Fast-Swelling Tamarind Xyloglucan/PVA Hydrogels with Interconnected Macroporous Structures for Biomedical Applications
<p>Structural representations of (<b>a</b>) tamarind XG [<a href="#B2-polymers-16-03457" class="html-bibr">2</a>,<a href="#B5-polymers-16-03457" class="html-bibr">5</a>,<a href="#B6-polymers-16-03457" class="html-bibr">6</a>], (<b>b</b>) partially hydrolyzed PVA [<a href="#B20-polymers-16-03457" class="html-bibr">20</a>], (<b>c</b>) CA, and (<b>d</b>) the crosslinking reaction between PVA and XG with CA as the crosslinker.</p> "> Figure 2
<p>FTIR spectra of the samples before and after crosslinking.</p> "> Figure 3
<p>SEM images of the crosslinked samples taken at 100× and 1000× magnifications: (<b>a</b>,<b>b</b>) PVA/CA, (<b>c</b>,<b>d</b>) XG/CA, and (<b>e</b>,<b>f</b>) PVA/XG/CA.</p> "> Figure 4
<p>DSC thermograms of the prepared hydrogels.</p> "> Figure 5
<p>Swelling ratio of the prepared hydrogels.</p> "> Figure 6
<p>Textural analysis results.</p> "> Figure 7
<p>MTT assay results showing cell viability at various extraction medium concentrations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. ATR-FTIR Spectroscopy
2.4. Morphological Study
2.5. Differential Scanning Calorimetry (DSC)
2.6. Porosity Determination
2.7. Textural Analysis
2.8. Determination of Gel Fraction
2.9. Swelling Test
2.10. Hydrolytic Stability
2.11. Cytotoxicity Test
3. Results and Discussion
3.1. FTIR Spectra
3.2. Morphological Study via Scanning Electron Microscopy (SEM)
3.3. Porosity Results
3.4. Thermal Properties and Crystallization Behavior
3.5. Swelling Behavior
3.6. Gel Fraction
3.7. Hydrolytic Stability Results
3.8. Textural Analysis Results
3.9. Cytotoxicity Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noleto, G.R.; Petkowicz, C.O. Potential for biomedical applications of galactomannans and xyloglucans from seeds: An overview. Med. Chem. 2016, 6, 658–661. [Google Scholar] [CrossRef]
- Gavande, P.V.; Goyal, A.; Fontes, C.M. Carbohydrates and carbohydrate-active enZymes (CAZyme): An overview. In Glycoside Hydrolases; Academic Press: Cambridge, MA, USA, 2023; pp. 1–23. [Google Scholar] [CrossRef]
- Kozioł, A.; Cybulska, J.; Pieczywek, P.M.; Zdunek, A. Evaluation of structure and assembly of xyloglucan from tamarind seed (Tamarindus indica L.) with atomic force microscopy. Food Biophys. 2015, 10, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Malhotra, A.V. Tamarind xyloglucan: A polysaccharide with versatile application potential. J. Mater. Chem. 2009, 19, 8528–8536. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Aispuro-Hernández, E.; Vargas-Arispuro, I.; Martínez-Téllez, M.Á. Plant cell wall polymers: Function, structure and biological activity of their derivatives. Polymerization 2012, 4, 63–86. [Google Scholar] [CrossRef]
- Kochumalayil, J.; Sehaqui, H.; Zhou, Q.; Berglund, L.A. Tamarind seed xyloglucan–a thermostable high-performance biopolymer from non-food feedstock. J. Mater. Chem. 2010, 20, 4321–4327. [Google Scholar] [CrossRef]
- Ajovalasit, A.; Sabatino, M.A.; Todaro, S.; Alessi, S.; Giacomazza, D.; Picone, P.; Di Carlo, M.; Dispenza, C. Xyloglucan-based hydrogel films for wound dressing: Structure-property relationships. Carbohydr. Polym. 2018, 179, 262–272. [Google Scholar] [CrossRef]
