Stretchable Thermochromic Fluorescent Fibers Based on Self-Crystallinity Phase Change for Smart Wearable Displays
<p>Schematic illustration of the preparation process of thermochromic fluorescent capsules via the piercing–solidifying method.</p> "> Figure 2
<p>(<b>a</b>) Treatment process of the thermochromic fluorescent capsules to be used for wet spinning; (<b>b</b>) photograph of the thermochromic fluorescent capsules; (<b>c</b>) SEM image of a thermochromic fluorescent capsule; (<b>d</b>) size distribution of the thermochromic fluorescent capsules.</p> "> Figure 3
<p>Fluorescent photographs of the thermochromic fluorescent capsules at 25 °C and 75 °C, in (<b>a</b>) air and (<b>b</b>) DMAc solvent; (<b>c</b>) fluorescence switching cycles of the thermochromic capsules at 25 °C and 75 °C.</p> "> Figure 4
<p>(<b>a</b>) Schematic illustration of the wet-spinning process for preparing stretchable thermochromic fluorescent fibers. (<b>b</b>) Optical photograph and (<b>c</b>) SEM images of the prepared thermochromic fluorescent PU fiber.</p> "> Figure 5
<p>Cyclic loading–unloading tensile curves of the thermochromic fluorescent PU fiber at increasing strain.</p> "> Figure 6
<p>Cyclic loading–unloading tensile curves of the thermochromic fluorescent PU fiber at (<b>a</b>) 100% strain, (<b>b</b>) 300% strain, and (<b>c</b>) 500% strain.</p> "> Figure 7
<p>(<b>a</b>) Schematic illustration of the thermochromic fluorescent mechanisms of the fibers, based on self-crystallinity phase change. (<b>b</b>) Fluorescence switching cycles of the stretchable thermochromic fiber at 25 °C and 75 °C.</p> "> Figure 8
<p>Fluorescent photographs of the thermochromic fluorescent fiber under different stretching levels.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Thermochromic Fluorescent Capsules
2.3. Wet Spinning of Stretchable Thermochromic Fluorescent Fibers
2.4. Characterization
3. Results and Discussion
3.1. Preparation and Characterization
3.2. Preparation of Stretchable Thermochromic Fluorescent Fibers
3.3. Luminescence Performance of Stretchable Thermochromic Fluorescent Fibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, C.; Xu, B.; Li, M.; Han, J.; Yang, Y.; Liu, X. Advanced Design of Fibrous Flexible Actuators for Smart Wearable Applications. Adv. Fiber Mater. 2024, 6, 622–657. [Google Scholar] [CrossRef]
- Kim, T.Y.; De, R.; Choi, I.; Kim, H.; Hahn, S.K. Multifunctional nanomaterials for smart wearable diabetic healthcare devices. Biomaterials 2024, 310, 122630. [Google Scholar] [CrossRef]
- Kong, Y.; Fan, X.; Wu, R.; Nie, S.; Liu, C.; Liu, X.; Zhang, G.; Yuan, B. Multifunctional flame-retardant cotton fabric with hydrophobicity and electrical conductivity for wearable smart textile and self-powered fire-alarm system. Chem. Eng. J. 2024, 487, 150677. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Noh, B.; Lee, J.; Lee, H.S.; Park, Y.; Choi, K.C. High-Performance and Reliable White Organic Light-Emitting Fibers for Truly Wearable Textile Displays. Adv. Sci. 2022, 9, 2104855. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaee, R.S.; Naghdi, T.; Peyravian, M.; Kiani, M.A.; Golmohammadi, H. An Invisible Dermal Nanotattoo-Based Smart Wearable Sensor for eDiagnostics of Jaundice. ACS Nano 2024, 18, 28012–28025. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.; Zhang, J.; Yan, W.; Hughes-Riley, T.; Cheng, Y.; Zhu, M. Structural design of light-emitting fibers and fabrics for wearable and smart devices. Sci. Bull. 2024, 69, 2439–2455. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, Y.; Tian, M.; Qu, L.; Fan, T.; Miao, J. Core–Sheath Heterogeneous Interlocked Conductive Fiber Enables Smart Textile for Personalized Healthcare and Thermal Management. Small 2024, 20, 2308404. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Gao, Q.; Xie, D.; Qian, D.; Shi, J.; Morikawa, H.; Zhu, C. Enhanced multifunctional sensing in human motion with speed-controlled coaxial wet-spun hollow MWCNT-TPU/TPU smart fibers. Chem. Eng. J. 2024, 498, 155045. [Google Scholar] [CrossRef]
