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Abstract

:

To further study the electro-optical modulation characteristics of LiNbO3 crystals and analyze their modulation performance, a method for studying the modulation characteristics of LiNbO3 crystals, based on the three-dimensional ray tracing method, is introduced. With the help of the refractive index ellipsoidal theory, the optical properties of LiNbO3 crystals under the influence of the Pockels effect are systematically investigated. The research results show that the optical properties of LiNbO3 crystals under the action of an external electric field can be divided into two cases: the crystal optical axis is parallel to the clear light direction, and the crystal optical axis is perpendicular to the clear light direction. Subsequently, starting from Maxwell’s equation and the matter equation, the analytical expressions of optical parameters such as refractive index, wave vector, light vector, optical path, and phase delay in electro-optical crystals are derived. Finally, the propagation law of LiNbO3 crystals when the light is incident in any direction, i.e., when the optical axis of the crystal is parallel to the clear direction and perpendicular to the clear direction, and the light intensity and field of view of the LiNbO3 crystal for electro-optical modulation are discussed.
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1. Introduction


Crystals are important basic materials in modern science, and according to their functional effects, crystals can be divided into laser crystals, nonlinear optical crystals, piezoelectric crystals, pyroelectric crystals, electro-optical crystals, magneto-optical crystals, etc. Electro-optical crystals can change their optical properties by applying an external electric field and have a wide range of application prospects in many fields, such as optical communication, optical storage, laser processing, and laser modulation. Under an applied electric field, the crystal changes from isotropic to anisotropic, resulting in birefringence called the electro-optical effect. The crystal’s electro-optic effect changes the crystal’s light wave characteristics, enabling amplitude and phase modulation of the incident rays. Crystals with electro-optical effects are called electro-optical crystals.



The ray tracing method can describe the propagation of light within the crystal. Jones matrices [1,2,3,4,5,6] and Muller matrices [7,8,9,10,11,12,13] commonly describe the polarization state changes of polarized light propagating in a two-dimensional coordinate system. However, these two methods are unsuitable for 3D imaging scenarios with incident angles. Yun, G., used the orthogonal basis vector to convert the Jones vector in the two-dimensional coordinate system to the three-dimensional coordinate system and established a three-dimensional ray tracing model of light propagation in an isotropic medium [14,15]. Zhang [16] and Y. Li et al. [17] successfully proposed solving the polarization state of incident light propagating in an anisotropic medium using a three-dimensional coherence matrix. However, the electro-optical properties of biaxial crystals were not analyzed. In 2018, Professor Russell A. Chipman of the University of Arizona published a monograph on polarized light propagation [18]. In 2020, Dongsheng Song of Shanghai Jiao Tong University proposed an intrinsic generalized Jones matrix method to describe the polarization state and phase change of fully polarized light propagating in nonlinear crystals [19]. In this method, the idea of differentiation is introduced into the derivation of generalized Jones matrices of nonlinear crystals, but differential generalized Jones matrices cannot calculate the polarization change of oblique incident light or manage the scenario in which the optical axis does not coincide with the laboratory coordinates. In 2023, Li Yahong of the Dalian University of Technology proposed a three-dimensional polarized ray tracing Muller algorithm for any surface-type optical system [17,20]. In this method, the ZEMAX Standard 2016 optical software is used to trace the three-dimensional polarized light of each optical interface, and the three-dimensional Muller matrix of each optical interface is calculated in its respective local coordinate system. Dongyang Jiang described a novel synthesis method for LiNbO3 crystals, which improved the growth quality and efficiency of the crystals [21]. Yiyang Wen described the fabrication and photonic application of LiNbO3 crystal thin films for the surface coating of optoelectronic devices [22]. In 2024, Wei Peng provided an introduction into the piezoelectric properties and thermal stability of the LiNbO3 crystals [23]. Elmaataouy, E., uses LiNbO3 as a coating to improve the cycling stability and high rate capability of the lithium-ion battery anode material [24].



There are three commonly used crystals, i.e., KDP, BBO, and LiNbO3 crystals. KDP crystals belong to the tetragonal crystal system, and their light transmission band is 178 nm–1.45 μm, the nonlinear optical coefficient d36 (1.064 μm) = 0.39 pm/V, the birefringence coefficient is high, the electro-optical coefficient is high, the Mohs hardness is 2.5, the hardness is low, and the polished surface is easy to dissolve; they are mainly used in the field of laser technology and high-power laser systems. BBO crystals belong to a trigonal crystal system, with a light transmission range of 190 nm–3500 nm, a nonlinear coefficient of about four times that of KDP d36, moderate birefringence characteristics, a significant electro-optical effect, Mohs hardness of 4.5–5, and good mechanical and chemical stability; they are used in laser technology, quantum computing, communications, medical imaging, and other fields. The LiNbO3 crystals have a perovskite structure and cubic crystal symmetry, although their light transmission range is relatively narrow, the nonlinear optical coefficient is small, the birefringence characteristics are weak, and the chemical stability is good, they change easily in humid air, and the mechanical properties are brittle, but they display metal conductivity and high electrical conductivity. In terms of electro-optical modulation, the advantage of LiNbO3 crystals lies in their unique electrical properties, which can provide modulation methods that are different from those of traditional electro-optical crystals. Their high conductivity makes it possible to use their electrical properties to interact with light in electro-optical modulation, and it is possible to achieve some special modulation effects. In addition, although their nonlinear optical coefficients and birefringence characteristics are weak, they can be compensated for by compounding them with other materials or adopting a special structural design, thus bringing new development opportunities to the field of electro-optical modulation.



In this paper, according to the refractive index ellipsoid theory and the Fresnel equation, a three-dimensional ray tracing model of polarized light propagation in LiNbO3 crystal under arbitrary incidence conditions is constructed, and the Pockels effect of LiNbO3 crystals is analyzed. By constructing a spatial three-dimensional coordinate system, the birefringence effect of LiNbO3 crystals was studied using the ray tracing method. Compared with previous studies, the study in this paper can comprehensively and accurately analyze the electro-optical effect of LiNbO3 crystals under arbitrary conditions. In addition, the electro-optical modulation characteristics of LiNbO3 crystals are systematically analyzed, which provides a theoretical basis for the subsequent research of electro-optical crystals.




2. Electro-Optical Effect of LiNbO3 Crystals


The nonlinear magnetic susceptibility of LiNbO3 crystals is generally reflected by nonlinear optical coefficients, such as 5%MgO-doped LiNbO3 at 1064 nm, d31 = 4.4 pm/V, d33 = 25 pm/V. The anisotropy of the crystal structure leads to different nonlinear optical coefficients, e.g., d33 corresponds to the interaction parallel to the z-axis, and a larger value indicates that the nonlinear optical effect in this direction is more significant, which is related to the ion arrangement and bonding mode in the crystal structure. Doping different elements can change their optical properties and nonlinear optical coefficients, e.g., MgO doping improves optical and photorefractive resistance and affects nonlinear optical coefficients, making them more suitable for high-power applications. In applications such as laser technology, the nonlinear optical coefficients of LiNbO3 crystals play a key role, promoting efficient frequency doubling conversion.



