Sandwich Particleboard (SPB) made from Bamboo belangke and corn stalk bagasse bonded with isocyanat in various levels. IOP Conf. Ser. Earth Environ. Sci. 2018, 209, 012031. [Google Scholar] [CrossRef]
- Iswanto, A.; Ompusunggu, P. Sandwich Particleboard (SPb): Effect of particle length on the quality of board. IOP Conf. Ser. Earth Environ. Sci. 2019, 374, 12002. [Google Scholar] [CrossRef]
- Karlinasari, L.; Adzkia, U.; Sudarsono, A.S.; Larasatie, P.; Amin, Y.; Nugroho, N. Surface Characteristics and Acoustical Properties of Bamboo Particle Board Coated with Polyurethane Varnish. Forests 2021, 12, 1285. [Google Scholar] [CrossRef]
- Lakreb, N.; Sen, A.; Boudjema, B.; Pereira, H. The physicomechanical and thermal properties of Algerian Aleppo pine (Pinus halepensis) wood as a component of sandwich panels. iForest—Biogeosci. For. 2022, 15, 106–111. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Sharma, S.; Verma, A.; Rangappa, S.M.; Siengchin, S. Mechanical, thermal, and acoustical studies on natural alternative material for partition walls: A novel experimental investigation. Polym. Compos. 2022, 43, 4711–4720. [Google Scholar] [CrossRef]
- Manik, P.; Yudo, H.; Berlian Arswendo, A. Technical and economical analysis of the use of glued laminated from combination of apus bamboo and meranti wood as an alternative material component in timber shipbuilding. Int. J. Civ. Eng. Technol. 2018, 9, 1800–1811. [Google Scholar]
- Kumar, M.; Shukla, S.K.; Upadhyay, S.N.; Mishra, P.K. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models. Bioresour. Technol. 2020, 310, 123393. [Google Scholar] [CrossRef] [PubMed]
- Kargbo, F.; Xing, J.; Zhang, Y. Property analysis and pretreatment of rice straw for energy use in grain drying: A review. Agric. Biol. J. N. Am. 2010, 1, 195–200. [Google Scholar] [CrossRef]
- Van Dam, J.E.G.; van den Oever, M.J.A.; Keijsers, E.R.P.; van der Putten, J.C.; Anayron, C.; Josol, F.; Peralta, A. Process for production of high density/high performance binderless boards from whole coconut husk. Part 2: Coconut husk morphology, composition and properties. Ind. Crops Prod. 2006, 24, 96–104. [Google Scholar] [CrossRef]
- Febrianto, F.; Sahroni; Hidayat, W.; Bakar, E.S.; Kwon, G.J.; Kwon, J.H.; Hong, S.I.; Kim, N.H. Properties of oriented strand board made from Betung bamboo (Dendrocalamus asper (Schultes.f) Backer ex Heyne). Wood Sci. Technol. 2012, 46, 53–62. [Google Scholar] [CrossRef]
- Hakim, L.; Widyorini, R.; Nugroho, W.D.; Prayitno, T.A. Radial variability of fibrovascular bundle properties of salacca (Salacca zalacca) fronds cultivated on turi agrotourism in Yogyakarta, Indonesia. Biodiversitas 2021, 22, 3594–3603. [Google Scholar] [CrossRef]
- TAPPI 257 cm-02; T257 cm-02. Technical Association of the Pulp and Paper Industry (TAPPI): Peachtree Corners, GA, USA, 2012.
- TAPPI 264 cm-07; Preparation of Wood for Chemical Analysis. Technical Association of the Pulp and Paper Industry (TAPPI): Peachtree Corners, GA, USA, 1997.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in Biomass—NREL/TP-510-42618. Natl. Renew. Energy Lab. 2008, 17, 16. [Google Scholar]
- Wise, L.E.; Murphy, M.; d’Addieco, A.A. Chlorite Holocellulose, Its Fractionnation and Bearing on Summative Wood Analysis and on Studies on the Hemicelluloses. Pap. Trade J. 1946, 122, 35–43. [Google Scholar]
- Rowell, R.M. Cell Wall Chemistry. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- TAPPI T-204 Cm-07; Solvent Extractives of Wood and Pulp. Technical Association of the Pulp and Paper Industry (TAPPI): Peachtree Corners, GA, USA, 2007.
