Design, Analysis, and Testing of a Type V Composite Pressure Vessel for Hydrogen Storage
<p>Comparison of energy densities by weight (MJ/kg) versus volume (MJ/L) for many common fuels and other useful materials [<a href="#B4-polymers-16-03576" class="html-bibr">4</a>].</p> "> Figure 2
<p>Different types of pressure vessels [<a href="#B2-polymers-16-03576" class="html-bibr">2</a>,<a href="#B14-polymers-16-03576" class="html-bibr">14</a>].</p> "> Figure 3
<p>Process steps for the development of the CPV numerical approach.</p> "> Figure 4
<p>Schematic diagram with the objectives of this study.</p> "> Figure 5
<p>Basic dimensions and components of the CPV.</p> "> Figure 6
<p>Different cross-sections of the tank.</p> "> Figure 7
<p>Visualization of dome, cylinder, and reinforcing band lay-up.</p> "> Figure 8
<p>(<b>a</b>) Representation of internal and external pressure of CPV [<a href="#B27-polymers-16-03576" class="html-bibr">27</a>]; (<b>b</b>) Pressure loads and boundary conditions applied in the numerical model.</p> "> Figure 9
<p>Development of progressive damage model [<a href="#B15-polymers-16-03576" class="html-bibr">15</a>,<a href="#B19-polymers-16-03576" class="html-bibr">19</a>,<a href="#B37-polymers-16-03576" class="html-bibr">37</a>].</p> "> Figure 10
<p>(<b>a</b>) Fluid filling station; (<b>b</b>) Metallic Testing vessel; (<b>c</b>) Water supply pipes and volumetric tubes; (<b>d</b>) Pressure control panel.</p> "> Figure 11
<p>CPV after burst.</p> "> Figure 12
<p>CPV visual inspection.</p> "> Figure 13
<p>Comparison between numerical (PFI) and real model failure locations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Model
2.1.1. Design Approach
2.1.2. Mesh and Elements
- Simulation Using 3D Elements
- Simulation Using Conventional Shell Elements
- Simulation Using Continuum Shell Elements
- Simulation Using Mixed Methods
2.1.3. Composite Materials
2.1.4. Stacking Sequence
2.1.5. Loading Conditions
2.1.6. Boundary Conditions (BCs)
2.1.7. Progressive Failure Analysis
- Maximum Stress Criterion
- Tsai-Hill Criterion
- Tsai-Wu Criterion
- Hashin Criterion
- Analysis inputs
- Stress analysis and Failure evaluation
- Material degradation
- Burst pressure detection
2.2. Hydraulic Burst Pressure Test
Hydraulic Burst Pressure Test Procedure
- Step 1: Preparation and Filling of the CPV
- Step 2: Securing the CPV and Placement in the Metallic Testing Vessel
- Step 3: Pressure Increase and Monitoring
3. Results
3.1. Numerical Burst Pressure and Burst Locations
3.2. Experimental Burst Pressure and Burst Locations
3.3. Comparison Between Virtual and Experimental Results
4. Conclusions
4.1. End-Product Quality Parameters
4.2. Future Development
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hosseini, S.E.; Butler, B. An overview of development and challenges in hydrogen powered vehicles. Int. J. Green Energy 2020, 17, 13–37. [Google Scholar] [CrossRef]
- European Parliament. EU Hydrogen Policy: Hydrogen as an Energy Carrier for a Climate-Neutral Economy. 2021. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)689332 (accessed on 15 July 2024).