- Picone, P.; Sabatino, M.A.; Ajovalasit, A.; Giacomazza, D.; Dispenza, C.; Di Carlo, M. Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application. Int. J. Biol. Macromol. 2019, 121, 784–795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-L.; Wang, C.; Yuan, X.-Q.; Yan, H.-H.; Li, C.-B.; Wang, C.-H.; Xie, X.-R.; Hou, G.-G. Multifunctional xyloglucan-containing electrospun nanofibrous dressings for accelerating infected wound healing. Int. J. Biol. Macromol. 2023, 247, 125504. [Google Scholar] [CrossRef]
- Foudazi, R.; Zowada, R.; Manas-Zloczower, I.; Feke, D.L. Porous hydrogels: Present challenges and future opportunities. Langmuir 2023, 39, 2092–2111. [Google Scholar] [CrossRef]
- De France, K.J.; Xu, F.; Hoare, T. Structured macroporous hydrogels: Progress, challenges, and opportunities. Adv. Healthc. Mater. 2018, 7, 1700927. [Google Scholar] [CrossRef]
- Zhai, N.; Wang, B. Preparation of fast-swelling porous superabsorbent hydrogels with high saline water absorbency under pressure by foaming and post surface crosslinking. Sci. Rep. 2023, 13, 13815. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhang, H. Controlled freezing and freeze drying: A versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 2011, 86, 172–184. [Google Scholar] [CrossRef]
- Abdelaziz, A.G.; Nageh, H.; Abdo, S.M.; Abdalla, M.S.; Amer, A.A.; Abdal-Hay, A.; Barhoum, A. A review of 3D polymeric scaffolds for bone tissue engineering: Principles, fabrication techniques, immunomodulatory roles, and challenges. Bioengineering 2023, 10, 204. [Google Scholar] [CrossRef]
- Grenier, J.; Duval, H.; Barou, F.; Lv, P.; David, B.; Letourneur, D. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater. 2019, 94, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Nokoorani, Y.D.; Shamloo, A.; Bahadoran, M.; Moravvej, H. Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering. Sci. Rep. 2021, 11, 16164. [Google Scholar] [CrossRef]
- Deng, A.; Yang, Y.; Du, S. Tissue engineering 3D porous scaffolds prepared from electrospun recombinant human collagen (RHC) polypeptides/chitosan nanofibers. Appl. Sci. 2021, 11, 5096. [Google Scholar] [CrossRef]
- Korbag, I.; Mohamed Saleh, S. Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film. Int. J. Environ. Stud. 2016, 73, 226–235. [Google Scholar] [CrossRef]
- Pawde, S.; Deshmukh, K. Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J. Appl. Polym. Sci. 2008, 109, 3431–3437. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Al-Amiery, A.A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef]
- Jipa, I.M.; Stoica, A.; Stroescu, M.; Dobre, L.-M.; Dobre, T.; Jinga, S.; Tardei, C. Potassium sorbate release from poly (vinyl alcohol)-bacterial cellulose films. Chem. Pap. 2012, 66, 138–143. [Google Scholar] [CrossRef]
- Farias, M.D.; Albuquerque, P.B.; Soares, P.A.; de Sa, D.M.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Xyloglucan from Hymenaea courbaril var. courbaril seeds as encapsulating agent of L-ascorbic acid. Int. J. Biol. Macromol. 2018, 107, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys. 2013, 8, 29–42. [Google Scholar] [CrossRef]
- Zhang, H.; Hussain, I.; Brust, M.; Butler, M.F.; Rannard, S.P.; Cooper, A.I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 2005, 4, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Pandit, A.H.; Mazumdar, N.; Imtiyaz, K.; Rizvi, M.M.A.; Ahmad, S. Periodate-modified gum arabic crosslinked PVA hydrogels: A promising approach toward photoprotection and sustained delivery of folic acid. ACS Omega 2019, 4, 16026–16036. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhu, J.; Zhu, Z.; Song, G.; Wang, H. Anisotropic hierarchical porous hydrogels with unique water loss/absorption and mechanical properties. RSC Adv. 2014, 4, 30308–30314. [Google Scholar] [CrossRef]
