Research on the Modulation Characteristics of LiNbO3 Crystals Based on the Three-Dimensional Ray Tracing Method
<p>The refractive index ellipsoid of a crystal.</p> "> Figure 2
<p>Cartesian coordinate system of LiNbO<sub>3</sub> crystals when the optical axis of the crystal is parallel to the direction of clear light.</p> "> Figure 3
<p>Cartesian coordinate system of LiNbO<sub>3</sub> crystals when the optical axis of the crystal is parallel to the direction of clear light.</p> "> Figure 4
<p>Birefringence at the interface between an isotropic medium and a LiNbO<sub>3</sub> crystal.</p> "> Figure 5
<p>Propagation of abnormal light in LiNiO<sub>3</sub> crystals.</p> "> Figure 6
<p>Refractive index ellipsoid.</p> "> Figure 7
<p>Crystal conoscopic interferogram when V = 0: (<b>a</b>) interference light intensity distribution; (<b>b</b>) influence of polarization direction on light intensity <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mo stretchy="false">[</mo> <mn>2</mn> <mi>ϕ</mi> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> </semantics></math>; (<b>c</b>) influence of phase difference on light intensity <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mo stretchy="false">[</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mi>θ</mi> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> <mo stretchy="false">]</mo> </mrow> </semantics></math>; (<b>d</b>–<b>f</b>) is a magnification of the field of view at the center of (<b>a</b>–<b>c</b>) of the figure.</p> "> Figure 8
<p>Crystal conoscopic interferogram when V = V<sub>π</sub>: (<b>a</b>) interference light intensity distribution; (<b>b</b>) influence of polarization direction on light intensity <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mo stretchy="false">[</mo> <mn>2</mn> <mi>ϕ</mi> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> </semantics></math>; (<b>c</b>) influence of phase difference on light intensity <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mo stretchy="false">[</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mi>θ</mi> <mo stretchy="false">(</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> <mo stretchy="false">]</mo> </mrow> </semantics></math>; (<b>d</b>–<b>f</b>) is a magnification of the field of view at the center of (<b>a</b>–<b>c</b>) of the figure.</p> ">
Abstract
:1. Introduction
2. Electro-Optical Effect of LiNbO3 Crystals
2.1. Refractive Index Ellipsoid Analytical Model
2.2. The Pockels Effect of LiNbO3 Crystals
- (1)
- The LiNbO3 crystal is subjected to a voltage along the X0 axis.
- (2)
- The LiNbO3 crystal is subjected to a voltage along the Y0 axis.
- (3)
- The LiNbO3 crystal is subjected to a voltage along the Z0 axis.
3. Three-Dimensional Ray Tracing Method for LiNbO3 Crystal Modulation
3.1. The 3D Coordinate System Construction
3.2. Birefringence Effect of LiNiO3 Crystals
- (1)
- The optical axis of the crystal is parallel to the direction of the light.
- (2)
- The optical axis of the crystal is perpendicular to the direction of the light.
4. Analysis of Modulation Characteristics of LiNbO3 Crystals
4.1. Modulation Propagation Characteristics of LiNbO3 Crystals
4.2. LiNbO3 Crystal Modulated Light Intensity and Field of View Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parrent, G.B.; Roman, P. On the matrix formulation of the theory of partial polarization in terms of observables. Nuovo Cim. 1960, 15, 370–388. [Google Scholar] [CrossRef]
- Li, S.F. Jones-matrix analysis with Pauli matrices: Application to ellipsometry. J. Opt. Soc. Am. A 2000, 17, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Mo, C.; Xiao, Z. Jones matrix physical parameters for media in inhomogeneous fields. Appl. Opt. 2018, 57, 6283–6289. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Wang, Z.; Weng, Z. Single-shot measurement of the Jones matrix for anisotropic media using four-channel digital polarization holography. Appl. Opt. 2023, 62, 7890–7894. [Google Scholar] [CrossRef]
- Lichtenegger, A.; Tamaoki, J.; Mori, T. Longitudinal xenograft zebrafish investigation using polarization-sensitive Jones-matrix optical coherence tomography (Conference Presentation). In Proceedings of the Interferometry XXI, SPIE, San Diego, CA, USA, 21–26 August 2022; Volume 12223, p. 122230F. [Google Scholar] [CrossRef]
- Simeone, F.; Marinaro, G.; De Santis, A. A novel Jones matrix analysis applied on polarization data acquired from a Mediterranean sea underwater fiber telecommunication cable. In Proceedings of the Fibre Optic Sensing in Geosciences, Catania, Italy, 16–20 June 2024. [Google Scholar] [CrossRef]
- Chen, L.; Chen, O.; Hadjifaradji, S. Polarization-mode dispersion measurement in a system with polarization-dependent loss or gain. IEEE Photonics Technol. Lett. 2004, 16, 206–208. [Google Scholar] [CrossRef]
- Dong, H.; Shum, P.; Yan, M. Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain. Opt. Express 2006, 14, 5067–5072. [Google Scholar] [CrossRef]
- Dong, H.; Shum, P.; Yan, M. Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain. Opt. Commun. 2007, 274, 116–123. [Google Scholar] [CrossRef]
