Sources and Methods for the Production of Xyloglucan, a Promising Stimulus-Sensitive Biopolymer: A Review
<p>Structure of xyloglucan molecule [<a href="#B16-polymers-16-03022" class="html-bibr">16</a>].</p> "> Figure 2
<p>Structure of xyloglucan (<b>A</b>) compared to that of mucin (<b>B</b>) [<a href="#B20-polymers-16-03022" class="html-bibr">20</a>].</p> "> Figure 3
<p>Xyloglucan content in plant raw materials [<a href="#B11-polymers-16-03022" class="html-bibr">11</a>,<a href="#B24-polymers-16-03022" class="html-bibr">24</a>,<a href="#B28-polymers-16-03022" class="html-bibr">28</a>,<a href="#B29-polymers-16-03022" class="html-bibr">29</a>,<a href="#B30-polymers-16-03022" class="html-bibr">30</a>,<a href="#B31-polymers-16-03022" class="html-bibr">31</a>,<a href="#B32-polymers-16-03022" class="html-bibr">32</a>,<a href="#B33-polymers-16-03022" class="html-bibr">33</a>].</p> "> Figure 4
<p>Comparison of different methods for extracting xyloglucan from <span class="html-italic">Tamarindus indica</span> seeds [<a href="#B35-polymers-16-03022" class="html-bibr">35</a>,<a href="#B44-polymers-16-03022" class="html-bibr">44</a>,<a href="#B45-polymers-16-03022" class="html-bibr">45</a>,<a href="#B46-polymers-16-03022" class="html-bibr">46</a>,<a href="#B47-polymers-16-03022" class="html-bibr">47</a>,<a href="#B48-polymers-16-03022" class="html-bibr">48</a>,<a href="#B49-polymers-16-03022" class="html-bibr">49</a>].</p> "> Figure 5
<p>Change in research interest in development of xyloglucan-based in situ moulds from 1999 to 2024, according to PubMed database, keywords: ‘xyloglucan “+” in situ forming “+” in situ gelling “+” thermosensitive’.</p> ">
Abstract
:1. Introduction
2. Materials and Research Methods
3. Main Part
Structure and Properties of Xyloglucan
4. Sources of Xyloglucan Production
5. Xyloglucan Extraction Methods
6. The Use of Xyloglucan in the Food Industry
7. A Retrospective on the Use of Xyloglucan as a Thermosensitive Component of In Situ Systems
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shen, Y.; Feng, Y.; Liang, S.; Liang, C.; Li, B.; Wang, D.; Sun, J. In Situ Gelation Strategy for Efficient Drug Delivery in a Gastrointestinal System. ACS Biomater. Sci. Eng. 2024, 10, 5252–5264. Available online: http://www.ncbi.nlm.nih.gov/pubmed/39038263 (accessed on 8 January 2024). [CrossRef] [PubMed]
- Bakhrushina, E.O.; Dubova, A.I.; Nikonenko, M.S.; Grikh, V.V.; Shumkova, M.M.; Korochkina, T.V.; Krasnyuk, I.I.; Krasnyuk, I.I. Thermosensitive Intravitreal In Situ Implant of Cefuroxime Based on Poloxamer 407 and Hyaluronic Acid. Gels 2023, 9, 693. Available online: https://www.mdpi.com/2310-2861/9/9/693 (accessed on 4 February 2024). [CrossRef]
- Wang, Q.; Sun, C.; Xu, B.; Tu, J.; Shen, Y. Synthesis, physicochemical properties and ocular pharmacokinetics of thermosensitive in situ hydrogels for ganciclovir in cytomegalovirus retinitis treatment. Drug Deliv. 2018, 25, 59–69. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29228826 (accessed on 4 February 2024). [CrossRef] [PubMed]
- Anurova, M.N.; Bakhrushina, E.O.; Demina, N.B.; Aleshkin, A.V.; Kiseleva, I.A. Development of a thermoreversible vaginal gel with bacteriophages. Biopharmaceutics 2019, 11, 30–33. [Google Scholar]
- Talelli, M.; Hennink, W.E. Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine 2011, 6, 1245–1255. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21929459 (accessed on 10 February 2024). [CrossRef]
- Cheng, Y.; He, C.; Ding, J.; Xiao, C.; Zhuang, X.; Chen, X. Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials 2013, 34, 10338–10347. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24095250 (accessed on 4 February 2024). [CrossRef] [PubMed]
- Liu, B.; Yang, M.; Li, R.; Ding, Y.; Qian, X.; Yu, L.; Jiang, X. The antitumor effect of novel docetaxel-loaded thermosensitive micelles. Eur. J. Pharm. Biopharm. 2008, 69, 527–534. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0939641108000064 (accessed on 3 April 2024). [CrossRef]
