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Abstract: In this paper, a design of vanadium dioxide for dynamic color gamut modulation based
on Fano resonance is proposed. This approach facilitates color modulation by manipulating the
phase transition state of vanadium dioxide. The device integrates both broadband and narrowband
filters, featuring a structure consisting of a top silver mesh, a layer of vanadium dioxide, and a
Fabry–Pérot cavity, which allows for effective modulation of the reflectance spectrum. Simulation
results demonstrate that when vanadium dioxide is in its insulating state, the maximum reflectivity
observed in the device spectrum, reaching 43.1%, appears at 475 nm. Conversely, when vanadium
dioxide transitions to its metallic state, the peak wavelength shifts to 688 nm, accompanied by an
increased reflectance peak of 59.3%. Analysis of electric field distributions reveals that the intensity
caused by surface plasmonic resonance dominates over the excited Fano resonance while vanadium
dioxide is in its insulating state, which is the opposite of when vanadium dioxide transitions to
its metallic state. This behavior exhibits an excellent dynamic color-tuning capability. Specifically,
the phase transition of vanadium dioxide results in a color difference ∆E2000 of up to 36.7, while
maintaining good color saturation. This technique holds significant potential for applications such as
dynamic color display and anti-counterfeit labeling.

Keywords: vanadium dioxide; Fano resonance; phase transition; color display

1. Introduction

Traditional chemical pigments have been widely utilized since ancient times due to
their advantages of simple production and low cost. However, with societal advancements,
traditional chemical pigments characterized by low color saturation, low brightness, and
heavy pollution are gradually becoming inadequate for meeting the demands for rapid
progress in color display, anti-counterfeiting, and other applications. To address these
challenges, various artificial micro-nano structures, such as multilayer thin films [1–5],
thin film nanocavities [6–8], plasma nanostructures [9,10], dielectric nanostructures [11–13],
and photonic crystals [14,15] have been employed. These structures can interact with
incident light on a subwavelength scale, enabling modulation of the reflected/incident
light spectrum by modulating the various resonances involved in the excitation processes.
The color filters fabricated using these methods exhibit capabilities for generating a wide
range of structural colors while offering high color saturation and brightness. Consequently,
they are gradually replacing traditional chemical coloring techniques in the fields such
as color printing [16–18], optical anti-counterfeiting [19,20], data encryption [21,22], data
storage [23], display technology [24–28], and photovoltaic cells [29].

Typically, color filters based on micro-nano structures utilize metal plasmonic res-
onance [30], Fabry–Pérot (FP) resonance, or guided mode resonance to generate colors.
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However, these spectra often encounter challenges in further narrowing the full width at
half maximum (FWHM) and peak value of the resonance spectra to improve both color
saturation and brightness. In recent years, researchers have increasingly emphasized the
application of Fano resonance for color display. By combining a broadband filter with a
narrowband filter, the excitation of Fano resonance produces a well-known asymmetric line
shape characterized by a sharp peak and high intensity. Elkabbash et al. [31] investigated
the structural coloring properties of Fano resonance optical coatings (FROCs) and designed
FROC devices consisting of silver (Ag)-germanium (Ge)-titanium dioxide (TiO2)-Ag, utiliz-
ing FP cavities along with absorbing thin films of Ge to achieve the desired Fano resonance.
The incorporation of a silicon dioxide layer to suppress short-wavelength band reflections
significantly improves the color purity (up to 99%) and expands color range coverage (up
to 61% of the CIE color space). Chen et al. [32] explored the Fano resonance achieved
by embedding a monolayer of tungsten disulfide (WS2) within an FP cavity, successfully
demonstrating the Fano resonance phenomenon. Through the numerical study of coupled
mode theory (CMT) and the finite difference time domain method (FDTD), it was deter-
mined that the coupling strength for Fano resonance could reach 14.1 meV due to the large
dipole jump moments of WS2. By adjusting parameters such as the height of the FP cavity,
the position of the WS2 monolayer, and the refractive index of the medium in the FP cavity,
the Fano resonance line shape could be manipulated, and the peak transmittance of the
device reached up to 55%.

