Dynamic Mechanical Properties and Energy Absorption Capabilities of Polyureas Through Experiments and Molecular Dynamic Simulation
<p>Schematic photo of synthetic routes and molecular models of the four types of PURs.</p> "> Figure 2
<p>Optical photos of the four PURs: (<b>a</b>) PPG1000-PUR, (<b>b</b>) PTMG1000-PUR, (<b>c</b>) PCL1000-PUR, (<b>d</b>) PC1000-PUR.</p> "> Figure 3
<p>ATR-FTIR spectra of the PURs: (<b>a</b>) attribution of C=O peaks, (<b>b</b>) state of N-H association.</p> "> Figure 4
<p>SEM images of the PURs: (<b>a</b>) PPG1000-PUR, (<b>b</b>) PTMG1000-PUR, (<b>c</b>) PCL1000-PUR, (<b>d</b>) PC1000-PUR before tensile testing, (<b>e</b>) PPG1000-PUR, (<b>f</b>) PTMG1000-PUR, (<b>g</b>) PCL1000-PUR, (<b>h</b>) PC1000-PUR after tensile testing.</p> "> Figure 5
<p>SEM images of tensile fracture surfaces of the four PURs: (<b>a</b>) PPG1000-PUR, (<b>b</b>) PTMG1000-PUR, (<b>c</b>) PCL1000-PUR, (<b>d</b>) PC1000-PUR.</p> "> Figure 6
<p>Dynamic properties of the PURs using DMA: (<b>a</b>) loss factors depending on temperature, (<b>b</b>) storage modulus and loss modulus depending on frequency.</p> "> Figure 7
<p>Van der Waals force energy, electrostatic force energy, and H-Bond number on the interface of macrodiol segments and resin segments of the PURs.</p> "> Figure 8
<p>Mean square radius of the gyration of the macrodiol segments and resin segments in the PURs.</p> "> Figure 9
<p>Changes in the PURs depending on shear rate: (<b>a</b>) temperature trends, (<b>b</b>) ΔE<sub>potential</sub> trends, (<b>c</b>) ΔE<sub>bond</sub>, ΔE<sub>non-bond</sub>, and ΔH-Bond.</p> "> Figure 10
<p>A zoomed-in view of the PC1000-PUR model (<b>a</b>) before and (<b>b</b>) after shear deformation. The H-bonds were depicted as dashed lines and the yellow balls were object atoms.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PUR Synthesis and Film Preparation
2.3. Characterization and Measurements
2.4. Computational Section
3. Results
3.1. Polymerization Result Analysis
3.2. Thermal Property Analysis
3.3. Microscopic Morphology Analysis
3.4. Mechanical Property Analysis
3.5. Dynamic Property Analyses
3.6. Fraction-Free Volume Analysis
3.7. Binding Energy Analysis
3.8. Mean Square Radius of Gyration Analysis
3.9. Energy Absorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ur Rehman, S.; Ahmed, R.; Ma, K.; Xu, S.; Aslam, M.A.; Bi, H.; Liu, J.; Wang, J. Ammonium Nitrate Is a Risk for Environment: A Case Study of Beirut (Lebanon) Chemical Explosion and the Effects on Environment. Ecotoxicol. Environ. Saf. 2021, 210, 111834. [Google Scholar] [CrossRef] [PubMed]
- Kundu, B.; Senapati, B.; Matsushita, A.; Heki, K. Atmospheric Wave Energy of the 2020 August 4 Explosion in Beirut, Lebanon, from Ionospheric Disturbances. Sci. Rep. 2021, 11, 2793. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Chen, Y.; Li, Y.; Dai, L.; Feng, R.; Duh, Y.-S. Case Study on the Catastrophic Explosion of a Chemical Plant for Production of M-Phenylenediamine. J. Loss Prev. Process Ind. 2020, 67, 104232. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, T.; Liu, T. Bayesian Network-Based Risk Analysis of Chemical Plant Explosion Accidents. Int. J. Environ. Res. Public Health 2020, 17, 5364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Kim, R. Occupational Health and Safety in China: From Emergency Response to Jiangsu Chemical Explosion to Long-Term Governance Improvement. J. Glob. Health 2020, 10, 010315. [Google Scholar] [CrossRef]