- Bakhrushina, E.; Khodenok, A.; Pyzhov, V.; Solomatina, P.; Demina, N.; Korochkina, T.; Krasnyuk, I. Study of the effect of active pharmaceutical ingredients of various classes of BCS on the parameters of thermosensitive systems based on poloxamers. Saudi Pharm. J. 2023, 31, 101780. [Google Scholar] [CrossRef]
- Esquena-Moret, J. A Review of Xyloglucan: Self-Aggregation, Hydrogel Formation, Mucoadhesion and Uses in Medical Devices. Macromol 2022, 2, 562–590. Available online: https://www.mdpi.com/2673-6209/2/4/37 (accessed on 3 April 2024). [CrossRef]
- Zavyalov, A.V.; Rykov, S.V.; Lunina, N.A.; Sushkova, V.I.; Yarotsky, S.V.; Berezina, O.V. Plant polysaccharide xyloglucan and enzymes that hydrolize it (Review). Chem. Plant Raw Mater. 2018, 4, 43–61. Available online: http://journal.asu.ru/cw/article/view/3926 (accessed on 8 January 2024). [CrossRef]
- Kochumalayil, J.; Sehaqui, H.; Zhou, Q.; Berglund, L.A. Tamarind seed xyloglucan—A thermostable high-performance biopolymer from non-food feedstock. J. Mater. Chem. 2010, 20, 4321–4327. Available online: https://xlink.rsc.org/?DOI=c0jm00367k (accessed on 4 February 2024). [CrossRef]
- Lang, P.; Kajiwara, K. Investigations of the architecture of tamarind seed polysaccharide in aqueous solution by different scattering techniques. J. Biomater. Sci. Polym. Ed. 1993, 4, 517–528. Available online: http://www.tandfonline.com/doi/abs/10.1163/156856293X00177 (accessed on 6 February 2024). [CrossRef] [PubMed]
- Dispenza, C.; Todaro, S.; Sabatino, M.A.; Martino, D.C.; Martorana, V.; Biagio, P.L.S.; Maffei, P.; Bulone, D. Multi-scale structural analysis of xyloglucan colloidal dispersions and hydro-alcoholic gels. Cellulose 2020, 27, 3025–3035. Available online: http://link.springer.com/10.1007/s10570-020-03004-0 (accessed on 6 February 2024). [CrossRef]
- Dutta, P.; Giri, S.; Giri, T.K. Xyloglucan as green renewable biopolymer used in drug delivery and tissue engineering. Int. J. Biol. Macromol. 2020, 160, 55–68. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32450326 (accessed on 8 January 2024). [CrossRef] [PubMed]
- Rolando, M.; Valente, C. Establishing the tolerability and performance of tamarind seed polysaccharide (TSP) in treating dry eye syndrome: Results of a clinical study. BMC Ophthalmol. 2007, 7, 5. Available online: https://bmcophthalmol.biomedcentral.com/articles/10.1186/1471-2415-7-5 (accessed on 8 January 2024). [CrossRef]
- Shirakawa, M.; Yamatoya, K.; Nishinari, K. Tailoring of xyloglucan properties using an enzyme. Food Hydrocoll. 1998, 12, 25–28. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0268005X98000526 (accessed on 4 February 2024). [CrossRef]
- Gidley, M.J.; Lillford, P.J.; Rowlands, D.W.; Lang, P.; Dentini, M.; Crescenzi, V.; Edwards, M.; Fanutti, C.; Reid, J.G. Structure and solution properties of tamarind-seed polysaccharide. Carbohydr. Res. 1991, 214, 299–314. Available online: http://www.ncbi.nlm.nih.gov/pubmed/1769022 (accessed on 26 February 2024). [CrossRef]
- Kulkarni, A.D.; Joshi, A.A.; Patil, C.L.; Amale, P.D.; Patel, H.M.; Surana, S.J.; Belgamwar, V.S.; Chaudhari, K.S.; Pardeshi, C.V. Xyloglucan: A functional biomacromolecule for drug delivery applications. Int. J. Biol. Macromol. 2017, 104, 799–812. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0141813017302398 (accessed on 26 February 2024). [CrossRef]
- Piqué, N.; Gómez-Guillén, M.D.C.; Montero, M.P. Xyloglucan, a Plant Polymer with Barrier Protective Properties over the Mucous Membranes: An Overview. Int. J. Mol. Sci. 2018, 19, 673. [Google Scholar] [CrossRef]
- Ushida, K.; Murata, T. Chapter 4-Materials Science and Engineering of Mucin: A New Aspect of Mucin Chemistry. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 115–159. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780444626158000047 (accessed on 3 April 2024).