However, these designed color filters need to alter the color response of the device
by changing the structural parameters, which means that once fabricated, these devices
are limited to producing fixed colors, which poses challenges in meeting flexible and
practical demands. Therefore, dynamic color gamut devices are garnering increasing
attention. Phase change materials (PCMs), such as antimony trisulfide (Sb2S3), diantimony
triselenide (Sb2Se3), and vanadium dioxide (VO2), can alter their refractive indices simply
through temperature changes, causing the change for optical properties of the device. This
characteristic has led PCM-Fano resonance optical coatings integrated with phase change
materials to become popular among researchers. Huang et al. [33] integrated the PCM
material Sb2Se3 into FROC systems, enabling tunable structural colors in both reflection and
transmission modes through photonic Fano resonance. The color gamut of this four-layer
thin-film optical coating could cover red, green, and blue, achieving peak reflections of up to
80%. However, the device exhibited poor color saturation. Prabhathan et al. [34] proposed
a steganographic nano-optical coating (SNOC), utilizing Sb2S3 to achieve color-tunable
optical Fano resonance, resulting in the dynamic tuning across the full-color gamut within
the visible wavelength range, with peak reflectance reaching 78%, and demonstrating
the capability to display the full-color gamut. These devices have a common defect: the
limitation observed in these devices is their restricted dynamic color rendering range,
which means the color difference caused by the PCM phase change is minimal.

In this paper, we proposed a design of VO2 for dynamic color gamut modulation
based on Fano resonance. By utilizing the excited Fano resonance peak, the color difference
produced by the VO2 phase transition can be improved while ensuring good color satura-
tion of the color produced by the device, which demonstrates its stronger capability for
dynamic color rendering than that of the existing VO2 color filters. Specifically, the phase
transition of VO2 results in a color difference ∆E2000 of up to 36.7, while maintaining good
color saturation. Simulated spectral and electric field results demonstrate the superiority
of this technique. Based on the above results, we designed a simple pattern to explore the
initial applications of this technique, demonstrating its significant potential for research
fields such as dynamic color display and anti-counterfeit labeling.
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2. Materials and Methods
2.1. Fano Resonance

When a resonance characterized by broader spectral range and a resonance character-
ized by narrower spectral range couple in the near field, they can lead to destructive inter-
ference, resulting in a sharp asymmetric features in the spectral lines [35], which is referred
as Fano resonance [31,36]. The Fano fitting formula can be described by Equation (1) [37].

σ =
(q + ε)2

1 + ε2 (1)

In Equation (1), σ represents the absorption spectrum of Fano resonance. q denotes
the asymmetric parameter of the Fano resonance spectral line. ε is defined as 2(E − EF)/Γ,
where EF is the resonance energy and Γ is the width of the resonance spectral line.

2.2. Optical Properties of VO2

VO2 has been extensively studied since its discovery in 1959 [38]. The phase transition
properties of VO2 have garnered significant interest among researchers [39], as illustrated
by the refractive index curves before and after the phase transition depicted in Figure 1.
VO2 remains in an insulating state below 68 ◦C (341 K); however, it undergoes a phase
transition from insulator(I) to metal(M) when the temperature exceeds this critical threshold.
This transition is accompanied by a significant decrease in the refractive index when VO2
enters its metallic state. Such optical properties offer opportunities for designing dynamic
gamut color filters. Furthermore, the relatively low phase transition temperature of VO2
compared to other PCMs means that it requires fewer conditions for initiating the phase
transition, thereby expanding its applicability in optical design.
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Figure 1. Refractive index of VO2, (a) in the insulating state, (b) in the metallic state.

3. Structure and Design

The FROC device designed in this paper is illustrated in Figure 2. Figure 2a,b present
the top view and front view of the device for a single period, respectively, and Figure 2c
shows the schematic of the device configured for multiple periods to form an array. The
device consists of an Ag mesh, a VO2 layer, an Ag layer, a silicon (Si) layer, and an Ag
substrate layer arranged sequentially from top to bottom. The period P is set at 200 nm,
length L is 180 nm, heights h1, h2, and h3 are all maintained at 40 nm, height h4 is specified
as 50 nm, and substrate thickness h5 is 200 nm. The structure was simulated using FDTD
Solutions with material data from Palik [40] and Rakić [41]. Mesh sizes (dx, dy, dz) were
uniformly maintained at 3 nm throughout the simulation process. The device is illuminated
by transverse magnetic (TM) light.
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Figure 2. Structure of the designed FROC; (a) top view, (b) front view. (c) Schematic of the FROC array.