- TAPPI T 211 Om-93; Ash in Wood, Pulp, Paper, and Paperboard: Combustion at 525 °C. Technical Association of the Pulp and Paper Industry (TAPPI): Peachtree Corners, GA, USA, 2007.
- Savero, A.M.; Wahyudi, I.; Rahayu, I.S.; Yunianti, A.D.; Ishiguri, F. Investigating the anatomical and physical-mechanical properties of the 8-year-old superior teakwood planted in Muna Island, Indonesia. J. Korean Wood Sci. Technol. 2020, 48, 618–630. [Google Scholar] [CrossRef]
- Hartono, R.; Purba, F.V.A.; Iswanto, A.H.; Priadi, T.; Sutiawan, J. Fiber Quality of Yellow Bamboo (Bambusa vulgaris vitata) from Forest Area with Special Purpose Pondok Buluh, Simalungun Regency, North Sumatera Province. Proc. IOP Conf. Ser. Earth Environ. Sci. 2022, 1115, 012084. [Google Scholar] [CrossRef]
- Schellbach, S.L.; Monteiro, S.N.; Drelich, J.W. A novel method for contact angle measurements on natural fibers. Mater. Lett. 2016, 164, 599–604. [Google Scholar] [CrossRef]
- BS EN ISO 10534; Acoustics Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes. ISO: London, UK, 2001.
- Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem. Rev. 2023, 123, 2016–2048. [Google Scholar] [CrossRef] [PubMed]
- Susi, S.; Ainuri, M.; Wagiman, W.; Falah, M.A.F. High-Yield Alpha-Cellulose from Oil Palm Empty Fruit Bunches by Optimizing Thermochemical Delignification Processes for Use as Microcrystalline Cellulose. Int. J. Biomater. 2023, 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lamaming, J.; Sulaiman, O.; Sugimoto, T.; Hashim, R.; Said, N.; Sato, M. Influence of Chemical Components of Oil Palm on Properties of Binderless Particleboard. BioResources 2013, 8, 3358–3371. [Google Scholar] [CrossRef]
- Widyorini, R.; Xu, J.; Watanabe, T. Chemical changes in steam-pressed kenaf core binderless particleboard. J. Wood Sci. 2005, 51, 26–32. [Google Scholar] [CrossRef]
- Mohd, W.; Wan, N.; Rahman, A.; Yuziah, N.; Yunus, M.; Kasim, J.; Sakinah, N.; Tamat, M. Effects of Tree Portion and Radial Position on Physical and Chemical Properties of Kelampayan Neolamarckia cadamba Wood. BioResources 2018, 13, 4536–4549. [Google Scholar]
- Angelini, L.G.; Scalabrelli, M.; Tavarini, S.; Cinelli, P.; Anguillesi, I.; Lazzeri, A. Ramie fibers in a comparison between chemical and microbiological retting proposed for application in biocomposites. Ind. Crops Prod. 2015, 75, 178–184. [Google Scholar] [CrossRef]
- Çetin, N.S.; Özmen, N. Use of organosolv lignin in phenol–formaldehyde resins for particleboard production: I. Organosolv lignin modified resins. Int. J. Adhes. Adhes. 2002, 22, 477–480. [Google Scholar] [CrossRef]
- Birch, S.; Fagerstedt, K.V.; Saranpä, P. Determining the Composition of Lignins in Different Tissues of Silver Birch. Plants 2015, 4, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Gindl, W.; Gupta, H.; Grünwald, C. Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation. Can. J. Bot. 2011, 80, 1029–1033. [Google Scholar] [CrossRef]
- Hidayat, W.; Suri, I.F.; Safe, R.; Wulandari, C. Durability and dimensional stability of hybrid particleboard of bamboo-wood with steam and hot water immersion treatment. J. Ilmu Teknol. Kayu Trop. 2019, 17, 68–82. [Google Scholar]