- Lee, G.S.; Kim, J.G.; Kim, J.T.; Lee, C.W.; Cha, S.; Choi, G.B.; Lim, J.; Padmajan Sasikala, S.; Kim, S.O. 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts. Adv. Mater. 2024, 36, 2307689. [Google Scholar] [CrossRef]
- Sun, Y.; Li, T.; Liu, X.; Han, Y.; Liu, Y.; Zada, A.; Deng, W.; Yuan, Z.; Dang, A. Modulating oxygen vacancies in MXene/MoO3-x smart fiber by defect engineering for ultrahigh volumetric energy density supercapacitors and wearable SERS sensors. Chem. Eng. J. 2024, 494, 152911. [Google Scholar] [CrossRef]
- Xiong, T.; Zhou, X.; Wang, Y.; Zhou, T.; Huang, R.; Zhong, H.; Zhang, X.; Yuan, S.; Wang, Z.; Xin, J.; et al. Photo-powered all-in-one energy harvesting and storage fibers towards low-carbon smart wearables. Energy Storage Mater. 2024, 65, 103146. [Google Scholar] [CrossRef]
- Zhou, B.; Yuan, M.; Lu, H.; Qiu, X.; Liu, J.; Zhao, Z.; Zhang, X.; Cai, G. Large-Area Knittable, Wash-Durable, and Healable Smart Fibers for Dual-Modal Sensing Applications. Adv. Funct. Mater. 2024, 34, 2404064. [Google Scholar] [CrossRef]
- Duan, X.; Nie, K.; Hu, Z.; Zhang, X.; Zhou, R.; Dai, W.; Mei, L.; Wang, L.; Wang, H.; Ma, X. Enhancement of orange emission in terbium-doped lead-free halide perovskite for flexible functional fibers and light-emitting diodes. Chem. Eng. J. 2024, 480, 147957. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, X.; Nie, K.; Zhou, R.; Dai, W.; Duan, X.; Zhang, X.; Wang, H.; Wang, L.; Mei, L.; et al. High stability and spectral tunability of versatile manganese/europium/tellurium-doped double perovskite crystals toward flexible functional fabric and semiconductor devices. Chem. Eng. J. 2024, 482, 148829. [Google Scholar] [CrossRef]
- Lee, H.S.; Kong, S.U.; Kwon, S.; Cho, H.E.; Noh, B.; Hwang, Y.H.; Choi, S.; Kim, D.; Han, J.H.; Lee, T.-W.; et al. Quantum-Dot Light-Emitting Fiber Toward All-In-One Clothing-Type Health Monitoring. ACS Nano 2024, 18, 20363–20379. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, Y.; He, X.; Cui, Y.; Ouyang, J.; Ouyang, J.; He, Z.; Hu, J.; Liu, X.; Wei, H.; et al. Wearable and interactive multicolored photochromic fiber display. Light-Sci. Appl. 2024, 13, 48. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Nie, K.; Duan, X.; Hu, Z.; Zhang, X.; Mei, L.; Wang, L.; Wang, H.; Ma, X. High Stability and Corrosion-Resistant Gas of Recyclable and Versatile Manganese-Doped Lead-Free Double Perovskite Crystals toward Novel Functional Fabric and Photoelectric Device. Adv. Sci. 2024, 11, 2403352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Jia, S.; Fan, C. Body-conformable light-emitting materials and devices. Nat. Photonics 2024, 18, 114–126. [Google Scholar] [CrossRef]
- Shi, X.; Zuo, Y.; Zhai, P.; Shen, J.; Yang, Y.; Gao, Z.; Liao, M.; Wu, J.; Wang, J.; Xu, X.; et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245. [Google Scholar] [CrossRef]
- Yang, W.; Lin, S.; Gong, W.; Lin, R.; Jiang, C.; Yang, X.; Hu, Y.; Wang, J.; Xiao, X.; Li, K.; et al. Single body-coupled fiber enables chipless textile electronics. Science 2024, 384, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Sheng, L.; Chen, Q.; Xu, Y.; Li, W.; Wang, X.; Li, M.; Zhang, S.X.-A. Simple and general platform for highly adjustable thermochromic fluorescent materials and multi-feasible applications. Mater. Horiz. 2019, 6, 1654–1662. [Google Scholar] [CrossRef]