- Avci, U.; Pattathil, S.; Singh, B.; Brown, V.L.; Hahn, M.G.; Haigler, C.H. Cotton Fiber Cell Walls of Gossypium hirsutum and Gossypium barbadense Have Differences Related to Loosely-Bound Xyloglucan. PLoS ONE 2013, 8, e56315. Available online: https://doi.org/10.1371/journal.pone.0056315 (accessed on 3 April 2024). [CrossRef]
- Chen, M.; Mac-Béar, J.; Ropartz, D.; Lahaye, M. Biorefinery of apple pomace: New insights into xyloglucan building blocks. Carbohydr. Polym. 2022, 290, 119526. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0144861722004313 (accessed on 3 April 2024). [CrossRef]
- Hoffman, M.; Jia, Z.; Peña, M.J.; Cash, M.; Harper, A.; Blackburn, A.R.; Darvill, A.; York, W.S. Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr. Res. 2005, 340, 1826–1840. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0008621505002168 (accessed on 7 April 2024). [CrossRef]
- Hilz, H.; de Jong, L.E.; Kabel, M.A.; Verhoef, R.; Schols, H.A.; Voragen, A.G.J. Bilberry xyloglucan--novel building blocks containing beta-xylose within a complex structure. Carbohydr. Res. 2007, 342, 170–181. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17204260 (accessed on 10 February 2024). [CrossRef] [PubMed]
- Hsieh, Y.S.Y.; Harris, P.J. Xyloglucans of Monocotyledons Have Diverse Structures. Mol. Plant 2009, 2, 943–965. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1674205214607103 (accessed on 7 April 2024). [CrossRef] [PubMed]
- Ding, H.H.; Cui, S.W.; Goff, H.D.; Chen, J.; Guo, Q.; Wang, Q. Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation. Carbohydr. Polym. 2016, 151, 538–545. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0144861716306385 (accessed on 10 February 2024). [CrossRef] [PubMed]
- Sampedro, J.; Gianzo, C.; Guitián, E.; Revilla, G.; Zarra, I. Analysis of Xyloglucan Composition in Arabidopsis Leaves. Bio-protocol 2017, 7, e2569. Available online: http://www.ncbi.nlm.nih.gov/pubmed/34595252 (accessed on 10 January 2024). [CrossRef] [PubMed]
- Wang, Q.; Ellis, P.R.; Ross-Murphy, S.B.; Reid, J.S. A new polysaccharide from a traditional Nigerian plant food: Detarium senegalense Gmelin. Carbohydr. Res. 1996, 284, 229–239. Available online: http://www.ncbi.nlm.nih.gov/pubmed/8653722 (accessed on 26 February 2024). [CrossRef]
- Ding, H.H.; Cui, S.W.; Goff, H.D.; Chen, J.; Guo, Q.; Wang, Q. Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation. Carbohydr. Polym. 2016, 151, 538–545. Available online: http://www.ncbi.nlm.nih.gov/pubmed/27474598 (accessed on 10 February 2024). [CrossRef]
- Busato, A.P.; Vargas-Rechia, C.G.; Reicher, F. Xyloglucan from the leaves of Hymenaea courbaril. Phytochemistry 2001, 58, 525–531. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0031942201002175 (accessed on 25 February 2024). [CrossRef]
- Buckeridge, M.S.; Rocha, D.C.; Reid, J.S.G.; Dietrich, S.M.C. Xyloglucan structure and post-germinative metabolism in seeds of Copaifera langsdorfii from savanna and forest populations. Physiol. Plant 1992, 86, 145–151. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1992.tb01323.x (accessed on 13 February 2024). [CrossRef]
- Builders, P.; Chukwu, C.; Obidike, I.; Builders, M.; Attama, A.; Adikwu, M. A novel xyloglucan gum from seeds of Afzelia africana Se. Pers.: Some functional and physicochemical properties. Int. J. Green. Pharm. 2009, 3, 112. Available online: https://www.greenpharmacy.info/index.php/ijgp/article/view/66 (accessed on 26 February 2024). [CrossRef]