- Kurokochi, Y.; Sato, M. Properties of binderless board made from rice straw: The morphological effect of particles. Ind. Crops Prod. 2015, 69, 55–59. [Google Scholar] [CrossRef]
- Segovia, C.; Hedri, M.; Huot, H.; Zigler-Devin, I.; Liu, C.; Tang, Y.; Qiu, R.; Morel, J.L.; Brosse, N. Industrial Ramie Growing on Reclaimed Ion-Adsorption Rare Earth Elements Mine Tailings in Southern China: Defibration and Fibers Quality. Waste Biomass Valorizat. 2021, 12, 6255–6260. [Google Scholar] [CrossRef]
- Fauziah, V.; Setyoko, U.; Salim, A.; Madjid, A. Agronomic Characteristics of Cotton Plant [Gossypium sp.] and Their Impact on Cotton Production Using Path Analysis. J. Agro Ind. Perkeb. 2023, 11, 53–62. [Google Scholar] [CrossRef]
- Akpan, E.I. Sustainable Lignin for Carbon Fibers: Principles, Techniques, and Applications; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030187927. [Google Scholar]
- Supartini; Dewi, L.; Kholik, A.; Muslich, M. Anatomical structure and fiber quality of Shorea hopeifolia (Heim) symington grown from East Kalimantan. J. Ilmu Teknol. Kayu Trop. 2013, 11, 29–37. [Google Scholar]
- Yusup, A. Characteristics of pulp fiber Bilis bamboo (Schizostachyum lima (Blanco) Merr.) using organosolv mechanical methods. J. Kehutan. Univ. Mataram 2018, 1, 1–13. [Google Scholar]
- Sandri, Y.; Maideliza, T. Anatomical Structure of Fruit Woods. J. Biol. Unversitas Andalas 2013, 2, 181–187. [Google Scholar]
- Aprianis, Y.; Rahmayanti, S.; Agency, D. Fiber dimensions and their derived values of seven wood species from Jambi province. J. Penelit. Has. Hutan 2019, 1, 231–237. [Google Scholar] [CrossRef]
- Syafii, W.; Siregar, I. Chemical properties and fiber dimension of Acacia mangium willd. from three provenances. J. Trop. Wood Sci. Technol. 2006, 4, 28–32. [Google Scholar]
- Sari, B.; Ayrilmis, N.; Nemli, G.; Baharoglu, M.; Gumuskaya, E.; Bardak, S. Effects of chemical composition of wood and resin type on properties of particleboard. Lignocellulose 2012, 1, 174–184. [Google Scholar]
- Hakim, L.; Widyorini, R.; Nugroho, W.D.; Prayitno, T.A.; Lubis, Y.S. Contact angle of modified fibrovascular bundle of salacca (Salacca sumatrana Becc.) frond by NaOH+Na2SO3 combination. IOP Conf. Ser. Earth Environ. Sci. 2021, 912, 12012. [Google Scholar] [CrossRef]
- Syamani, F.A.; Prasetiyo, K.W.; Budiman, I.; Subiyanto, B. Physical and Mechanical Properties of Particleboard Made from Steamed Treated Sisal or Abaca Fibers. J. Trop. Wood Sci. Technol. 2008, 6, 56–62. [Google Scholar]
- Tang, L.; Zhang, R.; Zhou, X.; Pan, M.; Chen, M.; Yang, X.; Zhou, P.; Chen, Z. Dynamic adhesive wettability of poplar veneer with cold oxygen plasma treatment. Bioresources 2012, 7, 3327–3339. [Google Scholar] [CrossRef]
- Narciso, C.R.P.; Reis, A.H.S.; Mendes, J.F.; Nogueira, N.D.; Mendes, R.F. Potential for the Use of Coconut Husk in the Production of Medium Density Particleboard. Waste Biomass Valorization 2021, 12, 1647–1658. [Google Scholar] [CrossRef]
- Kelly, M. Critical Literature Review of Relationships Between Processing Parameters and Physical Properties of Particleboard; U.S. Department for Agriculture: Washington, DC, USA, 1977.