- Schunck, T.; Bastide, M.; Eckenfels, D.; Legendre, J.F. Explosion Mitigation by Metal Grid with Water Curtain. Shock Waves 2021, 31, 511–523. [Google Scholar] [CrossRef]
- Mazzini, G.; D’Onorio, M.; Caruso, G. Hydrogen Explosion Mitigation in DEMO Vacuum Vessel Pressure Suppression System Using Passive Recombiners. Fusion Eng. Des. 2021, 171, 112713. [Google Scholar] [CrossRef]
- He, H.; Fan, H. Explosion Vibration Mitigation of Meta-Plate with Mass–Spring Metastructures. Extrem. Mech. Lett. 2021, 42, 101108. [Google Scholar] [CrossRef]
- Yang, K.; Wang, S.; Zhou, R.; Cheng, Q.; Wang, Q.; Li, Y. Synthesis of Syndiotactic Polystyrene -Polyisobutylene Graft Copolymers by Cationic Half-sandwich Scandium Complex. Polym. Eng. Sci. 2022, 62, 3412–3417. [Google Scholar] [CrossRef]
- Jajam, K.C.; Sottos, N.R. Energy Absorption Behavior of Polyurea Under Laser-Induced Dynamic Mixed-Mode Loading. J. Dyn. Behav. Mater. 2016, 2, 379–390. [Google Scholar] [CrossRef]
- Iqbal, N.; Tripathi, M.; Parthasarathy, S.; Kumar, D.; Roy, P.K. Polyurea Coatings for Enhanced Blast-Mitigation: A Review. RSC Adv. 2016, 6, 109706–109717. [Google Scholar] [CrossRef]
- Raman, S.N.; Ngo, T.; Mendis, P.; Pham, T. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast. Adv. Mater. Sci. Eng. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Temizkan, E.; Eroğlu, G.; Ergün, A.; Deligöz, H. Preparation, Characterization, and Influence of Polyurea Coatings on Their Layered Composite Materials Based on Flexible Rebonded Polyurethane. Polym. Eng. Sci. 2021, 61, 1392–1404. [Google Scholar] [CrossRef]
- Wang, T.; Yu, W.-C.; Sun, W.-J.; Jia, L.-C.; Gao, J.-F.; Tang, J.-H.; Su, H.-J.; Yan, D.-X.; Li, Z.-M. Healable Polyurethane/Carbon Nanotube Composite with Segregated Structure for Efficient Electromagnetic Interference Shielding. Compos. Sci. Technol. 2020, 200, 108446. [Google Scholar] [CrossRef]
- Elizalde, F.; Aguirresarobe, R.H.; Gonzalez, A.; Sardon, H. Dynamic Polyurethane Thermosets: Tuning Associative/Dissociative Behavior by Catalyst Selection. Polym. Chem. 2020, 11, 5386–5396. [Google Scholar] [CrossRef]
- Iqbal, N.; Sharma, P.K.; Kumar, D.; Roy, P.K. Protective Polyurea Coatings for Enhanced Blast Survivability of Concrete. Constr. Build. Mater. 2018, 175, 682–690. [Google Scholar] [CrossRef]
- Roland, C.M.; Fragiadakis, D.; Gamache, R.M. Elastomer–Steel Laminate Armor. Compos. Struct. 2010, 92, 1059–1064. [Google Scholar] [CrossRef]
- Bogoslovov, R.B.; Roland, C.M.; Gamache, R.M. Impact-Induced Glass Transition in Elastomeric Coatings. Appl. Phys. Lett. 2007, 90, 221910. [Google Scholar] [CrossRef]
- Das, S.; Yilgor, I.; Yilgor, E.; Inci, B.; Tezgel, O.; Beyer, F.L.; Wilkes, G.L. Structure–Property Relationships and Melt Rheology of Segmented, Non-Chain Extended Polyureas: Effect of Soft Segment Molecular Weight. Polymer 2007, 48, 290–301. [Google Scholar] [CrossRef]