- Alves, M.P.; Gul, W.; Cimini Junior, C.A.; Ha, S.K. A Review on Industrial Perspectives and Challenges on Material, Manufacturing, Design and Development of Compressed Hydrogen Storage Tanks for the Transportation Sector. Energies 2022, 15, 5152. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrog. Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Magliano, A.; Perez Carrera, C.; Pappalardo, C.M.; Guida, D.; Berardi, V.P. A Comprehensive Literature Review on Hydrogen Tanks: Storage, Safety, and Structural Integrity. Appl. Sci. 2024, 14, 9348. [Google Scholar] [CrossRef]
- Madhavi, M. Design and Analysis of Filament Wound Composite Pressure Vessel with Integrated-end Domes. DSJ 2009, 59, 73–81. [Google Scholar] [CrossRef]
- Guillon, D.; Espinassou, D.; Pichon, P.; Rojas Carrillo, J.J.; Landry, C.; Clainchard, D.; Juras, L.; Brault, R. Manufacturing, burst test and modeling of high pressure thermoplastic composite overwrap pressure vessel. Compos. Struct. 2023, 316, 116965. [Google Scholar] [CrossRef]
- Air, A.; Shamsuddoha, M.; Gangadhara Prusty, B. A review of Type V composite pressure vessels and automated fibre placement based manufacturing. Compos. Part B Eng. 2023, 253, 110573. [Google Scholar] [CrossRef]
- Shin, H.K.; Ha, S.K. A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles. Energies 2023, 16, 5233. [Google Scholar] [CrossRef]
- Azeem, M.; Ya, H.H.; Alam, M.A.; Kumar, M.; Stabla, P.; Smolnicki, M.; Gemi, L.; Khan, R.; Ahmed, T.; Ma, Q.; et al. Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review. J. Energy Storage 2022, 49, 103468. [Google Scholar] [CrossRef]
- Kothali, A.; Bhapkar, U.; Bhat, J. Finite element analysis of bursting pressure in FRP pressure vessel. Mater. Today Proc. 2022, 56, 2932–2937. [Google Scholar] [CrossRef]
- Tian, L.; Zhao, H.; Wang, G.; Yao, Y.; Yuan, M.; Peng, Y.; Chen, J. Progressive Damage Analysis for Multiscale Model of Linerless Composite Cryotank and Integrated Design. AIAA J. 2022, 60, 1873–1882. [Google Scholar] [CrossRef]
- Lin, S.; Yang, L.; Xu, H.; Jia, X.; Yang, X.; Zu, L. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion. Compos. Struct. 2021, 255, 113046. [Google Scholar] [CrossRef]
- Rafiee, R.; Torabi, M.A. Stochastic prediction of burst pressure in composite pressure vessels. Compos. Struct. 2018, 185, 573–583. [Google Scholar] [CrossRef]
- Liu, P.F.; Chu, J.K.; Hou, S.J.; Xu, P.; Zheng, J.Y. Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review. Renew. Sustain. Energy Rev. 2012, 16, 1817–1827. [Google Scholar] [CrossRef]
- Zervou, K. Adhesive Joining of Metal End-Caps to Composite Pressure Vessels; National Technical University of Athens: Zografou, Greece, 2023. [Google Scholar]
- Weerts, R.A.J. The Impact Behavior of Thick-Walled Composite-Overwrapped Pressure Vessels; Eindhoven University of Technology: Eindhoven, The Netherlands, 2021. [Google Scholar]
- Bouhala, L.; Koutsawa, Y.; Karatrantos, A.; Bayreuther, C. Design of Type-IV Composite Pressure Vessel Based on Comparative Analysis of Numerical Methods for Modeling Type-III Vessels. J. Compos. Sci. 2024, 8, 40. [Google Scholar] [CrossRef]
- Regassa, Y.; Gari, J.; Lemu, H.G. Composite Overwrapped Pressure Vessel Design Optimization Using Numerical Method. J. Compos. Sci. 2022, 6, 229. [Google Scholar] [CrossRef]
- Souza, A.; Gonçalves, P.T.; Afonso, F.; Lau, F.; Rocha, N.; Suleman, A. On the Multidisciplinary Design of a Hybrid Rocket Launcher with a Composite Overwrapped Pressure Vessel. J. Compos. Sci. 2024, 8, 109. [Google Scholar] [CrossRef]