- Buranov, A.U.; Ross, K.A.; Mazza, G. Isolation and characterization of lignins extracted from flax shives using pressurized aqueous ethanol. Bioresour. Technol. 2010, 101, 7446–7455. [Google Scholar] [CrossRef] [PubMed]
- Sitanggang, J.P.; Sucipto, T.; Azhar, I. The effect of urea formaldehyde adhesive content on quality of gamal wood particleboard (Gliricidia sepium). J. Kehutan. 2015, 1, 1–9. [Google Scholar]
- Acharjee, T.C.; Coronella, C.J.; Vasquez, V.R. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour. Technol. 2011, 102, 4849–4854. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.; Mahdie, M.F.; Rahmat, A. Physical and mechanical properties of particle board of sea sengon (Paraserianthes falcataria) wood sawdust using PVAC adhesives. J. Sylva Sci. 2020, 03, 855–867. [Google Scholar]
- Wang, C.; Bai, S.; Yue, X.; Long, B.; Choo-Smith, L.P. Relationship between chemical composition, crystallinity, orientation and tensile strength of kenaf fiber. Fibers Polym. 2016, 17, 1757–1764. [Google Scholar] [CrossRef]
- Khanchi, A.; Birrell, S. Drying models to estimate moisture change in switchgrass and corn stover based on weather conditions and swath density. Agric. For. Meteorol. 2017, 237–238, 1–8. [Google Scholar] [CrossRef]
- Regina, O.; Sudrajad, H.; Syaflita, D. Measurement of Viscosity Uses an Alternative Viscometer. J. Geliga Sains J. Pendidik. Fis. 2019, 6, 127. [Google Scholar] [CrossRef]
- Dina, S.; Nurhaida, S. Effect of Particle Size and Urea Formaldehyde Adhesive Content on Physical and Mechanical Properties of Bagasse Particleboard. J. Hutan Lestari 2022, 10, 139–145. [Google Scholar] [CrossRef]
- Wirawan, R.; Sapuan, S.M.; Yunus, R.; Abdan, K. Density and water absorption of sugarcane bagasse-filled poly(vinyl chloride) composites. Polym. Polym. Compos. 2012, 20, 659–664. [Google Scholar] [CrossRef]
- Asfarizal; Kasim, A.; Gunawarman, S. The Effect of Pressure and Temperature on The Particle Board Manufacture from Palm Oil Empty Bunches and Pine Bark. J. Tek. Mesin 2019, 9, 1–5. [Google Scholar] [CrossRef]
- Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. J. Mater. Res. Technol. 2019, 8, 3988–3994. [Google Scholar] [CrossRef]
- Baharoğlu, M.; Nemli, G.; Sarı, B.; Birtürk, T.; Bardak, S. Effects of anatomical and chemical properties of wood on the quality of particleboard. Compos. B Eng. 2013, 52, 282–285. [Google Scholar] [CrossRef]
- Garat, W.; Le Moigne, N.; Corn, S.; Beaugrand, J.; Bergeret, A. Swelling of natural fiber bundles under hygro- and hydrothermal conditions: Determination of hydric expansion coefficients by automated laser scanning. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105803. [Google Scholar] [CrossRef]
- Akinyemi, B.; Okonkwo, C.; Alhassan, E.A.; Ajiboye, M. Durability and strength properties of particle boards from polystyrene–wood wastes. J. Mater. Cycles Waste Manag. 2019, 21, 1541–1549. [Google Scholar] [CrossRef]