- Grujicic, M.; d’Entremont, B.P.; Pandurangan, B.; Runt, J.; Tarter, J.; Dillon, G. Concept-Level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance. J. Mater. Eng. Perform. 2012, 21, 2024–2037. [Google Scholar] [CrossRef]
- Wang, R.; Chen, L.; Lei, Q.; Shi, J.; Chen, C. Preparation and Characterization of Polyethylene Glycol/Polyurea Composites for Shape Stabilized Phase Change Materials. Polym. Eng. Sci. 2022, 62, 664–676. [Google Scholar] [CrossRef]
- He, Y.; Xie, D.; Zhang, X. The Structure, Microphase-Separated Morphology, and Property of Polyurethanes and Polyureas. J. Mater. Sci. 2014, 14, 7339–7352. [Google Scholar] [CrossRef]
- Sheth, J.P.; Klinedinst, D.B.; Wilkes, G.L.; Yilgor, I.; Yilgor, E. Role of Chain Symmetry and Hydrogen Bonding in Segmented Copolymers with Monodisperse Hard Segments. Polymer 2005, 46, 7317–7322. [Google Scholar] [CrossRef]
- Das, S.; Yilgor, I.; Yilgor, E.; Wilkes, G.L. Probing the Urea Hard Domain Connectivity in Segmented, Non-Chain Extended Polyureas Using Hydrogen-Bond Screening Agents. Polymer 2008, 49, 174–179. [Google Scholar] [CrossRef]
- Chen, X.; Shen, Z.; Jia, H.; Gao, Y.; Zhang, M.; Luo, Y.; Luo, Z. Understanding the Self-Healing Mechanism of Polyurethane Elastomer Based on Hydrogen Bonding Interactions through Molecular Dynamics Simulation. Macromol. Theory Simul. 2022, 31, 2100051. [Google Scholar] [CrossRef]
- Wang, X.; Tang, X.-Z.; Hu, X.; Wang, P. Dynamic Tensile Mechanical Behavior of Polyurethane Films Incorporated with Functionalized Graphene Oxide. Polymer 2022, 246, 124755. [Google Scholar] [CrossRef]
- Xia, L.; Tu, H.; Zeng, W.; Yang, X.; Zhou, M.; Li, L.; Guo, X. A Room-Temperature Self-Healing Elastomer with Ultra-High Strength and Toughness Fabricated via Optimized Hierarchical Hydrogen-Bonding Interactions. J. Mater. Chem. A 2022, 10, 4344–4354. [Google Scholar] [CrossRef]
- Sivanesan, D.; Kim, S.; Jang, T.W.; Kim, H.J.; Song, J.; Seo, B.; Lim, C.-S.; Kim, H.-G. Effects of Flexible and Rigid Parts of ε-Caprolactone and Tricyclodecanediol Derived Polyurethane on the Polymer Properties of Epoxy Resin. Polymer 2021, 237, 124374. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Zhang, Y.; Wang, T.; Wang, Q.; Yang, Z.; Zhang, X. High-Strength, High-Toughness, Self-Healing Thermosetting Shape Memory Polyurethane Enabled by Dual Dynamic Covalent Bonds. Polym. Chem. 2022, 13, 3422–3432. [Google Scholar] [CrossRef]
- Santra, S.; Kolay, S.; Sk, S.; Ghosh, D.; Mishra, A.; Roy, L.; Sarkar, K.; Molla, M.R. Supramolecularly Cross-Linked Nanoassemblies of Self-Immolative Polyurethane from Recycled Plastic Waste: High Encapsulation Stability and the Triggered Release of Guest Molecules. Polym. Chem. 2022, 13, 3294–3303. [Google Scholar] [CrossRef]
- Reinecker, M.; Soprunyuk, V.; Fally, M.; Sánchez-Ferrer, A.; Schranz, W. Two Glass Transitions of Polyurea Networks: Effect of the Segmental Molecular Weight. Soft Matter 2014, 10, 5729–5738. [Google Scholar] [CrossRef]
- Castagna, A.M.; Pangon, A.; Choi, T.; Dillon, G.P.; Runt, J. The Role of Soft Segment Molecular Weight on Microphase Separation and Dynamics of Bulk Polymerized Polyureas. Macromolecules 2012, 45, 8438–8444. [Google Scholar] [CrossRef]