2.1. Refractive Index Ellipsoid Analytical Model


There are many methods to study the electro-optical effect of crystals, and the refractive index ellipsoidal method can vividly describe the spatial distribution of the refractive index before and after the electric field is applied to the crystal, which is widely used in the analysis of the modulation characteristics of electro-optical crystals. In the absence of an external electric field, the refractive index ellipsoidal equation of a crystal can be expressed as follows:


      X 0 2     n  X 0  2     +     Y 0 2     n  Y 0  2     +     Z 0 2     n  Z 0  2     = 1 ,  



(1)




where X0, Y0, and Z0 represent the dielectric spindle of the crystal when there is no external electric field;    n  X 0    ,    n  Y 0    , and    n  Z 0     are the principal refractive indices in the X0, Y0, and Z0 directions, respectively. The refractive index ellipsoid, which describes the refractive index of a crystal, is shown in Figure 1 below.



According to the refractive index ellipsoid, the crystal’s refractive index in all directions can be calculated intuitively and visually. Using the refractive index of the three main axes of the refractive index ellipsoid, the crystal family can be determined, and the method is shown in Table 1 below.



The crystals of the higher crystal family exhibit complete symmetry and multiple higher axes, and the light propagates on the crystal surface according to Snell’s law; a beam of incident light is refracted through the crystal surface to produce a refracted light. The crystals of the intermediate crystal family are anisotropic, contain a higher order axis, have a single optical axis, and are uniaxial crystals. When the incident light propagates at the surface of the crystal, a birefringence effect occurs, producing two refracted rays, i.e., one ray of light that conforms to Snell’s law is called ordinary O-light, and the other ray that does not satisfy Snell’s law is called abnormal E-light. The crystals of the lower crystal group are also anisotropic; there is no higher order axis, and there are two crystal optical axes, called biaxial crystals. When the incident light propagates at the surface of the crystal, a birefringence effect occurs, producing two abnormal beams of light, i.e., fast light, and slow light.



When an electric field is applied at both ends of the electro-optical crystal, the refractive index in the crystal changes due to the electro-optical effect, and the generalized refractive index ellipsoid of the electro-optical crystal can be expressed as follows:


     (    1   n  X 0  2     + Δ  β 1   )   X 0 2  +  (    1   n  Y 0  2     + Δ  β 2   )   Y 0 2  +  (    1   n  Z 0  2     + Δ  β 3   )   Z 0 2      + 2 Δ  β 4   Y 0   Z 0  + 2 Δ  β 5   X 0   Z 0  + 2 Δ  β 6   X 0   Y 0  = 1 .    



(2)







According to Equation (2), the coefficients of the major axes of the crystal X0, Y0, and Z0 axes in the original refractive index are changed, so the refractive index of the three main axes also changes. In addition, due to the presence of the cross terms Y0Z0, X0Z0, and X0Y0, in Equation (2), the refractive index major axis of the crystal will be deflected.   Δ  β i   (  i = 1 , 2 , ⋯ , 6  )    in Equation (2) is the amount of dielectric tensor change in the crystal caused by the electro-optical effect of the crystal, composed of two parts, which can be expressed as follows:


  Δ  β  =  [    Δ  β 1      Δ  β 2      Δ  β 3      Δ  β 4      Δ  β 5      Δ  β 6     ]  =   γ   pockels    [     E  X 0        E  Y 0        E  Z 0      ]  +   h   kerr    [     E  X 0  2       E  Y 0  2       E  Z 0  2       E  Y 0    E  Z 0        E  X 0    E  Z 0        E  X 0    E  Y 0      ]  .  



(3)







Equation (3) is divided into two parts: the first part is the dielectric tensor change caused by the Pockels effect of the crystal, in which γpockels is the linear electro-optical coefficient (or Pockels coefficient) matrix, and EX0, EY0, and EZ0 are the components of the applied electric field in the direction of the three principal dielectric axes of the crystal, respectively. The second half of Equation (3) is the amount of dielectric tensor change caused by the crystal Kerr effect, in which hkerr is the coefficient matrix that characterizes the crystal Kerr effect, called the secondary electro-optical coefficient (or Kerr coefficient) matrix. When analyzing the electro-optical effect of a crystal, the Kerr effect and Pockels effect of the crystal can be studied independently, and the influence of the electro-optical effect on the performance of the crystal can be comprehensively analyzed.



In practice, the dielectric tensor of the crystal caused by the applied electric field does not change much. However, it can change the symmetry of the crystal refractive index ellipsoid, modulating the internal light field of the crystal by controlling the applied external field. Various optical modulation devices can be fabricated by using electro-optical crystals, such as high-speed electro-optical open light, electro-optical scanners, electro-optical polarizers, and electro-optical modulators.



The following factors are mainly considered when selecting a modulated electro-optical crystal: (1) The crystal must exhibit good growth, i.e., obtaining high-quality large-size crystals. In electro-optic modulation, it is necessary to control the on-off of the modulated light source through the crystal. Hence, the crystal needs a large clear aperture to ensure the integrity of the light source information and prevent leakage. (2) The crystal must show good stability performance, i.e., the crystal needs good thermal conductivity, which helps it dissipate heat and avoid damage to its performance due to overheating. The crystal needs to be able to withstand high voltage to prevent it from being broken down during the modulation process. (3) The crystal must possess a large electro-optical coefficient, and the crystal selected in the project is used to achieve the electro-optical modulation switch, in which half-wave voltage of the crystal with large electro-optical coefficient is lower. (4) The crystal must exhibit a large refractive index, good uniformity, and high transmittance to ensure the imaging performance of the crystal. (5) The crystal must exhibit stable physical and chemical properties under different environmental conditions, e.g., the crystal can maintain a stable structure and performance regardless of temperature, humidity, chemical corrosion, etc. The most suitable crystal, with comprehensive properties, must be chosen according to the application requirements.



From the practical application perspective, KDP (KH2PO4) and LN (LiNbO3) crystals display superior comprehensive properties and are the most widely used. KDP crystals exhibit a large electro-optical coefficient, easy growth, a high damage threshold, and a spectral band from 1550 nm to 2150 nm, and they are widely used in high-power lasers. However, because KDP crystals are easily dissolved, it is necessary to pay attention to environmental conditions when using them, and they need to be sealed and protected when compared. Compared with KDP crystals, LiNbO3 crystals exhibit good mechanical properties, are not easy to dissolve, and display a larger electro-optical coefficient and refractive index under the same wavelength conditions, and they are also commonly used electro-optical modulation crystals. In addition, KTN (KTa1-xNbxO3, potassium tantalum niobate) crystals exhibit a significant secondary electro-optical effect, a large electro-optical coefficient, and a low half-wave voltage, but it is not easy to generate large-size high-uniformity crystals, so the wide application of these crystals needs to be further explored.