- Liao, R.; Xu, J.; Umemura, K. Low Density Sugarcane Bagasse Particleboard Bonded with Citric Acid and Sucrose: Effect of board density and additive content. BioResources 2016, 11, 2174–2185. [Google Scholar] [CrossRef]
- Subiyanto, B.; Rasyid, E.; Gopar, M.; Firmanti, A. Veneer and Thin Plywood Overlaid for Quality Improvement of Particleboard Made of Palm Oil Empty Fruit Bunches (EFB). J. Ilmu Teknol. Kayu Trop. 1997, 6, 17–20. [Google Scholar]
- Yang, X.; Berglund, L.A. Structural and Ecofriendly Holocellulose Materials from Wood: Microscale Fibers and Nanoscale Fibrils. Adv. Mater. 2021, 33, 2001118. [Google Scholar] [CrossRef] [PubMed]
- Othmani, C.; Taktak, M.; Zain, A.; Hantati, T.; Dauchez, N.; Elnady, T.; Fakhfakh, T.; Haddar, M. Acoustic characterization of a porous absorber based on recycled sugarcane wastes. Appl. Acoust. 2017, 120, 90–97. [Google Scholar] [CrossRef]
- Ghofrani, M.; Ashori, A.; Mehrabi, R. Mechanical and acoustical properties of particleboards made with date palm branches and vermiculite. Polym. Test. 2017, 60, 153–159. [Google Scholar] [CrossRef]
Non-Wood Lignocellulosic Materials | Length (cm) | Stdev | Width (cm) | Stdev | Thickness (mm) | Stdev | Density |
---|---|---|---|---|---|---|---|
L1 = Banana Stem | 5.13 | 0.14 | 0.54 | 0.12 | 0.63 | 0.41 | 0.16 g/cm3 [16] |
L2 = Rice Straw | 5.27 | 0.17 | 0.41 | 0.09 | 0.76 | 0.46 | 0.075 g/cm3 [17] |
L3 = Coconut Husk | 5.23 | 0.09 | - | - | 0.03 | 0.02 | 0.15 g/cm3 [18] |
L4 = Bagasse | 5.11 | 0.11 | 1.06 | 0.14 | 3.19 | 1.09 | 0.086 g/cm3 [19] |
L5 = Snakefruit Palm Fronds | 5.20 | 0.13 | - | - | 0.12 | 0.04 | 0.37–0.44 g/cm3 [20] |
Surface Layers | Length (cm) | Stdev | Width (cm) | Stdev | Thickness (mm) | Stdev |
---|---|---|---|---|---|---|
P1 = 1 mm Belangke Bamboo Strand (Gigantochloa pruriens) | 25.21 | 0.17 | 2.91 | 0.32 | 0.92 | 0.25 |
P2 = 3 mm Belangke Bamboo Strand (Gigantochloa pruriens) | 25.15 | 0.17 | 2.82 | 0.35 | 3.01 | 0.10 |
P3 = 1 mm Meranti Wood Strand (Shorea spp.) | 25.14 | 0.15 | 3.00 | 0.18 | 1.01 | 0.13 |
P4 = 3 mm Meranti Wood Strand (Shorea spp.) | 25.15 | 0.17 | 2.82 | 0.35 | 3.04 | 0.11 |
P5 = Meranti Veneer (Shorea spp.) | 25.13 | 0.14 | 25.10 | 0.16 | 0.47 | 0.11 |
No. | (L) | Repetition 1 | Repetition 2 | Repetition 3 |
---|---|---|---|---|
1 | L1 | |||
2 | L2 | |||
3 | L3 | |||
4 | L4 | |||
5 | L5 |
No. | Board Type | Strand Treatment | Lignocellulosic Raw Materials (g) | Adhesive (g) |
---|---|---|---|---|
1. | P0 | Without Surface Layers | 473.00 | 31.28 |
2. | P1 | 1 mm Bamboo Strand | 378.49 | 13.90 |
3. | P2 | 3 mm Bamboo Strand | 189.24 | 34.28 |
4. | P3 | 1 mm Wood Strand | 378.49 | 31.57 |
5. | P4 | 3 mm Wood Strand | 189.24 | 13.90 |
6. | P5 | 0.4 mm Veneer | 435.43 | 31.98 |
No. | Physical and Mechanical Properties | JIS A 5908-2003 Requirements [6] |
---|---|---|
1. | Density (g/cm3) | 0.40–0.90 |
2. | Moisture Content (%) | ≤14 |