- Kakegawa, K.; Edashige, Y.; Ishii, T. Xyloglucan from xylem-differentiating zones of Cryptomeria japonica. Phytochemistry 1998, 47, 767–771. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9542169 (accessed on 10 February 2024). [CrossRef] [PubMed]
- Kumar, C.S.; Bhattacharya, S. Tamarind seed: Properties, processing and utilization. Crit. Rev. Food Sci. Nutr. 2008, 48, 1–20. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18274963 (accessed on 9 February 2024). [CrossRef] [PubMed]
- Nguyen, T.T.; Jittanit, W.; Srichamnong, W. Production of xyloglucan component extracted from tamarind (Tamarindus indica) seeds using microwave treatment for seed decortication. J. Food Process Preserv. 2019, 43, e14055. Available online: https://onlinelibrary.wiley.com/doi/10.1111/jfpp.14055 (accessed on 9 February 2024). [CrossRef]
- Urakawa, H.; Mimura, M.; Kajiwara, K. Diversity and Versatility of Plant Seed Xyloglucan. Trends Glycosci. Glycotechnol. 2002, 14, 355–376. Available online: http://www.jstage.jst.go.jp/article/tigg1989/14/80/14_80_355/_article/-char/ja/ (accessed on 14 February 2024). [CrossRef]
- Ren, Y.; Picout, D.R.; Ellis, P.R.; Ross-Murphy, S.B.; Reid, J.S.G. A novel xyloglucan from seeds of Afzelia africana Se. Pers.--extraction, characterization, and conformational properties. Carbohydr. Res. 2005, 340, 997–1005. Available online: http://www.ncbi.nlm.nih.gov/pubmed/15780264 (accessed on 13 February 2024). [CrossRef]
- Immelmann, R.; Gawenda, N.; Ramírez, V.; Pauly, M. Identification of a xyloglucan beta-xylopyranosyltransferase from Vaccinium corymbosum. Plant Direct 2023, 7, e514. Available online: http://www.ncbi.nlm.nih.gov/pubmed/37502316 (accessed on 3 April 2024). [CrossRef]
- Hirano, S.; Yamagishi, Y.; Nakaba, S.; Kajita, S.; Funada, R.; Horikawa, Y. Artificially lignified cell wall catalyzed by peroxidase selectively localized on a network of microfibrils from cultured cells. Planta 2020, 251, 104. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32382847 (accessed on 26 February 2024). [CrossRef]
- Arruda, I.R.; Albuquerque, P.B.; Santos, G.R.; Silva, A.G.; Mourão, P.A.; Correia, M.T.; Vicente, A.A.; Carneiro-Da-Cunha, M.G. Structure and rheological properties of a xyloglucan extracted from Hymenaea courbaril var. courbaril seeds. Int. J. Biol. Macromol. 2015, 73, 31–38. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25450047 (accessed on 25 February 2024). [CrossRef]
- Buckeridge, M.S.; Crombie, H.J.; Mendes, C.J.; Reid, J.S.; Gidley, M.J.; Vieira, C.C. A new family of oligosaccharides from the xyloglucan of Hymenaea courbaril L. (Leguminosae) cotyledons. Carbohydr. Res. 1997, 303, 233–237. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9352637 (accessed on 26 February 2024). [CrossRef]
- Do Rosário, M.M.T.; Kangussu-Marcolino, M.M.; do Amaral, A.E.; Noleto, G.R.; de Oliveira Petkowicz, C.L. Storage xyloglucans: Potent macrophages activators. Chem. Biol. Interact. 2011, 189, 127–133. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20888807 (accessed on 10 February 2024). [CrossRef] [PubMed]
- Wuwei, C.; Fong, H.N. Process and Apparatus for Flaxseed Component Separation. U.S. Patent No. 7,022,363, 2006. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-7022363-B2 (accessed on 15 February 2024).