- Alam, S.; Yandek, G.; Lee, R.C.; Mabry, J. A study of residual burst strength of composite over wrapped pressure vessel due to low velocity impact. Int. J. Press. Vessel. Pip. 2021, 194, 104511. [Google Scholar] [CrossRef]
- Almeida, J.H.S.; St-Pierre, L.; Wang, Z.; Ribeiro, M.L.; Tita, V.; Amico, S.C.; Castro, S.G.P. Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinders. Compos. Part B Eng. 2021, 225, 109224. [Google Scholar] [CrossRef]
- Xia, M.; Takayanagi, H.; Kemmochi, K. Analysis of multi-layered ®lament-wound composite pipes under internal pressure. Compos. Struct. 2001, 53, 483–491. [Google Scholar] [CrossRef]
- Gemi, L.; Tarakçioglu, N.; Akdemir, A.; Sahin, O.S. Progressive fatigue failure behavior of glass/epoxy (+-75)2 filament-wound pipes under pure internal pressure. Mat. Des. 2009, 30, 4293–4298. [Google Scholar] [CrossRef]
- Onder, A.; Sayman, O.; Dogan, T.; Tarakcioglu, N. Burst failure load of composite pressure vessels. Compos. Struct. 2009, 89, 159–166. [Google Scholar] [CrossRef]
- Ray, D.M.; Greene, N.-J.; Revilock, D.; Sneddon, K.; Anselmo, E. High Pressure Composite Overwrapped Pressure Vessel (COPV) Development Tests at Cryogenic Temperatures. In Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumberg, IL, USA, 7–10 April 2008. [Google Scholar]
- Parnas, L.; Katırcı, N. Design of fiber-reinforced composite pressure vessels under various loading conditions. Compos. Struct. 2002, 58, 83–95. [Google Scholar] [CrossRef]
- Tapeinos, I.G.; Rajabzadeh, A.; Zarouchas, D.S.; Stief, M.; Groves, R.M.; Koussios, S.; Benedictus, R. Evaluation of the mechanical performance of a composite multi-cell tank for cryogenic storage: Part II—Experimental assessment. Int. J. Hydrog. Energy 2019, 44, 3931–3943. [Google Scholar] [CrossRef]
- Mahato, B.; Lomov, S.V.; Shiverskii, A.; Owais, M.; Abaimov, S.G. A Review of Electrospun Nanofiber Interleaves for Interlaminar Toughening of Composite Laminates. Polymers 2023, 15, 1380. [Google Scholar] [CrossRef]
- Mahato, B.; Lomov, S.V.; Jafarypouria, M.; Owais, M.; Abaimov, S.G. Hierarchical toughening and self-diagnostic interleave for composite laminates manufactured from industrial carbon nanotube masterbatch. Compos. Sci. Technol. 2023, 243, 110241. [Google Scholar] [CrossRef]
- Jafarypouria, M.; Lomov, S.V.; Mahato, B.; Abaimov, S.G. The effect of fibre misalignment in an impregnated fibre bundle on stress concentrations. Compos. Part A Appl. Sci. Manuf. 2024, 178, 108001. [Google Scholar] [CrossRef]
- Mao, C.S.; Yang, M.F.; Hwang, D.G.; Wang, H.C. An estimation of strength for composite pressure vessels. Compos. Struct. 1992, 22, 179–186. [Google Scholar] [CrossRef]
- Hwang, T.-K.; Hong, C.-S.; Kim, C.-G. Probabilistic deformation and strength prediction for a filament wound pressure vessel. Compos. Part B Eng. 2003, 34, 481–497. [Google Scholar] [CrossRef]
- Hwang, T.-K.; Hong, C.-S.; Kim, C.-G. Size effect on the fiber strength of composite pressure vessels. Compos. Struct. 2003, 59, 489–498. [Google Scholar] [CrossRef]
- Sun, X.-K.; Du, S.-Y.; Wang, G.-D. Bursting problem of filament wound composite pressure vessels. Int. J. Press. Vessel. Pip. 1999, 76, 55–59. [Google Scholar] [CrossRef]
- Roy, A.K.; Tsai, S.W. Design of Thick Composite Cylinders. J. Press. Vessel Technol. 1988, 110, 255–262. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, H.; Kang, H.; Zhou, W.; Zhang, C. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks. Int. J. Hydrog. Energy 2019, 44, 25777–25799. [Google Scholar] [CrossRef]
- Dixon, M.; Smutny, T. Hydrogen Container Performance Testing. Test Report Number: TR-00663-01-R2, December 2017. Available online: https://trid.trb.org/View/1988019 (accessed on 17 May 2024).