3. | Water Absorption (%) | - |
4. | Thickness Swelling (%) | ≤12 |
5. | MOR (N/mm2) | ≥8 |
6. | MOE (N/mm2) | ≥2000 |
7. | Internal bond (N/mm2) | ≥0.15 |
Coconut Husk | Banana Stem | Rice Straw | Snakefruit Palm Frond | |
---|---|---|---|---|
Bagasse | 0.007 * | 0.012 * | 0.062 ns | 0.013 * |
Coconut Husk | 0.110 ns | 0.018 * | 0.086 ns | |
Banana Stem | 0.042 * | 0.051 ns | ||
Rice Straw | 0.023 * |
Coconut Husk | Banana Stem | Rice Straw | Snakefruit Palm Frond | |
---|---|---|---|---|
Bagasse | 0.492 ns | 0.038 * | 0.287 ns | 0.463 ns |
Coconut Husk | 0.010 * | 0.388 ns | 0.875 * | |
Banana Stem | 0.034 * | 0.016 * | ||
Rice Straw | 0.479 ns |
Coconut Husk | Banana Stem | Rice Straw | Snakefruit Palm Frond | |
---|---|---|---|---|
Bagasse | 0.074 ns | 0.864 ns | 0.760 ns | 0.059 ns |
Coconut Husk | 0.002 * | 0.053 ns | 0.176 ns | |
Banana Stem | 0.481 ns | 0.030 * | ||
Rice Straw | 0.054 ns |
Coconut Husk | Banana Stem | Rice Straw | Snakefruit Palm Frond | |
---|---|---|---|---|
Bagasse | 0.000 * | 0.005 * | 0.003 * | 0.001 * |
Coconut Husk | 0.001 * | 0.001 * | 0.002 * | |
Banana Stem | 0.084 ns | 0.002 * | ||
Rice Straw | 0.003 * |
Coconut Husk | Banana Stem | Rice Straw | Snakefruit Palm Frond | |
---|---|---|---|---|
Bagasse | 0.043 * | 0.984 ns | 0.040 * | 0.037 * |
Coconut Husk | 0.006 * | 0.867 ns | 0.619 ns | |
Banana Stem | 0.002 * | 0.004 * | ||
Rice Straw | 0.370 ns |
Coconut Husk | Banana Stem | Rice Straw | Snakefruit Palm Frond | |
---|---|---|---|---|
Bagasse | 0.064 ns | 0.000 * | 0.000 * | 0.002 * |
Coconut Husk | 0.001 * | 0.001 * | 0.989 ns | |
Banana Stem | 0.004 * | 0.000 * | ||
Rice Straw | 0.000 * |
Non-Wood Lignocellulosic Materials | F Crystalline (kcps deg) | F Amorphous (kcps deg) | Crystallinity (%) |
---|---|---|---|
L1 | 10.88 | 29.2 | 27.15 |
L2 | 13.15 | 49.09 | 21.13 |
L3 | 13.63 | 37.39 | 26.71 |
L4 | 12.19 | 38.26 | 24.15 |
L5 | 36.11 | 66.07 | 35.34 |
Non-Wood Lignocellulosic Materials | Fiber Dimensions | |||||||
---|---|---|---|---|---|---|---|---|
Length (μm) | Diameter (μm) | Lumen (μm) | Wall Thickness (μm) | |||||
St.Dev | St.Dev | St.Dev | St.Dev | |||||
Bagasse | 2618.21 | 400.22 | 24.98 | 3.70 | 15.56 | 3.84 | 4.71 | 0.77 |
Coconut Husk | 1020.36 | 189.61 | 23.28 | 2.40 | 15.34 | 2.05 | 3.79 | 0.94 |
Banana Stem | 4033.79 | 608.96 | 22.70 | 3.36 | 16.34 | 3.64 | 3.18 | 0.57 |
Rice Straw | 2336.90 | 710.56 | 16.92 | 2.83 | 10.98 | 2.47 | 2.97 | 0.35 |
Snakefruit Palm Frond | 1756.67 | 70.95 | 20.21 | 1.00 | 6.49 | 0.53 | 6.86 | 0.31 |
Non-Wood Lignocellulosic Materials | Fiber Dimensions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Felting Power | Muhlstep Ratio | Flexibility | Runkel | Rigidity Coefficient | ||||||
St.Dev | St.Dev | St.Dev | St.Dev | St.Dev | ||||||
Bagasse | 108.05 | 23.27 | 61.37 | 10.03 | 0.62 | 0.09 | 0.66 | 0.27 | 0.19 | 0.04 |