LiNbO3 crystals exhibit excellent performance and are more suitable for laser 3D imaging applications, so LiNbO3 was selected for electro-optical modulation research. The performance parameters of LiNbO3 crystals are shown in Table 2 below.




2.2. The Pockels Effect of LiNbO3 Crystals


In order to study the electro-optical modulation characteristics of LiNbO3 crystals, it is necessary to analyze the electro-optical effect of the crystals using the refractive index ellipsoidal method. The LiNbO3 crystal is a uniaxial crystal without adding voltage, and the optical axis of the crystal is along the Z0 axis. The refractive index ellipsoidal equation for a LiNbO3 crystal without added voltage can be expressed as follows:


      X 0 2     n o 2     +     Y 0 2     n o 2     +     Z 0 2     n e 2     = 1 .  



(4)







Among them, no and ne are the refractive indices of ordinary light and abnormal light of the LiNbO3 crystals, respectively; the refractive indices of the crystal in the two directions of the refractive index principal axis X0 and Y0 are equal to no, and the refractive index in the direction of the refractive index principal axis Z0 is ne.



When a voltage is applied at both ends of the LiNbO3 crystal, the crystal has a pronounced Pockels effect. Bringing the Pockels coefficient matrix of LiNbO3 crystals into the dielectric isolation equation yields the amount of change of the applied voltage to the dielectric isolation tensor of the crystal, as follows:


  Δ  β  =  [    Δ  β 1      Δ  β 2      Δ  β 3      Δ  β 4      Δ  β 5      Δ  β 6     ]  =   γ   pockels    [     E  X 0        E  Y 0        E  Z 0      ]  =  [     0    −  γ  22        γ  13        0     γ  22        γ  13        0   0     γ  33        0   0   0     0   0   0      −  γ  22      0   0     ]   [     E  X 0        E  Y 0        E  Z 0      ]  =  [    −  γ  22    E  Y 0   +  γ  13    E  Z 0        γ  22    E  Y 0   +  γ  13    E  Z 0        γ  33    E  Z 0       0     0     −  γ  22    E  X 0      ]  .  



(5)







Among them, γ13, γ22, and γ33 are the electro-optical coefficients of the LiNbO3 crystal, and EX0, EY0, and EZ0 are the electric field strengths applied by the LiNbO3 crystal in the direction of X0, Y0, and Z0, respectively. Bringing Equation (5) into the general expression of the refractive index ellipsoid, we can obtain the refractive index ellipsoid equation for LiNbO3 crystals after an electric field is applied, as follows:


     (    1   n o 2     −  γ  22    E  Y 0   +  γ  13    E  Z 0    )   X 0 2  +  (    1   n o 2     +  γ  22    E  Y 0   +  γ  13    E  Z 0    )   Y 0 2  +  (    1   n e 2     +  γ  33    E  Z 0    )   Z 0 2      − 2  γ  22    E  X 0    X 0   Y 0  = 1 .    



(6)







In Equation (6), in addition to having refractive index components along the three directions of the refractive index principal axes X0, Y0, and Z0, there are also some crossover terms. Therefore, it is necessary to normalize the refractive index ellipsoid equation to determine the direction of the principal axis of the refractive index after the electric field is applied to the crystal and to calculate the refractive index in the corresponding direction.



In the following section, according to the direction of the applied voltage during the electro-optical modulation of the LiNbO3 crystal, the corresponding electro-optical effect is analyzed using the refractive index ellipsoidal method.




	(1)

	
The LiNbO3 crystal is subjected to a voltage along the X0 axis.









When a voltage is applied to a LiNbO3 crystal along the X0 axis, EY0 = EZ0 = 0, EX0 ≠ 0, the general form of the refractive index ellipsoid equation can be expressed as follows:


      X 0 2     n o 2     +     Y 0 2     n o 2     +     Z 0 2     n e 2     − 2  γ  22    E  X 0    X 0   Y 0  = 1 .  



(7)







In order to analyze the principal axis direction of the refractive index ellipsoid of the energized crystal, it is necessary to perform the spindle operation on Equation (7) to eliminate the two cross terms in the equation. Firstly, the dielectric spindle of the LiNbO3 crystal is rotated θ along the Z0 axis, and the X0Y0 cross term is eliminated; the new spindle is X0′Y0′Z0′. The relationship between X0Y0Z0 and X0′Y0′Z0 can be expressed as follows:


   {     X 0  =    X 0   ′  cos θ −    Y 0   ′  sin θ      Y 0  =    X 0   ′  sin θ +    Y 0   ′  cos θ      Z 0  =    Z 0   ′      .  



(8)







Bringing Equation (8) into Equation (7) yields the following:


     (    1   n o 2     −  γ  22    E  X 0   sin 2 θ  )       X 0    ′    2  +  (    1   n o 2     +  γ  22    E  X 0   sin 2 θ  )       Y 0    ′    2  +         Z 0    ′    2     n e 2         + 2  γ  22    E  X 0      X 0   ′     Y 0   ′   (    sin  2  θ −   cos  2  θ  )  = 1 .    



(9)







Set     sin  2  θ −   cos  2  θ = 0   in Equation (9) to eliminate the intersection term X0′Y0′ and obtain θ = ±45°. It should be pointed out that θ has nothing to do with the strength of the voltage applied to both ends of the crystal; usually, take θ = 45°, and then Equation (9) can be simplified as follows:


   (    1   n o 2     −  γ  22    E  X 0    )   x 1 2  +  (    1   n o 2     +  γ  22    E  X 0    )   x 2 2  +     x 3 2     n e 2     = 1 .  



(10)







In Equation (10), x1x2x3 is obtained by rotating the refractive index principal axis X0Y0Z0 around the Z0 axis = 45° when the LiNbO3 crystal is not charged.



The electro-optical coefficient γ22 of the LiNbO3 crystal is of the order of magnitude 10−12 m/V, and the maximum value of the electric field EX0 applied at both ends of the crystal is usually of the order of magnitude 106 V/m, so    γ  22    E  X 0   ≪ 1  . According to the Taylor function formula, γ22EX0 is expanded, and the first two terms are taken; Equation (10) can be expressed as follows:


      x 1 2       (   n o  +  1 2   n o 3   γ  22    E  X 0    )   2     +     x 2 2       (   n o  −  1 2   n o 3   γ  22    E  X 0    )   2     +     x 3 2     n e 2     = 1 .  