- Priyadarshini, R.; Nandi, G.; Changder, A.; Chowdhury, S.; Chakraborty, S.; Ghosh, L.K. Gastroretentive extended release of metformin from methacrylamide-g-gellan and tamarind seed gum composite matrix. Carbohydr. Polym. 2016, 137, 100–110. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0144861715010346 (accessed on 10 February 2024). [CrossRef] [PubMed]
- Periasamy, S.; Lin, C.H.; Nagarajan, B.; Sankaranarayanan, N.V.; Desai, U.R.; Liu, M.Y. Tamarind xyloglucan attenuates dextran sodium sulfate induced ulcerative colitis: Role of antioxidation. J. Funct. Foods 2018, 42, 327–338. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1756464618300203 (accessed on 10 February 2024). [CrossRef]
- Limsangouan, N.; Charunuch, C.; Sastry, S.K.; Srichamnong, W.; Jittanit, W. High pressure processing of tamarind (Tamarindus indica) seed for xyloglucan extraction. LWT 2020, 134, 110112. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0023643820311014 (accessed on 13 February 2024). [CrossRef]
- Simi, C.K.; Abraham, T.E. Physico chemical properties of aminated tamarind xyloglucan. Colloids Surf. B Biointerfaces 2010, 81, 513–520. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0927776510004315 (accessed on 13 February 2024). [CrossRef]
- Thivya, P.; Bhosale, Y.K.; Anandakumar, S.; Hema, V.; Sinija, V.R. Exploring the Effective Utilization of Shallot Stalk Waste and Tamarind Seed for Packaging Film Preparation. Waste Biomass Valorization 2021, 12, 5779–5794. Available online: https://link.springer.com/10.1007/s12649-021-01402-4 (accessed on 13 February 2024). [CrossRef]
- Choi, J.I.; Kim, J.K.; Srinivasan, P.; Kim, J.H.; Park, H.J.; Byun, M.W.; Lee, J.W. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed. Radiat. Phys. Chem. 2009, 78, 605–609. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0969806X09001297 (accessed on 15 February 2024). [CrossRef]
- Kai, K.C.; de Oliveira Petkowicz, C.L. Influence of extraction conditions on properties of seed xyloglucan. Int. J. Biol. Macromol. 2010, 46, 223–228. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20060409 (accessed on 10 February 2024). [CrossRef] [PubMed]
- Thivya, P.; Bhanu Prakash Reddy, N.; Vadakkepulppara Ramachandran Nair, S. Extraction of xyloglucan from tamarind industrial waste by different methods and their potential application in the food sector. Int. J. Food Sci. Technol. 2023, 58, 2014–2020. Available online: https://ifst.onlinelibrary.wiley.com/doi/10.1111/ijfs.16064 (accessed on 13 February 2024). [CrossRef]
- Kumar, A.; Garg, T.; Sarma, G.S.; Rath, G.; Goyal, A.K. Optimization of combinational intranasal drug delivery system for the management of migraine by using statistical design. Eur. J. Pharm. Sci. 2015, 70, 140–151. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25676136 (accessed on 15 July 2024). [CrossRef]
- Pandit, A.P.; Pol, V.V.; Kulkarni, V.S. Xyloglucan Based In Situ Gel of Lidocaine HCl for the Treatment of Periodontosis. J. Pharm. 2016, 2016, 3054321. Available online: https://www.hindawi.com/journals/jphar/2016/3054321/ (accessed on 5 February 2024). [CrossRef] [PubMed]
- Kassab, H.J.; Alkufi, H.K.; Hussein, L.S. Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan. J. Adv. Pharm. Technol. Res. 2023, 14, 119–124. Available online: http://www.ncbi.nlm.nih.gov/pubmed/37255866 (accessed on 5 February 2024). [CrossRef] [PubMed]