Coconut Husk | 46.79 | 10.11 | 56.58 | 5.56 | 0.66 | 0.04 | 0.50 | 0.13 | 0.16 | 0.04 |
Banana Stem | 181.10 | 43.06 | 48.61 | 9.30 | 0.71 | 0.07 | 0.41 | 0.14 | 0.14 | 0.03 |
Rice Straw | 122.10 | 39.59 | 58.33 | 5.69 | 0.64 | 0.04 | 0.56 | 0.11 | 0.18 | 0.02 |
Snakefruit Palm Frond | 87.12 | 6.56 | 89.67 | 0.98 | 0.32 | 0.02 | 2.12 | 0.15 | 0.34 | 0.01 |
Non-Wood Lignocellulosic Materials (L) | Type of Surface Layers (P) | |||||
---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | P5 | |
L1 | 27.06 (7.56) | 27.4 (5.7) | 24.96 (8.1) | 27.66 (2.76) | 33.06 (0.81) | 26.58 (4.21) |
L2 | 30.69 (8.34) | 35.16 (2.44) | 35.29 (13.39) | 32.77 (3.17) | 22.19 (5.74) | 30.61 (1.3) |
L3 | 64.54 (14.28) | 53.13 (6.04) | 46.63 (3.99) | 57.55 (5.61) | 39.96 (7.63) | 66.73 (6.76) |
L4 | 42.53 (3.68) | 34.64 (4.79) | 20.18 (2.99) | 30.96 (5.09) | 20.59 (2.99) | 42.83 (13) |
L5 | 51.61 (3.79) | 36.54 (14.6) | 25.28 (4.57) | 42.55 (9.76) | 21.23 (6.87) | 45.16 (10.24) |
Non-Wood Lignocellulosic Materials (L) | Type of Surface Layers (P) | |||||
---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | P5 | |
L1 | 0.64 efghij | 0.67 defgh | 0.81 ab | 0.75 abcd | 0.55 jkl | 0.70 cdef |
L2 | 0.66 defghi | 0.65 efghi | 0.72 bcde | 0.85 a | 0.55 jkl | 0.60 ghijk |
L3 | 0.52 kl | 0.56 ijkl | 0.74 bcde | 0.61 fghijk | 0.48 l | 0.58 hijk |
L4 | 0.61 fghijk | 0.58 hijk | 0.78 abc | 0.67 defgh | 0.61 fghijk | 0.61 fghijk |
L5 | 0.53 kl | 0.57 hijkl | 0.64 efghij | 0.70 cdefg | 0.59 hijk | 0.60 fghijk |
Non-Wood Lignocellulosic Materials (L) | Type of Surface Layers (P) | |||||
---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | P5 | |
L1 | 13.14 a | 11.81 b | 9.42 efg | 10.88 bc | 10.59 bc | 10.75 cd |
L2 | 9.29 efgh | 7.98 klmno | 8.11 ijklmno | 7.85 lmno | 8.70 ghijklmno | 7.75 mno |
L3 | 8.99 fghij | 9.79 def | 7.61 no | 8.94 hijklmn | 8.13 fghijk | 8.13 ijklmno |
L4 | 11.80 b | 13.78 a | 9.15 fgh | 10.12 cde | 10.88 bc | 8.49 ghijklmn |
L5 | 8.75 fghi | 9.02 jklmno | 8.03 op | 7.46 op | 8.46 ghijklmn | 6.54 p |
Non-Wood Lignocellulosic Materials (L) | Type of Surface Layers (P) | |||||
---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | P5 | |
L1 | 91.87 abc | 66.97 efg | 52.00 fghijk | 61.79 efghi | 64.85 efghi | 66.84 efg |
L2 | 90.11 abc | 101.62 ab | 67.37 ef | 39.02 jkl | 66.50 efg | 61.01 fghi |
L3 | 85.48 bcd | 68.38 def | 21.23 mn | 45.16 fghij | 49.56 ijkl | 49.56 ghijkl |
L4 | 79.14 cde | 103.51 a | 54.73 fghij | 65.53 efg | 35.28 klm | 78.55 cde |
L5 | 16.14 n | 67.59 ef | 57.59 fghi | 47.78 hijkl | 34.13 lm | 53.52 fghij |
Non-Wood Lignocellulosic Materials (L) | Type of Surface Layers (P) | |||||
---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | P5 | |
L1 | 35.78 ab | 24.23 de | 12.50 ijk | 21.43 ef | 5.57 mn | 28.62 cd |
L2 | 33.33 bc | 19.48 efgh | 6.23 lmn | 12.53 ijk | 12.37 ijk | 22.12 ef |
L3 | 12.36 ijk | 13.78 hij | 3.38 n | 3.55 jklmn | 3.55 n | 12.30 ijkl |