- Tapeinos, I.G.; Zarouchas, D.S.; Bergsma, O.K.; Koussios, S.; Benedictus, R. Evaluation of the mechanical performance of a composite multi-cell tank for cryogenic storage: Part I—Tank pressure window based on progressive failure analysis. Int. J. Hydrog. Energy 2019, 44, 3917–3930. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Abichou, M.A.; Vetcher, A.; Rouway, M.; Aâmir, A.; Mouadili, H.; Laaouidi, H.; Naanani, H. An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design. J. Compos. Sci. 2023, 7, 119. [Google Scholar] [CrossRef]
Configuration | Joint Visualization | |
---|---|---|
1 | Simple | |
2 | Single | |
3 | Double | |
4 | Scarf | |
5 | Stepped |
Mesh Size (mm) | Number of Elements | Ply Failure Index (PFI) for Ply 1 | Time | Visualization |
---|---|---|---|---|
2 | 243,423 | 0.601 | 4 min 31 s | |
3 | 109,856 | 0.593 | 1 min 41 s | |
4 | 64,433 | 0.592 | 1 min 16 s | |
5 | 43,660 | 0.571 | 31 s | |
6 | 33,872 | 0.571 | 23 s | |
7 | 28,179 | 0.577 | 21 s |
Reference | Fiber | Manufacturer | Resin | Type of CPV |
---|---|---|---|---|
[6] | T300 | Toray Industries, Tokyo, Japan | LY556+HT972 | Type V |
[21] | T800S 24 K | Toray Industries, Tokyo, Japan | UF3323 | Type IV |
[22] | T700-12K-50C | Toray Industries, Tokyo, Japan | UF3369 | Type V |
[23] * | T300 | Toray Industries, Tokyo, Japan | 934 | Type V |
[24] * | 1200 Tex Fiber | Saint-Gobain Vetrotex, Courbevoie, France | A CY22 | Type V |
[25] | 600 Tex Fiber | Saint-Gobain Vetrotex, Courbevoie, France | CY-225 | Type V |
[26] | T1000 | Toray Industries, Tokyo, Japan | 31-43B | Type III, Type IV |
[27] | T300 | Toray Industries, Tokyo, Japan | N5208 | Type V |
[20] | IM7 | Hexcel, Stamford, Connecticut, USA | 8552 | Type V |
Material Property | Value | Unit | |
---|---|---|---|
Tension | 2354 | MPa | |
116.6 | GPa | ||
34.3 | MPa | ||
7.77 | GPa | ||
Compression | 1102 | MPa | |
104.3 | GPa | ||
184 | MPa | ||
8.10 | GPa | ||
Shear | 104.5 | MPa | |
3.6 | GPa | ||
82.7 | MPa | ||
Poisson’s ratio | 0.3 | - |
Hydraulic Test Inputs | ||
---|---|---|
Structure | Weight | 4.5 kg |
Size | 795 mm × 210 mm | |
Volume | 22 L | |
Testing Environment | ||
Humidity | 33% | |
Location | Inside a metallic testing vessel | |
Fluid | Type of fluid | Water |
Safety measures | Surrounding environment | All equipment is at a minimum distance of 3 m from the test location |
Surrounding test team | 2 m distance from the test location, safety glasses | |
Loading conditions | Pressure ratio | 3.5 bar/s |
Cross-Section 1 | |||||||