(11)







The amount of change in the refractive index caused by the electric field applied at both ends of the crystal can be expressed as    n E  =  n o 3   γ  22    E  X 0   / 2  . When the voltage is applied to the LiNbO3 crystal along the X0 axis, the refractive indices of the three refractive index axes are different, and the refractive index changes from uniaxial crystals to biaxial crystals.



When the incident light is incident perpendicular to the x3 axis, the refracted light wave is only related to the voltage applied at both ends of the crystal. It is not affected by the crystal birefringence effect, so when the voltage is applied along the X0 axis, the crystal direction is generally set to be parallel to the x3 axis. Since the x3 axis direction is the same as the Z0 axis, the clear direction of the crystal is parallel to the Z0 axis, that is, parallel to the axis direction when the crystal is not energized.




	(2)

	
The LiNbO3 crystal is subjected to a voltage along the Y0 axis.









When the LiNbO3 crystal is energized in the direction of the Y0 axis, EX0 = EZ0 = 0, EY0 ≠ 0, the general form of the refractive index ellipsoid equation can be expressed as follows:


   (    1   n o 2     −  γ  22    E  Y 0    )   X 0 2  +  (    1   n o 2     +  γ  22    E  Y 0    )   Y 0 2  +  (    1   n e 2      )   Z 0 2  = 1 .  



(12)







According to the Taylor function formula,    γ  22    E  X 0     is expanded, the first two terms are taken, and Equation (12) can be expressed as follows:


      x 1 2       (   n o  +  1 2   n o 3   γ  22    E  Y 0    )   2     +     x 2 2       (   n o  −  1 2   n o 3   γ  22    E  Y 0    )   2     +     x 3 2     n e 2     = 1 .  



(13)







The amount of refractive index change caused by the application of an electric field at both ends of a LiNbO3 crystal can be expressed as follows:    n E  =  n o 3   γ  22    E  X 0   / 2  . The crystal changes from a uniaxial crystal to a biaxial crystal, and the direction of light is usually set parallel to the x3 axis, parallel to the optical axis of the crystal without an external electric field.



When the crystal is energized along the Y0 axis, the induction spindle x1x2x3 coincides with the crystal dielectric spindle X0Y0Z0 when the unenergized crystal is powered, and the direction of the new refractive index spindle x1x2x3 does not change.




	(3)

	
The LiNbO3 crystal is subjected to a voltage along the Z0 axis.









When a voltage is applied to a LiNbO3 crystal along the Z0 axis, EX0 = EY0 = 0, EZ0 ≠ 0, the general form of the refractive index ellipsoidal equation of the crystal can be expressed as follows:


   (    1   n o 2     +  γ  13    E  Z 0    )   X 0 2  +  (    1   n o 2     +  γ  13    E  Z 0    )   Y 0 2  +  (    1   n e 2     +  γ  33    E  Z 0    )   Z 0 2  = 1 .  



(14)







Equation (14) does not have a cross term, which means that the principal refractive index of the crystal does not rotate, but the refractive index of the principal shaft changes. The electro-optical coefficients γ13 and γ33 are of the order of magnitude 10−12 m/V, and EZ0 is of the order of magnitude 106 V/m, so    γ  13    E  Z 0   ≪ 1   and    γ  33    E  Z 0   ≪ 1  ; according to the Taylor function formula, γ13EZ0 and γ33EZ0 are expanded, the first two terms are taken, and Equation (14) can be expressed as follows:


      x 1 2       (   n o  −  1 2   n o 3   γ  13    E  Z 0    )   2     +     x 2 2       (   n o  −  1 2   n o 3   γ  13    E  Z 0    )   2     +     x 3 2       (   n e  −  1 2   n e 3   γ  33    E  Z 0    )   2     = 1 .  



(15)







The amount of change in the refractive index due to the application of voltage across the LiNbO3 crystal can be expressed as follows:    n  E 1   =  n o 3   γ  13    E  Z 0   / 2  ,    n  E 2   =    (   n o  −  n Δ   )   3   γ  33    E  Z 0   / 2  . When the LiNbO3 crystal is energized along the Z0 axis, the crystal spindle does not rotate, but the refractive index changes in the direction of the spindle.



Based on the analysis of the optical properties of the LiNbO3 crystal applying voltage in all directions, the Pockels effect of the LiNbO3 crystal is summarized in Table 3 below.



In summary, the use of LiNiO3 crystals for electro-optical modulation comprises the following situations. When the direction of the light is along the Z-axis (the direction of the axis when the crystal is not energized), if the direction of the external electric field is also along the optical axis, the two refracted rays corresponding to the perpendicular incident rays have the same refractive index. There is no phase difference in the propagation process of the crystal, so it is not easy to achieve an effective modulation effect. Therefore, when the direction of light is along the Z-axis, the direction of the electric field should be either the axis or the axis direction, and the modulation effect of the two methods is the same. When an electric field is applied along the axis, the refractive index ellipsoidal coordinate system will rotate 45° around the Z axis to become an O-X′Y′Z′ coordinate system, and this electro-optical modulation method is called the “light along the optical axis”. In the same way, when the direction of the electric field is along the Z-axis, the direction of the light should be the X-axis or Y-axis, and the modulation effect of the two methods is the same. In this paper, we take the direction of light transmission along the X-axis as an example and call this electro-optical modulation method the “perpendicular optical axis direction”.



LiNbO3 belongs to the C3v–3m crystal class. In the practical application process, the Kerr effect of LiNbO3 crystals is relatively weak compared with the Pockels effect, so the Kerr effect of the crystal will not be elaborated in this paper.





3. Three-Dimensional Ray Tracing Method for LiNbO3 Crystal Modulation


The traditional ray tracing method only analyzes the propagation characteristics of the rays in the two-dimensional plane, ignoring the changes in the characteristics of the rays in the vertical direction. In the actual electro-optical crystal, the propagation of light is three-dimensional, and the three-dimensional light can accurately simulate the propagation path, refraction, and reflection of light in the crystal and comprehensively consider the changes of light in all directions so as to accurately reflect the modulation effect of the crystal on the light. The modulation effect of electro-optical crystals on light is not only reflected in the change of the refractive index, but it also affects the polarization state of light. The three-dimensional ray tracing method can analyze the polarization state changes of light rays in crystals in detail, which is important for understanding the modulation mechanism of electro-optical crystals. In addition, tracing the propagation of light rays through the crystal makes it possible to accurately calculate the phase change of light as it passes through the crystal. Phase information is essential for understanding the interference and diffraction of light, as well as the performance of optical systems, helping to optimize the design and performance of electro-optical modulation devices. Therefore, based on the refractive index ellipsoid, the electro-optical modulation characteristics of LiNbO3 crystals are analyzed using the three-dimensional ray tracing method.