L4 | 22.57 def | 14.70 ghij | 5.75 mn | 9.77 jklm | 7.48 klmn | 18.15 fghi |
L5 | 39.91 a | 20.74 efg | 10.18 jklm | 10.90 jklm | 10.35 jklm | 9.08 jklmn |
Non-Wood Lignocellulosic Materials (L) | Type of Surface Layers (P) | |||||
---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | P5 | |
L1 | 0.39 k | 2.04 efghij | 2.20 efghi | 3.38 de | 1.84 efghijk | 2.13 efghi |
L2 | 0.95 hijk | 2.55 efg | 3.31 de | 5.49 bc | 2.13 efghi | 2.95 ef |
L3 | 0.73 ijk | 0.84 ijk | 0.81 ijk | 2.49 efgh | 1.06 ghijk | 1.12 ghijk |
L4 | 0.54 jk | 1.74 fghijk | 5.19 bc | 4.53 cd | 5.82 abc | 2.57 efg |
L5 | 1.90 efghijk | 5.33 bc | 6.44 ab | 6.10 ab | 6.66 ab | 7.34 a |
Non-Wood Lignocellulosic Materials (L) | Type of Surface Layers (P) | |||||
---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | P5 | |
L1 | 8.08 l | 19.52 fghijk | 39.43 c | 26.76 defg | 21.49 fgh | 19.31 hij |
L2 | 9.06 kl | 9.57 jkl | 33.02 cde | 23.33 efgh | 18.99 fghijk | 16.58 ghijkl |
L3 | 8.44 l | 8.54 l | 24.14 efgh | 16.00 fghi | 11.10 hijkl | 11.10 ijkl |
L4 | 6.52 l | 10.30 ijkl | 36.20 cd | 21.96 fgh | 28.58 def | 21.94 fgh |
L5 | 24.38 efgh | 42.22 c | 5.59 b | 32.73 cde | 53.48 b | 87.79 a |
Non-Wood Lignocellulosic Materials (L) | Type of Surface Layers (P) | |||||
---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | P5 | |
L1 | 0.09 fgh | 0.10 fgh | 0.08 gh | 0.11 fgh | 0.09 fgh | 0.11 fgh |
L2 | 0.06 gh | 0.04 gh | 0.09 fgh | 0.11 fgh | 0.09 fgh | 0.08 gh |
L3 | 0.03 h | 0.20 def | 0.22 gh | 0.33 bc | 0.26 cde | 0.12 fgh |
L4 | 0.09 fgh | 0.07 gh | 0.20 ef | 0.13 fgh | 0.16 efg | 0.11 fgh |
L5 | 0.11 fgh | 0.32 bcd | 0.40 b | 0.36 bc | 0.69 a | 0.60 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarigan, F.O.; Hakim, L.; Purwoko, A.; Sucipto, T.; Nasution, H.; Fatriasari, W.; Lubis, M.A.R.; Sutiawan, J.; Bakhsi, M.I.; Kim, N.-H.; et al. Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials. Polymers 2025, 17, 512. https://doi.org/10.3390/polym17040512
Tarigan FO, Hakim L, Purwoko A, Sucipto T, Nasution H, Fatriasari W, Lubis MAR, Sutiawan J, Bakhsi MI, Kim N-H, et al. Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials. Polymers. 2025; 17(4):512. https://doi.org/10.3390/polym17040512
Chicago/Turabian StyleTarigan, Fazilla Oktaviani, Luthfi Hakim, Agus Purwoko, Tito Sucipto, Halimatuddahliana Nasution, Widya Fatriasari, Muhammad Adly Rahandi Lubis, Jajang Sutiawan, Mohammad Irfan Bakhsi, Nam-Hun Kim, and et al. 2025. "Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials" Polymers 17, no. 4: 512. https://doi.org/10.3390/polym17040512
APA StyleTarigan, F. O., Hakim, L., Purwoko, A., Sucipto, T., Nasution, H., Fatriasari, W., Lubis, M. A. R., Sutiawan, J., Bakhsi, M. I., Kim, N.-H., Antov, P., Lee, S. H., Selvasembian, R., Hussin, M. H., Aristri, M. A., & Iswanto, A. H. (2025). Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials. Polymers, 17(4), 512. https://doi.org/10.3390/polym17040512