- Matsuba, G.; Kobayashi, T.; Chonan, Y. Detailed Analysis of Aliphatic Polyurea Crystals. J. Fiber Sci. Technol. 2017, 73, 122–125. [Google Scholar] [CrossRef]
- Li, S.; Sang, Z.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Crystallizable and Tough Aliphatic Thermoplastic Polyureas Synthesized through a Nonisocyanate Route. Ind. Eng. Chem. Res. 2016, 55, 1902–1911. [Google Scholar] [CrossRef]
- Choi, T.; Weksler, J.; Padsalgikar, A.; Runt, J. Influence of Soft Segment Composition on Phase-Separated Microstructure of Polydimethylsiloxane-Based Segmented Polyurethane Copolymers. Polymer 2009, 50, 2320–2327. [Google Scholar] [CrossRef]
- Garrett, J.T.; Xu, R.; Cho, J.; Runt, J. Phase Separation of Diamine Chain-Extended Poly(Urethane) Copolymers: FTIR Spectroscopy and Phase Transitions. Polymer 2003, 44, 2711–2719. [Google Scholar] [CrossRef]
- Garrett, J.T.; Siedlecki, C.A.; Runt, J. Microdomain Morphology of Poly(Urethane Urea) Multiblock Copolymers. Macromolecules 2001, 34, 7066–7070. [Google Scholar] [CrossRef]
- Li, F.; Tuinier, R.; van Casteren, I.; Tennebroek, R.; Overbeek, A.; Leermakers, F.A.M. Self-Organization of Polyurethane Pre-Polymers as Studied by Self-Consistent Field Theory: Self-Organization of Polyurethane Pre-Polymers as studied by self-consistent field theory. Macromol. Theory Simul. 2016, 25, 16–27. [Google Scholar] [CrossRef]
- Rong, H.; Xu, M.; Jiang, X.; Lu, X. Synthesis and Molecule Dynamics Study of High Damping Polyurethane Elastomer Based on the Synergistic Effect of Dangling Chains and Dynamic Bonds. Polym. Chem. 2022, 13, 4260–4272. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Yin, Y.; Li, Y.; Li, J.; Sun, D.; Lu, J.; Zhang, G.; Sun, R. A Comprehensive Study of Pyrazine-Contained and Low-Temperature Curable Polyimide. Polymer 2021, 228, 123963. [Google Scholar] [CrossRef]
- Lei, D.; Fu, Y.-Z.; Hu, W.; Li, D.; He, Y.; Gan, L.-H.; Gan, L.; Huang, J. Molecular Dynamics Research on Interfacial Reinforcement between ε-CL-20 and Polymeric Bonding Agents for Humidity-Insensitive Solid Propellant Systems. J. Polym. Res. 2021, 28, 215. [Google Scholar] [CrossRef]
- Grujicic, M.; Snipes, J.S.; Ramaswami, S.; Yavari, R.; Ramasubramanian, M.K. Meso-Scale Computational Investigation of Shock-Wave Attenuation by Trailing Release Wave in Different Grades of Polyurea. J. Mater. Eng. Perform. 2014, 23, 49–64. [Google Scholar] [CrossRef]
- Grujicic, M.; Yavari, R.; Snipes, J.S.; Ramaswami, S.; Runt, J.; Tarter, J.; Dillon, G. Molecular-Level Computational Investigation of Shock-Wave Mitigation Capability of Polyurea. J. Mater. Sci. 2012, 47, 8197–8215. [Google Scholar] [CrossRef]
- Mirhosseini, M.M.; Haddadi-Asl, V.; Khordad, R. Molecular Dynamics Simulation, Synthesis and Characterization of Polyurethane Block Polymers Containing PTHF/PCL Mixture as a Soft Segment. Polym. Bull. 2022, 79, 643–661. [Google Scholar] [CrossRef]
- Yang, Q.; Zheng, H.; Zhang, G.; Dong, B.; Chen, J.; Wang, P.; Li, M.; Hou, D. Evaluating the Thermal and Mechanical Properties of GO-Modified Epoxy/C–S–H Interface: An Atomic Investigation. J. Mater. Sci. 2022, 57, 20242–20258. [Google Scholar] [CrossRef]
- Gu, M.; Ling, X.; Wang, H.; Dang, W.; Teng, X.; Yu, A. Experimental Investigation into Dynamic Mechanical Properties and Explosion Responses of Polyurea Elastomer. Process Saf. Environ. Prot. 2022, 163, 144–157. [Google Scholar] [CrossRef]