3.1. The 3D Coordinate System Construction


When using the three-dimensional ray tracing method to study the modulation performance of electro-optical crystals, it is necessary to construct the three-dimensional coordinate system of the crystals. The three-dimensional coordinate system of the crystal can completely capture the propagation behavior of light in all directions in the crystal, accurately describe the propagation path of light, and accurately define the polarization direction vector change of light.



In Section 2, we take a closer look at the electro-optical effects of LiNbO3 crystals. After careful analysis, the following conclusions are drawn: LiNbO3 crystals have two modulation methods. First, the light is transmitted along the optical axis of the crystal in the uncharged state; second, the light is transmitted perpendicular to the direction of the crystal when it is not energized. In this section, we will use the three-dimensional ray tracing method to physically simulate the modulation process of the two modulation methods of LiNbO3 crystals.



When the modulation mode of the LiNbO3 crystal assumes that “the optical axis of the crystal is parallel to the direction of the light”, after the voltage is applied at both ends of the crystal, it changes from a uniaxial crystal to a biaxial crystal. The optical axis of the crystal rotates 45 degrees around the Z-axis, and the three-dimensional coordinate system of the crystal is shown in Figure 2 below.



In Figure 2, O-xyz is the geometric coordinate system of the crystal, which is established by the crystal’s geometry. The x-axis, y-axis, and z-axis are along the crystal’s geometric edge and are perpendicular to each other.



In the geometric coordinate system O-xyz of LiNbO3 crystals, an incident ray ki enters the crystal from the air, and the angle between the negative direction of the ray in the z-axis is called the angle of incidence α, and the angle between the ray in the positive direction of the x-axis is called the azimuth ϕ. Thus, the incident ray ki can be expressed as follows:


    k   i   =  (       x ^       y ^       z ^       )   [      sin α cos ϕ       sin α sin ϕ       cos α      ]  ,  



(16)




where    x ^   ,    y ^   , and    z ^    are the unit direction vectors of the three axes in the geometric coordinate system O-xyz of LiNbO3 crystals, respectively.



When no voltage is applied at both ends of the LiNbO3 crystal, the optical axis of the crystal is parallel to the z-axis, and the dielectric principal axis coordinate system O-X0Y0Z0 coincides with the crystal geometric coordinate system O-xyz. After the modulation voltage is applied at both ends of the LiNbO3 crystal, the dielectric spindle coordinate system O-X0Y0Z0 rotates θ = 45° around Z0 to obtain the induced spindle coordinate system O-x1x2x3, and the relationship between the induced spindle coordinate system x1x2x3 and the crystal geometric coordinate system xyz can be expressed as follows:


   (         x ^    1          x ^    2          x ^    3        )  =  (       x ^       y ^       z ^       )   [      cos θ     − sin θ    0      sin θ     cos θ    0     0   0   1     ]  .  



(17)







Among them,      x ^    1    ,      x ^    2    , and      x ^    3     are the unit direction vectors of the x1-axis, x2-axis, and x3-axis in the induction principal axis coordinate system x1x2x3, respectively.



When the modulation mode of the LiNbO3 crystals assumed is “the optical axis of the crystal is perpendicular to the direction of light”, after the voltage is applied at both ends of the crystal, it remains uniaxial. The direction of the optical axis of the crystal remains unchanged, but the refractive index inside the crystal changes. The three-dimensional coordinate system of the LiNbO3 crystal is shown in Figure 3 below.



In Figure 3, O-xyz is the geometric coordinate system of the crystal; the optical axis direction of the crystal coincides with the y-axis direction, and the light direction follows the z-axis direction. When voltage is applied at both ends of the crystal, the inductive spindle coordinate system x1x2x3 of the crystal coincides with X0Y0Z0. The relationship between the sensing principal coordinate system x1x2x3 and the geometric coordinate system xyz can be expressed as follows:


   (         x ^    1          x ^    2          x ^    3        )  =  (       x ^       y ^       z ^       )   [     0   1   0     0   0   1     1   0   0     ]  .  



(18)







This paper constructs a three-dimensional coordinate system under two modulation modes for LiNbO3 crystals, laying a foundation for describing the crystal’s modulation characteristics, which is convenient for analyzing the electro-optical modulation characteristics of LiNbO3 crystals.




3.2. Birefringence Effect of LiNiO3 Crystals


Based on Huygens’ principle, light enters an isotropic medium from an isotropic medium, resulting in a birefringence effect. LiNbO3 crystals are uniaxial crystals in their natural state (when no voltage is added). When the incident light is incident with air to the uniaxial crystal, it will be refracted into two beams of light, one of which is called ordinary light, denoted as O-light, and its refractive index is no. The other beam is an anomalous light, called E-light, with a refractive index of ne. When a voltage is applied to the LiNbO3 crystal, the crystal transforms into a biaxial crystal. In this case, when the incident light enters the biaxial crystal, two abnormal beams of light are refracted, called fast and slow beams. In this paper, for expression and analysis, these two beams of light are represented by a-light and b-light, respectively. According to the electromagnetic field theory, the phase of light before and after entering the isotropic medium is the same, which can be expressed by the following equation:


   {       n i   k i  ⋅  x ^  = n k ⋅  x ^         n i   k i  ⋅  y ^  = n k ⋅  y ^        ,  



(19)




where ni and n are the refractive indices of incident and refracted light, respectively, and k is the vector of refracted light.



In the crystal geometric coordinate system O-xyz, when an incident ray ki enters the LiNbO3 crystal from the air, the angle of incidence of the ray is α, and the azimuth angle is ϕ. As shown in Figure 4, the incident ray ki is refracted on the crystal surface into a-light and b-light, and the wave normal vector of a-light is ka, which is used to describe the phase propagation direction of light. Similarly, the wave normal vector of b-light is kb.



Assuming that the incident ray vector ki is represented by Equation (20) in the three-dimensional coordinate system, the three-dimensional coordinates of the refracted light vector can be obtained by bringing the incident ray vector k into Equation (19), as follows:


   k  =  (       x ^       y ^       z ^       )   [     n i  sin α cos ϕ / n      n i  sin α sin ϕ / n       1 −  n i 2    sin  2  α /  n 2       ]  ,  



(20)




where    x ^   ,    y ^   , and    z ^    are the unit direction vectors of the three coordinate axes of the LiNbO3 crystal in the O-xyz coordinate system, ni is the refractive index of light in the incident medium, and n is the refractive index of refracted light in the LiNbO3 crystal.