- Sahin, S. Generalized Stokes parameters in phase space. Opt. Lett. 2010, 35, 1704–1706. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Singh, R.K. Lensless Stokes holography with the Hanbury Brown-Twiss approach. Opt. Express 2018, 26, 10801–10812. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S. The Effect of Anisotropic Gaussian Schell-Model Sources in Generalized Phase Space Stokes Parameters. Sak. Univ. J. Sci. 2023, 27, 670–679. [Google Scholar] [CrossRef]
- Mei, Z. Generalized Stokes parameters of rectangular hard-edge diffracted random electromagnetic beams. Opt. Express 2010, 18, 27105–27111. [Google Scholar] [CrossRef] [PubMed]
- Yun, G.; Crabtree, K.; Chipman, R.A. Three-dimensional polarization ray-tracing calculus I: Definition and diattenuation. Appl. Opt. 2011, 50, 2855–2865. [Google Scholar] [CrossRef]
- Yun, G.; McClain, S.C.; Chipman, R.A. Three-dimensional polarization ray-tracing calculus II: Retardance. Appl. Opt. 2011, 50, 2866–2874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Yan, C. Three-dimensional polarization ray tracing calculus for partially polarized light. Opt. Express 2017, 25, 26973–26986. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, Y.; Liu, Z. Three-dimensional polarization algebra for all polarization sensitive optical systems. Opt. Express 2018, 26, 14109–14122. [Google Scholar] [CrossRef] [PubMed]
- Chipman, R.; Lam, W.S.T.; Young, G. Polarized Light and Optical Systems; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Song, D.-S.; Zheng, Y.-L.; Liu, H.; Hu, W.-X.; Zhang, Z.-Y.; Chen, X.-F. Eigen generalized Jones matrix method. Chin. Opt. 2020, 13, 637. [Google Scholar]
- Li, Y.; Li, K.; Zeng, X. Three-dimensional polarization ray-tracing Mueller algorithm for an optical system with arbitrary surface type. In Proceedings of the Fourteenth International Conference on Information Optics and Photonics (CIOP 2023), Xi’an, China, 7–10 August 2023. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, W.; Duan, Y.; Li, Z.; Xiao, Z.; Jing, Y.; Ye, Q.; Zhou, L.; Wang, M.; Cai, J. A novel synthesis for the preparation of LiNbO3 powder with high piezoelectric catalytic performance. J. Phys. Chem. Solids 2024, 184, 111692. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, H.; Wu, Z.; Li, W.; Zhang, Y. Fabrication and photonic applications of Si-integrated LiNbO3 and BaTiO3 ferroelectric thin films. APL Mater. 2024, 12, 020601. [Google Scholar] [CrossRef]
- Peng, W.; Chang, J.; Zhao, J.; Wang, D.; Liu, Z.; Wang, G.; Dong, S. Enhanced piezoelectric properties and thermal stability of LiNbO3-modified PNN–PZT ceramics. J. Mater. 2024, 10, 995–1003. [Google Scholar] [CrossRef]
- Elmaataouy, E.; Chari, A.; Al-Shami, A.; Elomari, G.; Aqil, M.; Gim, J.; Amine, R.; Martinez, H.; Alami, J.; Mounkachi, O.; et al. Improved cycle stability and high-rate capability of LiNbO3-coated Li3VO4 as anode material for lithium-ion battery. J. Energy Storage 2024, 86, 111351. [Google Scholar] [CrossRef]
Crystal Family | Principal Refractive Index Relationship | Included Crystal Systems | Crystal Name |
---|---|---|---|
Advanced crystal family | Cubic System | Isotropic crystals | |
Intermediate crystal family | or or | Trigonal System; Tetragonal System; Hexagonal System | Uniaxial crystal |
Lower crystal families | Triclinic System; Monoclinic System; Orthorhombic System | Biaxial crystals |
Parameter | Numeric Value |
---|---|
The refractive index of ordinary O-light in its natural state is no. | 2.2797 |
The refractive index of ordinary E-light in its natural state is ne. | 2.1969 |
The length L in the direction of the light | 18.8 mm |
Crystal thickness d in the direction of applied voltage | 9 mm |
Electro-optic coefficient | 6.74 × 10−12 m/V |
Electro-optic coefficient | 8.6 × 10−12 m/V |
Electro-optic coefficient | 30.8 × 10−12 m/V |
Power-Up Direction | Direction of Light Transmission | Optical Symmetry | Spindle Rotation Characteristics | Principal Refractive Index | The Amount of Change in the Refractive Index |
---|---|---|---|---|---|
X0 axis | Z0 axis | Biaxial crystals | θ = 45° (Z0 axis) | ||
Y0 axis | Z0 axis | Biaxial crystals | Does not rotate | ||
Z0 axis | X0 axis or Y0 axis | Uniaxial crystal | Does not rotate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Li, Y.; Zhang, L.; Guo, H.; Luan, C.; Zheng, H.; Li, R.; Fan, Y. Research on the Modulation Characteristics of LiNbO3 Crystals Based on the Three-Dimensional Ray Tracing Method. Crystals 2024, 14, 1101. https://doi.org/10.3390/cryst14121101
Sun H, Li Y, Zhang L, Guo H, Luan C, Zheng H, Li R, Fan Y. Research on the Modulation Characteristics of LiNbO3 Crystals Based on the Three-Dimensional Ray Tracing Method. Crystals. 2024; 14(12):1101. https://doi.org/10.3390/cryst14121101
Chicago/Turabian StyleSun, Houpeng, Yingchun Li, Laixian Zhang, Huichao Guo, Chenglong Luan, Haijing Zheng, Rong Li, and Youchen Fan. 2024. "Research on the Modulation Characteristics of LiNbO3 Crystals Based on the Three-Dimensional Ray Tracing Method" Crystals 14, no. 12: 1101. https://doi.org/10.3390/cryst14121101
APA StyleSun, H., Li, Y., Zhang, L., Guo, H., Luan, C., Zheng, H., Li, R., & Fan, Y. (2024). Research on the Modulation Characteristics of LiNbO3 Crystals Based on the Three-Dimensional Ray Tracing Method. Crystals, 14(12), 1101. https://doi.org/10.3390/cryst14121101