- Gu, M.; Ling, X.; Yu, A.; Chen, G.; Wang, H.; Wang, H. Experimental Study of Polyurea-Coated Fiber-Reinforced Cement Boards under Gas Explosions. Def. Technol. 2023, 23, 201–213. [Google Scholar] [CrossRef]
- Yao, K.; Chu, D.; Li, T.; Liu, Z.; Guo, B.-H.; Xu, J.; Zhuang, Z. Atomic-Scale Simulation of Hugoniot Relations and Energy Dissipation of Polyurea under High-Speed Shock. Eng. Comput. 2021, 38, 1209–1225. [Google Scholar] [CrossRef]
- Garrett, J.T.; Runt, J.; Lin, J.S. Microphase Separation of Segmented Poly(Urethane Urea) Block Copolymers. Macromolecules 2000, 33, 6353–6359. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, X.; Zhu, J.; Hu, H.; Song, M.; Wu, S. Experimental and Molecular Dynamics Simulation Study on the Damping Mechanism of C5 Petroleum Resin/Chlorinated Butyl Rubber Composites. J. Mater. Sci. 2019, 54, 3960–3974. [Google Scholar] [CrossRef]
Sample Name | PPG1000-PUR | PTMGG1000-PUR | PCL1000-PUR | PC1000-PUR |
---|---|---|---|---|
DensityExp (g/cm3) | 1.021 | 1.007 | 1.051 | 1.053 |
DensityMD (g/cm3) | 1.041 | 1.019 | 1.045 | 1.055 |
Error (%) | 1.9 | 1.2 | 0.6 | 0.2 |
Sample Name | Mn a | MWD a | Mn b | MWD b | Tg DSC c | Tg DMA d | Td e | d f |
---|---|---|---|---|---|---|---|---|
(×103 g/mol) | (×103 g/mol) | (°C) | (°C) | (°C) | (nm) | |||
PPG1000-PUR | 10.87 | 1.62 | 10.45 | 1.33 | −60 | −45 | 243 | 14.9 |
PTMG1000-PUR | 10.19 | 1.73 | 9.51 | 1.42 | −65 | −48 | 292 | 14.8 |
PCL1000-PUR | 9.33 | 1.77 | 7.97 | 1.48 | −57 | −35 | 282 | 14.5 |
PC1000-PUR | 11.72 | 1.84 | 10.81 | 1.55 | −56 | −22 | 270 | 14.8 |
Sample Name | Surface Hardness | Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) | Toughness (MJ/m3) |
---|---|---|---|---|---|
PPG1000-PUR | 88 | 80 | 5.19 | 182 | 8.39 |
PTMG1000-PUR | 78 | 20 | 2.71 | 262 | 5.91 |
PCL1000-PUR | 82 | 21 | 2.85 | 248 | 6.31 |
PC1000-PUR | 87 | 29 | 12.01 | 688 | 44.27 |
Sample Name | PPG1000-PUR | PTMG1000-PUR | PCL1000-PUR | PC1000-PUR |
---|---|---|---|---|
FFV | 18.6 | 19.8 | 18.8 | 18.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Wang, S.; Chen, Y.; Dong, H.; Wang, Q.; Cheng, Q. Dynamic Mechanical Properties and Energy Absorption Capabilities of Polyureas Through Experiments and Molecular Dynamic Simulation. Polymers 2025, 17, 107. https://doi.org/10.3390/polym17010107
Yang K, Wang S, Chen Y, Dong H, Wang Q, Cheng Q. Dynamic Mechanical Properties and Energy Absorption Capabilities of Polyureas Through Experiments and Molecular Dynamic Simulation. Polymers. 2025; 17(1):107. https://doi.org/10.3390/polym17010107
Chicago/Turabian StyleYang, Ke, Shanda Wang, Yanru Chen, Hanhai Dong, Quanguo Wang, and Qingli Cheng. 2025. "Dynamic Mechanical Properties and Energy Absorption Capabilities of Polyureas Through Experiments and Molecular Dynamic Simulation" Polymers 17, no. 1: 107. https://doi.org/10.3390/polym17010107
APA StyleYang, K., Wang, S., Chen, Y., Dong, H., Wang, Q., & Cheng, Q. (2025). Dynamic Mechanical Properties and Energy Absorption Capabilities of Polyureas Through Experiments and Molecular Dynamic Simulation. Polymers, 17(1), 107. https://doi.org/10.3390/polym17010107