- Du, J.; Sheng, L.; Xu, Y.; Chen, Q.; Gu, C.; Li, M.; Zhang, S.X.A. Printable Off–On Thermoswitchable Fluorescent Materials for Programmable Thermally Controlled Full-Color Displays and Multiple Encryption. Adv. Mater. 2021, 33, 2008055. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Dong, Y.; Liu, S.; She, P.; Lu, J.; Liu, S.; Huang, W.; Zhao, Q. Chameleon-Like Thermochromic Luminescent Materials with Controllable Response Behaviors for Multilevel Security Printing. Adv. Opt. Mater. 2020, 8, 1901687. [Google Scholar] [CrossRef]
- Duan, M.; Wang, X.; Xu, W.; Ma, Y.; Yu, J. Electro-Thermochromic Luminescent Fibers Controlled by Self-Crystallinity Phase Change for Advanced Smart Textiles. ACS Appl. Mater. Interfaces 2021, 13, 57943–57951. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Xu, W.; Hu, Z.; Fan, J.; Sun, L.; Wang, X.; Zhang, Y.; Shi, X.; Ding, B.; Yu, J.; et al. Full-Color “Off–On” Thermochromic Fluorescent Fibers for Customizable Smart Wearable Displays in Personal Health Monitoring. Small 2024, 20, 2310762. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, H.; Zhang, J.; Wu, Q.; Han, S.; Chen, A.; Guan, L. Stretchable flexible fiber supercapacitors for wearable integrated devices. J. Mater. Chem. A 2024, 12, 18958–18967. [Google Scholar] [CrossRef]
- Duan, T.; Liu, B.; Gao, Y.; Gao, G. Wet Spinning/UV Dual-Curing enabled 3D printable fiber for intelligent electronic devices. Chem. Eng. J. 2024, 498, 155186. [Google Scholar] [CrossRef]
- Gao, X.; Su, J.; Xu, C.; Cao, S.; Gu, S.; Sun, W.; You, Z. Water-Based Continuous Fabrication of Highly Elastic Electromagnetic Fibers. ACS Nano 2024, 18, 17913–17923. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Shan, M.; Wei, L.; Lan, L.; Liu, X.; Guo, L.; Wang, F.; Zhang, Z.; Wang, L.; et al. Injectable, stretchable, and conductance-stable fiber for myocardial infarction repair. Compos. Part B-Eng. 2024, 273, 111242. [Google Scholar] [CrossRef]
- Qi, M.; Liu, Y.; Wang, Z.; Yuan, S.; Li, K.; Zhang, Q.; Chen, M.; Wei, L. Self-Healable Multifunctional Fibers via Thermal Drawing. Adv. Sci. 2024, 11, 2400785. [Google Scholar] [CrossRef]
- Zaoui, A.; Ben Rejeb, Z.; Park, C.B. Surface-engineered in-situ fibrillated thermoplastic polyurethane as toughening reinforcement for geopolymer-based mortar. Compos. Part B-Eng. 2024, 283, 111623. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.; Li, J.; Hao, Y.; Ke, H.; Lv, P.; Wei, Q. Wet Spinning Technology for Aerogel Fiber: Pioneering the Frontier of High-Performance and Multifunctional Materials. Adv. Fiber Mater. 2024, 6, 1669–1709. [Google Scholar] [CrossRef]
- Honaker, L.W.; Vats, S.; Anyfantakis, M.; Lagerwall, J.P.F. Elastic sheath–liquid crystal core fibres achieved by microfluidic wet spinning. J. Mater. Chem. C 2019, 7, 11588–11596. [Google Scholar] [CrossRef]
- Im, J.; Jeong, Y.H.; Kim, M.C.; Oh, D.; Son, J.; Hyun, K.; Jeong, B.; Hong, S.; Lee, J. Wet spinning of multi-walled carbon nanotube fibers. Carbon 2024, 216, 118532. [Google Scholar] [CrossRef]
- Song, J.; Guo, J.; Liu, Y.; Tan, Q.; Zhang, S.; Yu, Y. A Comparative Study on Properties of Cellulose/Antarctic Krill Protein Composite Fiber by Centrifugal Spinning and Wet Spinning. Fiber. Polym. 2019, 20, 1547–1554. [Google Scholar] [CrossRef]
- Choi, Y.W.; Jeon, Y.S.; Lee, D.N.; Park, N.-G. Microencapsulation of Grain Boundaries for Moisture-Stable Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 3754–3765. [Google Scholar] [CrossRef]