- Rezanejade Bardajee, G.; Boraghi, S.A.; Mahmoodian, H.; Rezanejad, Z.; Parhizkari, K.; Elmizadeh, H. A salep biopolymer-based superporous hydrogel for ranitidine delivery: Synthesis and characterization. J. Polym. Res. 2023, 30, 66. [Google Scholar] [CrossRef]
- Yacob, N.; Hashim, K. Morphological effect on swelling behaviour of hydrogel. AIP Conf. Proc. 2014, 1584, 153–159. [Google Scholar] [CrossRef]
- Martínez-Ibarra, D.M.; López-Cervantes, J.; Sánchez-Machado, D.I.; Sanches-Silva, A. Chitosan and xyloglucan-based hydrogels: An overview of synthetic and functional utility. In Chitin-Chitosan—Myriad Functionalities in Science and Technology; IntechOpen: London, UK, 2018; pp. 183–218. [Google Scholar] [CrossRef]
- Abdollahi, H.; Amiri, S.; Amiri, F.; Moradi, S.; Zarrintaj, P. Antibacterial biocomposite based on chitosan/pluronic/agarose noncovalent hydrogel: Controlled drug delivery by alginate/tetracycline beads system. J. Funct. Biomater. 2024, 15, 286. [Google Scholar] [CrossRef]
- Tanpichai, S.; Oksman, K. Crosslinked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Compos. A Appl. Sci. Manuf. 2016, 88, 226–233. [Google Scholar] [CrossRef]
- Bermejo, J.S.; Ugarte, C.M. Chemical crosslinking of PVA and prediction of material properties by means of fully atomistic MD simulations. Macromol. Theory Simul. 2009, 18, 259–267. [Google Scholar] [CrossRef]
- ISO 10993-1:2018; Biological Evaluation of Medical Devices-Part 1: Evaluation and Testing Within a Risk Management Process. ISO: Geneva, Switzerland, 2018.
Sample | PVA (g) | XG (g) | CA (g) | Water (g) |
---|---|---|---|---|
PVA | 4 | 0 | 0 | 96 |
PVA/CA | 4 | 0 | 0.8 | 95.2 |
XG | 0 | 4 | 0 | 96 |
XG/CA | 0 | 4 | 0.8 | 95.2 |
PVA/XG | 3 | 1 | 0 | 96 |
PVA/XG | 3 | 1 | 0.8 | 95.2 |
Sample | Porosity (%) |
---|---|
PVA | 63.27 ± 2.08 |
PVA/CA | 56.09 ± 2.79 |
XG | 72.03 ± 2.83 |
XG/CA | 68.99 ± 2.06 |
PVA/XG | 66.36 ± 1.90 |
PVA/XG/CA | 66.49 ± 1.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ninjumrat, U.; Chuysinuan, P.; Inprasit, T.; Ummartyotin, S.; Chainok, K.; Pisitsak, P. Fast-Swelling Tamarind Xyloglucan/PVA Hydrogels with Interconnected Macroporous Structures for Biomedical Applications. Polymers 2024, 16, 3457. https://doi.org/10.3390/polym16243457
Ninjumrat U, Chuysinuan P, Inprasit T, Ummartyotin S, Chainok K, Pisitsak P. Fast-Swelling Tamarind Xyloglucan/PVA Hydrogels with Interconnected Macroporous Structures for Biomedical Applications. Polymers. 2024; 16(24):3457. https://doi.org/10.3390/polym16243457
Chicago/Turabian StyleNinjumrat, Umpornpan, Piyachat Chuysinuan, Thitirat Inprasit, Sarute Ummartyotin, Kittipong Chainok, and Penwisa Pisitsak. 2024. "Fast-Swelling Tamarind Xyloglucan/PVA Hydrogels with Interconnected Macroporous Structures for Biomedical Applications" Polymers 16, no. 24: 3457. https://doi.org/10.3390/polym16243457
APA StyleNinjumrat, U., Chuysinuan, P., Inprasit, T., Ummartyotin, S., Chainok, K., & Pisitsak, P. (2024). Fast-Swelling Tamarind Xyloglucan/PVA Hydrogels with Interconnected Macroporous Structures for Biomedical Applications. Polymers, 16(24), 3457. https://doi.org/10.3390/polym16243457