In order to describe the birefringence effect of LiNbO3 crystals, the crystal’s refractive index needs to be calculated. According to Maxwell’s equation and the refractive index ellipsoid equation, the Fresnel equation for light in an anisotropic medium can be expressed as follows:


        k x   2     1   n 2    −  1   n 1 2       +       k y   2     1   n 2    −  1   n 2 2       +       k z   2     1   n 2    −  1   n 3 2       = 0 ,  



(21)




where kx, ky, and kz are the components of the refracted light vector in the direction of the refractive principal axis. n is the refractive index of refracted light, and n1, n2, and n3 are the principal refractive index of the LiNbO3 crystals. Bringing (20) into (21) yields the refractive index n of the ray.



Through the previous explanation of the modulation principle of LiNbO3 crystals, the refractive index of LiNbO3 crystals needs to be calculated according to the two modulation methods.




	(1)

	
The optical axis of the crystal is parallel to the direction of the light.









When the modulation mode of the crystal is to pass light along the optical axis, the voltage at both ends of the crystal changes from a uniaxial crystal to a biaxial crystal, and the optical axis of the crystal rotates by 45°. By introducing the refractive index Equation (11), the coordinate system transformation Formula (19), and Equation (20), describing the refractive index principal axis of LiNbO3 after charging into Equation (24), the system of equations regarding the refractive index can be obtained as follows:


  A  n 4  − B  n 2  + C = 0 .  



(22)







Parameters A, B, and C are expressed as follows:


  A =  n e 2  ,  



(23)






    B = 2  n e 2   (   n o 2  +  n E 2   )  − 2  n o   n E   n i 2   sin 2  α cos  (  2 β  )      −  n i 2   sin 2  α  [   n o 2  +  n E 2  −  n e 2   ]  ,    



(24)






    C =   (   n o 2  −  n E 2   )  2   n e 2  − 2  n o   n E   n i 2   n e 2   sin 2  α cos  (  2 β  )      +  n i 2   sin 2  α  [   (   n o 2  +  n E 2   )   n e 2  −    (   n o 2  −  n E 2   )   2   ]  .    



(25)







Solving Equation (22) provides two roots of the refractive index, i.e., the refractive indices of the birefringence a-light and b-light of LiNbO3 crystals, as follows:


   n a  =      B +    B 2  − 4 A C     2 A      ,  



(26)






   n b  =      B −    B 2  − 4 A C     2 A      ,  



(27)




where    n E  =   1 2    n o 3   γ  22     V d    , γ22 is the electro-optical coefficient of the LiNbO3 crystal.




	(2)

	
The optical axis of the crystal is perpendicular to the direction of the light.









When the modulation mode of the crystal is perpendicular to the optical axis, the optical symmetry of LiNbO3 remains unchanged, and it is still a uniaxial crystal. Equations (15), (18) and (20) are brought into Equation (21) to obtain the refractive indices na and nb of two refracted rays in the LiNbO3 crystal after an electric field is applied, as follows:


   n a  = D ,  



(28)






   n b  =    E 2  +     [   D 2  −  E 2   ]   n i 2    sin  2  α   sin  2  β    D 2       .  



(29)







Parameters D and E are expressed as follows:


  D =  n o  −   1 2    n o 3   γ  13     V d   ,  



(30)






  E =  n e  −   1 2    n e 3   γ  33     V d   .  



(31)







By bringing the refractive indices na and nb of the a- and b-light in LiNbO3 crystals into Equation (20), the refracted light wave vectors ka and kb can be obtained, as follows:


    k  a  =  (       x ^       y ^       z ^       )   [     n i  sin α cos ϕ /  n a       n i  sin α sin ϕ /  n a        1 −  n i 2    sin  2  α /  n a 2       ]  ,  



(32)






    k  b  =  (       x ^       y ^       z ^       )   [     n i  sin α cos ϕ /  n b       n i  sin α sin ϕ /  n b        1 −  n i 2    sin  2  α /  n b 2       ]  .  



(33)







Figure 5 depicts a schematic diagram of the propagation of anomalous light within a LiNbO3 crystal, assuming that the optical paths of the two refracted light wave vectors ka and kb in the crystal are La and Lb, since the length of the LiNbO3 crystal in the clear direction is L. The projection of the optical path La and Lb in the z-axis direction of the crystal is the length of the clear direction L of the crystal; the relationship between the optical path of the refracted light wave vector and the length of the clear direction can be expressed as follows:


  L = L a  (    k  a  ⋅   z ^    )  ,  



(34)






  L = L b  (    k  b  ⋅   z ^    )  .  



(35)







Assuming that the coordinates of the incident light ki on the surface of the LiNbO3 crystal incident point O are (x0, y0, z0), then the coordinates of the exit point of the two refracted light vectors ka and kb can be expressed as follows:


  (  x a  ,  y a  ,  z a  ) = (  x o  + L     (    k  a  ⋅   x ^    )     (    k  a  ⋅   z ^    )     ,  y o  + L     (    k  a  ⋅   y ^    )     (    k  a  ⋅   z ^    )     ,  z o  + L ) ,  



(36)






  (  x b  ,  y b  ,  z b  ) = (  x o  + L     (    k  b  ⋅   x ^    )     (    k  b  ⋅   z ^    )      y o  + L     (    k  b  ⋅   y ^    )     (    k  b  ⋅   z ^    )     ,  z o  + L ) .  



(37)







According to the coordinates of the exit points of the two refracted light vectors ka and kb, the Euclidean distance between the two exit points can be calculated as follows:


   D  a b   =      (   x a  −  x b   )   2  +    (   y a  −  y b   )   2  +    (   z a  −  z b   )   2    .  



(38)







The optical path length of the two refracted light vectors ka and kb within a LiNbO3 crystal can be expressed as follows:


  O L a =    2 π n  λ    L a  =    2 π L a  λ    n a    1   (    k  a  ⋅   z ^    )     ,  



(39)






  O L b =    2 π n  λ    L b  =    2 π L b  λ    n b    1   (    k  b  ⋅   z ^    )     .  



(40)







By calculation, the refractive index (na, nb), wave normal vector (ka, kb), and optical path (OLa, OLb) of LiNbO3 crystals are all functions of the ϕ of the angle of incidence α and the azimuth. The phase delay caused by the LiNbO3 crystals under any incident condition can be expressed as follows:


    Γ   =    2 π L  λ    [   n a    1   (    k  a  ⋅   z ^    )     −  n b    1   (    k  b  ⋅   z ^    )      ]       =    2 π L  λ    [   n a    1    1 −   sin  2  α /  n a 2       −  n b    1    1 −   sin  2  α /  n b 2        ]  .    



(41)







According to Equation (41), the phase delay caused by the birefringence effect of LiNbO3 crystals is mainly related to the angle of incidence (angle of incidence α and azimuth angle ϕ), the wavelength λ of the incident light, the length of the direction L, and the refractive index of the refracted light.





4. Analysis of Modulation Characteristics of LiNbO3 Crystals


This section mainly analyzes the changes in the modulation parameters of LiNbO3 crystals under the conditions of incidence at any angle of incidence and azimuth, such as refractive index and phase delay, analyzes the modulation law of electro-optical crystals, and explores the modulation performance of these crystals.