---|---|---|---|---|---|---|---|
71 | 71 (Stresses Redistribution) | 85 | 85 (Stresses Redistribution) | 89.5 | 89.5 (Stresses Redistribution) | ||
FPF | Failure | Failure | No additional failure | Failure | Ultimate Failure | ||
Ply 4— Failure | Ply 4—Failed Ply 3—Failure Ply 6—Expected Failure | Ply 4—Failed Ply 3—Failed Ply 6—Failure Ply 1—Expected Failure | Ply 4—Failed Ply 3—Failed Ply 6—Failed Ply 1—Expected Failure | Ply 4—Failed Ply 3—Failed Ply 6—Failed Ply 1—Failure Ply 2—Expected Failure | Ply 4—Failed Ply 3—Failed Ply 6—Failed Ply 1—Failed Ply 2—Failure Ply 8—Failure | ||
Ply ID | Ply deg | PFI | |||||
1 | 0 | 0.591 | 0.617 | 0.890 | 0.923 | 1.002 | FAILED |
2 | 0 | 0.523 | 0.546 | 0.783 | 0.813 | 0.881 | 1.298 |
3 | 45 | 0.989 | 1.030 | FAILED | FAILED | FAILED | FAILED |
4 | 90 | 1.001 | FAILED | FAILED | FAILED | FAILED | FAILED |
5 | 0 | 0.343 | 0.360 | 0.503 | 0.525 | 0.566 | 0.806 |
6 | 90 | 0.721 | 0.746 | 1.021 | FAILED | FAILED | FAILED |
7 | 0 | 0.248 | 0.261 | 0.356 | 0.373 | 0.400 | 0.546 |
8 | 90 | 0.466 | 0.486 | 0.663 | 0.687 | 0.730 | 1.138 |
9 | 0 | 0.197 | 0.213 | 0.262 | 0.283 | 0.299 | 0.355 |
10 | 90 | 0.341 | 0.347 | 0.446 | 0.453 | 0.480 | 0.631 |
11 | 0 | 0.168 | 0.183 | 0.225 | 0.244 | 0.258 | 0.244 |
12 | 90 | 0.329 | 0.333 | 0.418 | 0.422 | 0.447 | 0.524 |
13 | 0 | 0.141 | 0.154 | 0.190 | 0.207 | 0.219 | 0.209 |
14 | 90 | 0.320 | 0.324 | 0.401 | 0.406 | 0.430 | 0.495 |
15 | −45 | 0.064 | 0.068 | 0.159 | 0.167 | 0.177 | 0.213 |
16 | 90 | 0.312 | 0.316 | 0.387 | 0.392 | 0.414 | 0.469 |
17 | 0 | 0.088 | 0.099 | 0.122 | 0.138 | 0.146 | 0.144 |
Cross-Section 2 | ||||
---|---|---|---|---|
79 | 79 (Stresses Redistribution) | 89.5 (Stresses Redistribution) | ||
Failure | No additional failure | Ultimate Failure | ||
Ply 12—Failure Ply 10—Expected Failure | Ply 12—Failed Ply 10—Expected Failure | Ply 12—Failed Ply 10—Failure | ||
Ply ID | Ply deg | PFI | ||
1 | 0 | 0.681 | 0.803 | 0.950 |
2 | 90 | 0.720 | 0.788 | 0.931 |
3 | 0 | 0.644 | 0.759 | 0.892 |
4 | 90 | 0.546 | 0.591 | 0.774 |
5 | 0 | 0.613 | 0.722 | 0.844 |
6 | 90 | 0.405 | 0.407 | 0.799 |
7 | 0 | 0.595 | 0.701 | 0.815 |
8 | 90 | 0.536 | 0.542 | 0.669 |
9 | 0 | 0.588 | 0.692 | 0.804 |
10 | 90 | 0.764 | 0.779 | 1.005 |
11 | 0 | 0.587 | 0.691 | 0.803 |
12 | 90 | 1.020 | FAILED | FAILED |
13 | 0 | 0.587 | 0.691 | 0.801 |
Cross-Section 3 | ||
---|---|---|
89.5 (Stresses Redistribution) | ||
No Failure | ||
13 plies | ||
Ply ID | Ply deg | PFI |
1 | 0 | 0.717 |
2 | 60 | 0.771 |
3 | 90 | 0.825 |
4 | −60 | 0.64 |
5 | 90 | 0.662 |