- Vigani, B.; Faccendini, A.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Grisoli, P.; Ferrari, F. Development of a Mucoadhesive in Situ Gelling Formulation for the Delivery of Lactobacillus gasseri into Vaginal Cavity. Pharmaceutics 2019, 11, 511. Available online: http://www.ncbi.nlm.nih.gov/pubmed/31623341 (accessed on 5 February 2024). [CrossRef]
- Miyazaki, S.; Suzuki, S.; Kawasaki, N.; Endo, K.; Takahashi, A.; Attwood, D. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int. J. Pharm. 2001, 229, 29–36. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11604255 (accessed on 15 July 2024). [CrossRef] [PubMed]
- Miyazaki, S.; Kawasaki, N.; Endo, K.; Attwood, D. Oral sustained delivery of theophylline from thermally reversible xyloglucan gels in rabbits. J. Pharm. Pharmacol. 2001, 53, 1185–1191. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11578100 (accessed on 15 July 2024). [CrossRef]
- Itoh, K.; Yahaba, M.; Takahashi, A.; Tsuruya, R.; Miyazaki, S.; Dairaku, M.; Togashi, M.; Mikami, R.; Attwood, D. In situ gelling xyloglucan/pectin formulations for oral sustained drug delivery. Int. J. Pharm. 2008, 356, 95–101. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18295417 (accessed on 15 July 2024). [CrossRef]
- Itoh, K.; Tsuruya, R.; Shimoyama, T.; Watanabe, H.; Miyazaki, S.; D’Emanuele, A.; Attwood, D. In situ gelling xyloglucan/alginate liquid formulation for oral sustained drug delivery to dysphagic patients. Drug Dev. Ind. Pharm. 2010, 36, 449–455. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19788404 (accessed on 15 July 2024). [CrossRef]
- Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J.A. In situ forming polymeric drug delivery systems. Indian. J. Pharm. Sci. 2009, 71, 242–251. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20490289 (accessed on 13 July 2024). [CrossRef]
- Agrawal, A.K.; Das, M.; Jain, S. In situ gel systems as “smart” carriers for sustained ocular drug delivery. Expert. Opin. Drug Deliv. 2012, 9, 383–402. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22432690 (accessed on 13 July 2024). [CrossRef]
- Mahajan, H.S.; Tyagi, V.; Lohiya, G.; Nerkar, P. Thermally reversible xyloglucan gels as vehicles for nasal drug delivery. Drug Deliv. 2012, 19, 270–276. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22823894 (accessed on 15 July 2024). [CrossRef]
- Mahajan, H.S.; Tyagi, V.K.; Patil, R.R.; Dusunge, S.B. Thiolated xyloglucan: Synthesis, characterization and evaluation as mucoadhesive in situ gelling agent. Carbohydr. Polym. 2013, 91, 618–625. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0144861712008673 (accessed on 15 July 2024). [CrossRef] [PubMed]
- Dispenza, C.; Todaro, S.; Bulone, D.; Sabatino, M.A.; Ghersi, G.; San Biagio, P.L.; Presti, C.L. Physico-chemical and mechanical characterization of in-situ forming xyloglucan gels incorporating a growth factor to promote cartilage reconstruction. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 745–752. Available online: http://www.ncbi.nlm.nih.gov/pubmed/27770950 (accessed on 13 July 2024). [CrossRef] [PubMed]
- Toia, F.; Di Stefano, A.; Muscolino, E.; Sabatino, M.; Giacomazza, D.; Moschella, F.; Cordova, A.; Dispenza, C. In-situ gelling xyloglucan formulations as 3D artificial niche for adipose stem cell spheroids. Int. J. Biol. Macromol. 2020, 165, 2886–2899. Available online: http://www.ncbi.nlm.nih.gov/pubmed/33470202 (accessed on 14 July 2024). [CrossRef]