- Lobel, B.T.; Baiocco, D.; Al-Sharabi, M.; Routh, A.F.; Zhang, Z.; Cayre, O.J. Current Challenges in Microcapsule Designs and Microencapsulation Processes: A Review. ACS Appl. Mater. Interfaces 2024, 16, 40326–40355. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Sun, H.; Mu, T.; Garcia-Vaquero, M. Future trends in the field of Pickering emulsions: Stabilizers, spray-dried microencapsulation and rehydration for food applications. Trends Food Sci. Technol. 2024, 150, 104610. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, X.; Zhang, W.; Qian, W.; Liang, X. Optimizing shear-thickening fluid microencapsulation with high-temperature pickering emulsion for enhanced impact-resistant materials. Chem. Eng. J. 2024, 493, 152817. [Google Scholar] [CrossRef]
- Farag, A.A.; Badr, E.A. Non-ionic surfactant loaded on gel capsules to protect downhole tubes from produced water in acidizing oil wells. Corros. Rev. 2020, 38, 151–164. [Google Scholar] [CrossRef]
- Huang, R.; Li, W.; Wang, J.; Zhang, X. Effects of oil-soluble etherified melamine-formaldehyde prepolymers on in situ microencapsulation and macroencapsulation of n-dodecanol. New J. Chem. 2017, 41, 9424–9437. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, T.; Zhang, D.; Wang, K.; Wang, Y. Paraffin/chitosan composite phase change materials fabricated by piercing-solidifying method for thermal energy storage. AIP Adv. 2020, 10, 035218. [Google Scholar] [CrossRef]
- Shi, J.; Lin, Y.; Wang, Z.; Shan, X.; Tao, Y.; Zhao, X.; Xu, H.; Liu, Y. Adaptive Processing Enabled by Sodium Alginate Based Complementary Memristor for Neuromorphic Sensory System. Adv. Mater. 2024, 36, 2314156. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, C.; Guo, W.; Li, N.; Chen, Y.; Meng, X.; Zhai, M.; Zhang, S.; Wang, Z. Sodium alginate/ Al2O3 fiber nanocomposite aerogel with thermal insulation and flame retardancy properties. Chem. Eng. J. 2024, 489, 151223. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, S.; Zhao, D.; Diao, Y.; Liu, X.; Chen, J.; Liu, J.; Yang, H. Ionic organohydrogel with long-term environmental stability and multifunctionality based on PAM and sodium alginate. Chem. Eng. J. 2024, 485, 149810. [Google Scholar] [CrossRef]
- Fang, B.; Shen, Y.; Peng, B.; Bai, H.; Wang, L.; Zhang, J.; Hu, W.; Fu, L.; Zhang, W.; Li, L.; et al. Small-Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew. Chem.-Int. Edit. 2022, 61, e202207188. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.C.; Ye, Z.; Zheng, Z.; Gao, J.; Li, J.-J.; Shah, M.R.; Xiao, L.; Guo, D.-S. Supramolecular Bioimaging through Signal Amplification by Combining Indicator Displacement Assay with Förster Resonance Energy Transfer. Angew. Chem.-Int. Edit. 2021, 60, 19614–19619. [Google Scholar] [CrossRef] [PubMed]
- Hirata, S.; Lee, K.S.; Watanabe, T. Reversible Fluorescent On–Off Recording in a Highly Transparent Polymeric Material Utilizing Fluorescent Resonance Energy Transfer (FRET) Induced by Heat Treatment. Adv. Funct. Mater. 2008, 18, 2869–2879. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Hu, Z.; Zhan, L.; Liu, Y.; Sun, L.; Ma, Y. Stretchable Thermochromic Fluorescent Fibers Based on Self-Crystallinity Phase Change for Smart Wearable Displays. Polymers 2024, 16, 3575. https://doi.org/10.3390/polym16243575
Guo Y, Hu Z, Zhan L, Liu Y, Sun L, Ma Y. Stretchable Thermochromic Fluorescent Fibers Based on Self-Crystallinity Phase Change for Smart Wearable Displays. Polymers. 2024; 16(24):3575. https://doi.org/10.3390/polym16243575
Chicago/Turabian StyleGuo, Yongmei, Zixi Hu, Luyao Zhan, Yongkun Liu, Luping Sun, and Ying Ma. 2024. "Stretchable Thermochromic Fluorescent Fibers Based on Self-Crystallinity Phase Change for Smart Wearable Displays" Polymers 16, no. 24: 3575. https://doi.org/10.3390/polym16243575
APA StyleGuo, Y., Hu, Z., Zhan, L., Liu, Y., Sun, L., & Ma, Y. (2024). Stretchable Thermochromic Fluorescent Fibers Based on Self-Crystallinity Phase Change for Smart Wearable Displays. Polymers, 16(24), 3575. https://doi.org/10.3390/polym16243575