6 | 90 | 0.583 |
7 | 0 | 0.576 |
8 | 90 | 0.505 |
9 | 90 | 0.524 |
10 | −60 | 0.538 |
11 | 90 | 0.562 |
12 | 60 | 0.568 |
13 | 0 | 0.585 |
P = 71 bar Ply 4 PFI = 1.001 Cross-section 1 | P = 71 bar Ply 3 PFI = 1.03 Cross-section 1 | P = 79 bar Ply 12 PFI = 1.02 Cross-section 2 | |
P = 85 bar Ply 6 PFI = 1.021 Cross-section 1 | P = 89.5 bar Ply 1 PFI:1.002 Cross-section 1 | P = 89.5 bar Ply 2 PFI:1.298 Cross-section 1 | |
P = 89.5 bar Ply 8 PFI = 1.138 Cross-section 1 | P = 89.5 bar Ply 10 PFI = 1.005 Cross-section 2 | ||
Critical Pressures (bar) | Numerical Results | Experimental Results |
---|---|---|
61 | Initial Critical Pressure | |
| No visual failure up to 61 bar. | |
71 | FPF of virtual model | |
| No visual failure occurred up to 71 bar. | |
89.5 | NBP | |
| No visual failure occurred up to 89.5 bar | |
91.7 | Experimental burst pressure (EBP) | |
Burst has already occurred | Burst explosion |
Parameters | Value | |
---|---|---|
Geometry | Size (Length × Diameter) | 795 mm × 210 mm |
Tank weight | 4.5 kg | |
Tank capacity | 22 L | |
Performance | Safety factor | 1.5 |
Numerical burst pressure (NBP) | 89.5 bar | |
Experimental burst pressure (EBP) | 91.7 bar | |
%error | 2.3% | |
Maximum expected operating pressure (MEOP) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikroni, M.; Koutsoukis, G.; Vlachos, D.; Kostopoulos, V.; Vavouliotis, A.; Trakakis, G.; Athinaios, D.; Nikolakea, C.; Zacharakis, D. Design, Analysis, and Testing of a Type V Composite Pressure Vessel for Hydrogen Storage. Polymers 2024, 16, 3576. https://doi.org/10.3390/polym16243576
Mikroni M, Koutsoukis G, Vlachos D, Kostopoulos V, Vavouliotis A, Trakakis G, Athinaios D, Nikolakea C, Zacharakis D. Design, Analysis, and Testing of a Type V Composite Pressure Vessel for Hydrogen Storage. Polymers. 2024; 16(24):3576. https://doi.org/10.3390/polym16243576
Chicago/Turabian StyleMikroni, Maria, Grigorios Koutsoukis, Dimitrios Vlachos, Vassilis Kostopoulos, Antonios Vavouliotis, George Trakakis, Dimitrios Athinaios, Chrysavgi Nikolakea, and Dimitrios Zacharakis. 2024. "Design, Analysis, and Testing of a Type V Composite Pressure Vessel for Hydrogen Storage" Polymers 16, no. 24: 3576. https://doi.org/10.3390/polym16243576
APA StyleMikroni, M., Koutsoukis, G., Vlachos, D., Kostopoulos, V., Vavouliotis, A., Trakakis, G., Athinaios, D., Nikolakea, C., & Zacharakis, D. (2024). Design, Analysis, and Testing of a Type V Composite Pressure Vessel for Hydrogen Storage. Polymers, 16(24), 3576. https://doi.org/10.3390/polym16243576