- Todaro, S.; Sabatino, M.A.; Mangione, M.R.; Picone, P.; Di Giacinto, M.L.; Bulone, D.; Dispenza, C. Temporal control of xyloglucan self-assembly into layered structures by radiation-induced degradation. Carbohydr. Polym. 2016, 152, 382–390. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0144861716307949 (accessed on 15 July 2024). [CrossRef] [PubMed]
- Sakakibara, C.N.; Sierakowski, M.R.; Chassenieux, C.; Nicolai, T.; de Freitas, R.A. Xyloglucan gelation induced by enzymatic degalactosylation; kinetics and the effect of the molar mass. Carbohydr. Polym. 2017, 174, 517–523. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0144861717307555 (accessed on 14 July 2024). [CrossRef]
- Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Gupta, U.; Kesharwani, P.; Ravichandiran, V.; Kumar, P.; Naidu, V.; et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J. Control. Release 2020, 327, 235–265. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0168365920304284 (accessed on 13 July 2024). [CrossRef]
- Dalvi, A.; Ravi, P.R.; Uppuluri, C.T. Rufinamide-Loaded Chitosan Nanoparticles in Xyloglucan-Based Thermoresponsive In Situ Gel for Direct Nose to Brain Delivery. Front. Pharmacol. 2021, 12, 691936. Available online: http://www.ncbi.nlm.nih.gov/pubmed/34234679 (accessed on 3 February 2024). [CrossRef]
- Filippone, A.; Casili, G.; Lanza, M.; Scuderi, S.A.; Ardizzone, A.; Capra, A.P.; Paterniti, I.; Campolo, M.; Cuzzocrea, S.; Esposito, E. Evaluation of the Efficacy of Xyloglucan, Pea Protein and Opuntia ficus-indica Extract in a Preclinical Model of Psoriasis. Int. J. Mol. Sci. 2023, 24, 3122. Available online: https://www.mdpi.com/1422-0067/24/4/3122 (accessed on 6 February 2024). [CrossRef]
- Khan, M.S.; Ravi, P.R.; Mir, S.I.; Rawat, P.S. Optimization and in vivo evaluation of triamcinolone acetonide loaded in situ gel prepared using reacted tamarind seed xyloglucan and kappa-carrageenan for ocular delivery. Int. J. Biol. Macromol. 2023, 233, 123533. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0141813023004269 (accessed on 15 July 2024). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhrushina, E.O.; Pyzhov, V.S.; Yuntunen, J.A.; Gulenkov, A.S.; Arislanov, S.D.; Eremeeva, K.V.; Belyatskaya, A.V.; Demina, N.B.; Krasnyuk, I.I., Jr.; Krasnyuk, I.I. Sources and Methods for the Production of Xyloglucan, a Promising Stimulus-Sensitive Biopolymer: A Review. Polymers 2024, 16, 3022. https://doi.org/10.3390/polym16213022
Bakhrushina EO, Pyzhov VS, Yuntunen JA, Gulenkov AS, Arislanov SD, Eremeeva KV, Belyatskaya AV, Demina NB, Krasnyuk II Jr., Krasnyuk II. Sources and Methods for the Production of Xyloglucan, a Promising Stimulus-Sensitive Biopolymer: A Review. Polymers. 2024; 16(21):3022. https://doi.org/10.3390/polym16213022
Chicago/Turabian StyleBakhrushina, Elena O., Victor S. Pyzhov, Jana A. Yuntunen, Alexander S. Gulenkov, Shoyad D. Arislanov, Ksenia V. Eremeeva, Anastasiya V. Belyatskaya, Natalia B. Demina, Ivan I. Krasnyuk, Jr., and Ivan I. Krasnyuk. 2024. "Sources and Methods for the Production of Xyloglucan, a Promising Stimulus-Sensitive Biopolymer: A Review" Polymers 16, no. 21: 3022. https://doi.org/10.3390/polym16213022
APA StyleBakhrushina, E. O., Pyzhov, V. S., Yuntunen, J. A., Gulenkov, A. S., Arislanov, S. D., Eremeeva, K. V., Belyatskaya, A. V., Demina, N. B., Krasnyuk, I. I., Jr., & Krasnyuk, I. I. (2024). Sources and Methods for the Production of Xyloglucan, a Promising Stimulus-Sensitive Biopolymer: A Review. Polymers, 16(21), 3022. https://doi.org/10.3390/polym16213022