4.1. Modulation Propagation Characteristics of LiNbO3 Crystals


When the electro-optical modulation mode of LiNbO3 crystals assumed is “the optical axis of the crystal is parallel to the direction of clear light”, the voltage of the LiNbO3 crystal is applied along the X0 axis, and the uniaxial crystal changes from a biaxial crystal. The change in the refractive index due to the applied voltage can be expressed as follows:


   n E  =   1 2    n o 3   γ  22     V d   ,  



(42)




where no is the refractive index of ordinary light of LiNbO3 crystals in the natural state, γ22 is the electro-optical coefficient of the crystals, V is the voltage applied at both ends of the crystals, and d is the length of the voltage applied to the crystals.



When a ray of light is incident perpendicular to a LiNbO3 crystal, the angle of incidence α and azimuth ϕ of the ray are both equal to 0, at which point the phase delay between the two refracted rays resulting from the birefringence effect can be expressed as follows:


   Γ  α = 0   =    2 π  λ    n o 3   γ  22     V d   L .  



(43)







Bringing the condition that the external electric field is 0 into Equations (26) and (27), we can obtain the expression of the refractive index of the LiNbO3 crystal at any angle of incidence in the uniaxial state, as follows:


   n A  =  n o  ,  



(44)






   n B  =         n e   2   n o 2  − (  n o 2  −    n e   2  )  n i 2    sin  2  α      n e     .  



(45)







As can be seen from the above equation, the refractive index of a-light is constant and does not change with the change of angle of incidence and azimuth. The refractive index of b-light is related to the angle of incidence of the light ray, not the angle of refraction. The phase delay at this point can be expressed as follows:


    Γ |     V = 0    =    2 π  n o  L  λ    (      n o       n o 2  −  n i 2    sin  2  α      −     n e         n e   2  −  n i 2    sin  2  α       )  .  



(46)







When the phase delay    Γ  α = 0   = π   between the two refracted rays, the modulated voltage is called the half-wave voltage of the LiNbO3 crystal, and it can be expressed as follows:


   V π  =   λ  2  n o 3   γ  22        d L   .  



(47)







λ is the wavelength of the incident light, and the half-wave voltage modulated by the crystal is mainly related to the five parameters in Equation (47). Among them, no and γ22 are the performance parameters determined by the crystal’s internal structure, d and L are the parameters that describe the crystal size, and the larger the crystal aperture (d), the higher the modulation half-wave voltage. According to the basic parameters of LiNbO3 crystals provided in Table 2, the half-wave voltage Vπ = 2011.35V is calculated.



When the electro-optical modulation mode of LiNbO3 crystals assumed is “the optical axis of the crystal is perpendicular to the direction of clear light”, the voltage of the LiNbO3 crystal is applied along the Z0 axis, and the LiNbO3 crystal is still uniaxial after the voltage is applied. The change in the refractive index due to the applied voltage can be expressed as follows:


     n  E 1   =   1 2    n o 3   γ  13     V d   ,      n  E 2   =   1 2      n e   3   γ  33     V d   .    



(48)







Among them, no and ne are the refractive indices of the ordinary light and abnormal light of LiNbO3 crystals in the natural state, γ13 and γ33 are the electro-optical coefficients of the crystals, V is the voltage applied at both ends of the crystals, and d is the length of the voltage direction applied to the crystals.



Based on the amount of refractive index change caused by the voltage applied to the LiNbO3 crystal, the phase delay between the refracted rays when the light rays are incident perpendicular to the LiNbO3 crystal can be calculated as follows:


   Γ  α = 0   =    2 π  λ    (   n o  −  n e   )  L +    π L  λ     V d    (   n e 3   γ  33   −  n o 3   γ  13    )  .  



(49)







Compared with the modulation of the crystal optical axis parallel to the clear light direction, the phase delay here is not only caused by the electro-optical modulation but also by the delay term introduced by the crystal’s natural birefringence.



When the phase delay    Γ  α = 0   = π   between the two refracted rays, the modulated voltage is called the half-wave voltage of the LiNbO3 crystal, and when the optical axis of the crystal is perpendicular to the direction of the light, the half-wave voltage can be expressed as follows:


   V π  = λ d /  [  L  (   n e 3   γ  33   −  n o 3   γ  13    )   ]  .  



(50)







According to the basic parameters of the LiNbO3 crystal provided in Table 2, the half-wave voltage Vπ = 1429.66 V is calculated.




4.2. LiNbO3 Crystal Modulated Light Intensity and Field of View Analysis


When the angle of incidence of the ray is α, and the azimuth angle is ϕ, the phase difference   θ ( α , β )   of the birefringent rays ka and kb can be calculated according to Equation (41), as follows:


    θ ( α , β )   =    2 π L  λ    [   n a    1   (    k  a  ⋅   z ^    )     −  n b    1   (    k  b  ⋅   z ^    )      ]       =    2 π L  λ    [   n a    1    1 −   sin  2  α /  n a 2       −  n b    1    1 −   sin  2  α /  n b 2        ]  .    



(51)







After obtaining the phase difference of the refracted ray, in order to calculate the interference fringes, it is necessary to obtain the polarization direction   ϕ ( α , β )   of the refracted ray. The direction of polarization of the refracted rays is determined with the help of a refractive index ellipsoid, shown in Figure 6. An ellipsoid has two circular sections C1 and C2 passing through the center of the sphere, the normal ranges of these two sections N1 and N2, called the optical axis of the crystal, are in the X’OZ’ plane, and in the O-XYZ coordinate system, the unit normal is   ρ =   (     2   2   ,     2   2   , 0 )  T    of the optical axis surface. For ray k propagating in a non-optical axis direction, the center of the refractive index ellipsoid is a plane Q perpendicular to k, and its cross-section with the ellipsoid is an ellipse. The plane Q intersects the circles C1 and C2 at r1 and r2, and the length of the two is equal, so the principal axis direction of the ellipse Q is the direction of the angular bisector of r1 and r2, which is also the direction of polarization E of the ray k.



The 3D coordinates of the unit direction vectors of the optic axes N1 and N2 are denoted as    N 1   = ( cos  η  , 0 , sin  η )   and    N 2   = ( cos  η  , 0 ,  − sin η )  , respectively.  η  is the angle between the optic axis and the Z-axis, which can be expressed as follows:


  η = arctan (     n 1     n 3             n 2   2  −    n 3   2       n 1   2  −    n 2   2       ) .  



(52)







Since r1 is perpendicular to k and N1, r1 can be calculated, and in a similar way, r2 can also be calculated; the formula can be expressed as follows:


   {       r 1  =    k ×  N 1     |  k ×  N 1   |            r 2  =    k ×  N 2     |  k ×  N 2   |           .  



(53)







The polarization direction of the light rays is   E =   1 2   (  r 1  +  r 2  )  . The angle between the polarization direction and the optical axis surface can be expressed as follows:


  ϕ ( α , β ) = arcsin (    E ⋅ ρ    | E |   | ρ |     ) .  



(54)







Knowing the phase difference   θ ( α , β )   and the direction of polarization   ϕ ( α , β )  , the light intensity formula can be expressed as follows:


  I ( α , β ) =   sin  2  [ 2 ϕ ( α , β ) ]   sin  2  [    θ ( α , β )  2   ] .  



(55)







According to Equation (55), the interference pattern of the crystal calculates the time, and the simulation results are shown in Figure 7 below.



Figure 7a shows the distribution of light intensity after light passes through the crystal when the voltage V = 0 at both ends of the crystal, and the field angle of view is 4°. Figure 7b,c shows the influence of polarization direction on light intensity     sin  2  [ 2 ϕ ( α , β ) ]   and the effect of phase difference on light intensity     sin  2  [    θ ( α , β )  2   ]  , respectively. The field of view in (a), (b) and (c) was enlarged 1° to obtain Figure 7d–f. As can be seen from Figure 7d, the uniformity of the image center is good, and the image uniformity is poor at the edge of the field of view in the azimuth angles 45°, 135°, 225°, and 315°. This is due to the fact that the interference light intensity is composed of two parts: the homochromic line (shown in Figure 7b) and the isochromatic line (shown in Figure 7c). The homochromic line displays bright areas in the four directions of azimuth angles 45°, 135°, 225°, and 315°. Through the analysis of the simulation data, the light intensity in the 1° field of view in Figure 7d is less than 0.07, and it is considered that the central field of view is in a dark state at this time.



The voltage at both ends of the crystal is set to   V =  V π    during the simulation in Figure 7, and the simulation results are shown in Figure 8.



Figure 8d shows that the light intensity within 1° of the field of view is greater than 0.87, and the electro-optical modulation is considered to be bright at this time. However, the aberration at the edge of the field of view is large, and the source of the aberration is analyzed according to the interference intensity formula. In Figure 8e, the range of light intensity is 0.95–1; Figure 8f shows that the range of light intensity is 0.86–1. Therefore, the polarization direction   ϕ ( α , β )   has little effect on the light intensity within the 1° field of view, and the non-uniformity of the light intensity is mainly related to the phase difference   θ ( α , β )  .



Through the analysis of the propagation characteristics of LiNbO3 crystals, the effective field of view of the LiNbO3 crystals selected in this paper is about 1° for electro-optical modulation. At a field of view of 1°, the uniformity of the crystal is better. It should be noted that the field of view of a crystal is related to its size, so in practical applications, the appropriate crystal should be selected for electro-optical modulation according to different application scenarios.



The effect of temperature on light intensity is more significant when it comes to optical materials such as LiNbO3 crystals. On the one hand, the thermo-optical effect of LiNbO3 crystals will change the refractive index along with temperature change, affecting the propagation path and intensity of light in the crystal. Thermal expansion can also change the crystal size due to temperature changes, affecting optical parameters and light intensity. At the same time, temperature also has an effect on the output light intensity and spectral characteristics of emitting light sources such as semiconductor lasers. To improve the results, temperature control can be employed, such as the use of an incubator or thermoelectric cooler. Material selection and optimization, such as the selection of thermally stable materials or the optimization of the LiNbO3 crystal growth process, can also be employed. Optical design optimization can also be carried out, compensation or adaptive design methods can be adopted, and the structure and parameters of the optical system can be optimized to reduce the influence of temperature on light intensity and improve the performance and stability of the optical system.





5. Conclusions


Based on the refractive index ellipsoid theory, the propagation characteristics of polarized light in LiNbO3 crystals are studied using the three-dimensional ray tracing method, and the optical properties of LiNbO3 crystals under different conditions are analyzed by establishing a refractive index ellipsoid analysis model. The model accurately describes the refractive index changes of crystals, providing a powerful tool for studying the birefringence and Pockels effect of crystals. The Pockels effect on the model LiNbO3 crystals was studied in detail, revealing the variation of the optical properties of the crystal under the action of an external electric field. Secondly, this paper clarifies the difference in the optical characteristics of the crystal when the optical axis is parallel to the clear direction and perpendicular to the clear direction, which provides an important basis for the design and optimization of electro-optical modulation. Finally, we propose a three-dimensional ray tracing method for electro-optical crystals and construct a three-dimensional coordinate system. This method can accurately simulate the propagation path of light in the crystal, which provides an effective means to study the modulation propagation characteristics of the crystal. The modulated light intensity and field of view of the electro-optical crystal were analyzed. The relationship between the light intensity and field angle and the crystal parameters, electric field strength, and other factors was clarified. The effective field of view of the LiNbO3 crystals selected in this paper was about 1°. This provides a basis for the design of electro-optical modulation devices with appropriate light intensities and fields of view. This series of research results not only enriches the understanding of the electro-optical characteristics of LiNbO3 crystals but also provides an important theoretical basis and practical guidance for designing and optimizing electro-optical modulation devices based on LiNbO3 crystals. Electro-optical crystal modulation has great application prospects in the fields of high-speed signal modulation, optical switching and routing, Q-switched switching, and microwave signal generation and processing. Future research can be extended to different types of electro-optical crystals and more complex optical systems to promote the continuous development of optoelectronic technology.
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Figure 1. The refractive index ellipsoid of a crystal. 
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Figure 2. Cartesian coordinate system of LiNbO3 crystals when the optical axis of the crystal is parallel to the direction of clear light. 
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Figure 3. Cartesian coordinate system of LiNbO3 crystals when the optical axis of the crystal is parallel to the direction of clear light. 
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Figure 4. Birefringence at the interface between an isotropic medium and a LiNbO3 crystal. 
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Figure 5. Propagation of abnormal light in LiNiO3 crystals. 
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Figure 6. Refractive index ellipsoid. 
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Figure 7. Crystal conoscopic interferogram when V = 0: (a) interference light intensity distribution; (b) influence of polarization direction on light intensity     sin  2  [ 2 ϕ ( α , β ) ]  ; (c) influence of phase difference on light intensity     sin  2  [    θ ( α , β )  2   ]  ; (d–f) is a magnification of the field of view at the center of (a–c) of the figure. 
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Figure 8. Crystal conoscopic interferogram when V = Vπ: (a) interference light intensity distribution; (b) influence of polarization direction on light intensity     sin  2  [ 2 ϕ ( α , β ) ]  ; (c) influence of phase difference on light intensity     sin  2  [    θ ( α , β )  2   ]  ; (d–f) is a magnification