4. Results and Analysis

The FROC device may consist of a broadband filter and a narrowband filter. The
reflection spectrum of the broadband filter and the narrowband filter are shown in Figure 3.
The broadband filter consists of a meshed Ag layer, VO2 layer, and Ag layer, as depicted in
the upper part of Figure 2b. This filter utilizes an SPR, which generates a broad valley in
the spectrum, and causes a significant change with the phase transition of VO2 changes.
As shown in Figure 3a, when VO2 is in its insulating state, the trough of the reflection
spectrum is located at 673 nm, whereas after the VO2 phase transition, the trough of the
spectrum is blue-shifted to 591 nm, and such a spectral change provides the basis for the
dynamic color-rendering performance of the FROC device. Conversely, the narrowband
filter consists of an Ag layer, Si layer, and Ag layer, as depicted in the bottom part of
Figure 2b, which is a classical FP cavity resonance structure. By varying the thickness of the
silicon layer, the thickness of the FP cavity can be varied and the reflection spectrum shifted.
As shown in Figure 3b, the narrowband filter produces two distinct troughs, one located at
approximately 418 nm with a trough reflectance value of around 51% and another at about
711 nm with a trough value near 19%.
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Figure 3. Reflection spectrum of (a) broadband filter, (b) narrowband filter.

The reflectance spectra of the FROC device are presented in Figure 4a, demonstrating
variations induced by changes in the device temperature that facilitate phase transitions
in VO2. This spectral result exhibits an asymmetric line characteristic of Fano resonance
phenomena in the long-wavelength region of the spectrum. A comparative analysis with
the reflection spectra from both broadband and narrowband filters indicates that within the
short-wavelength region of the visible spectrum, the reflection spectra of the device primar-
ily originated from the upper broadband filter, and there is minimal impact on performance
due to a trough observed around 440 nm in the narrowband filter. In contrast, within the
long-wavelength range of the visible spectrum, both the two filters are effectively coupled
to excite Fano resonance effects, resulting in resonance peaks appearing at wavelengths of
approximately 695 nm and 688 nm, with a reflectance peak reaching up to 40.2% when VO2
exists in its insulating state and increasing to 59.3% when it transitions into its metallic state,
respectively. Their corresponding chromaticity coordinates have been calculated from the
spectral data and plotted in the CIE1931 chromaticity diagram. As illustrated in Figure 4b,
by modulating the phase transition state of VO2, the device demonstrates its capability
to reflect two distinct colors, blue and fuchsia, with a chromatic difference ∆E2000 as high
as 36.7. Compared with the existing FROC design, this device can maintain good color
saturation while maintaining an excellent dynamic color rendering range.
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Figure 4. (a) Reflection spectrum when incident light vertically irradiates. (b) Chromaticity coordi-
nates marked in the CIE1931 chromaticity diagram according to the spectrum shown in (a).

The variation in the thickness of the VO2 layer (h2) from 20 nm to 60 nm at a step of
10 nm significantly influences the reflectance spectra of the broadband filter, as illustrated
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in Figure 5a. The corresponding results for the reflectance spectra of the FROC device
are presented in Figure 5b. As the thickness of VO2 increases, a red shift is observed in
the spectrum, which serves as a primary factor influencing the short-wavelength band
spectrum of the FROC device. The increase in the thickness of the broadband filter leads
to enhanced absorption and reflection, resulting in reduced energy leakage to the lower
narrowband filter. Consequently, this suppression diminishes Fano resonance within
the long-wavelength band of the FROC device, leading to a notable decrease in its long-
wavelength band reflectance. The corresponding chromaticity coordinates derived from
the spectral data of Figure 5b are plotted in the CIE1931 chromaticity diagram, as depicted
in Figure 5c. When the VO2 layer is in the insulating state and its thickness varies from
20 nm to 60 nm at a step of 10 nm, sequentially calculated chromaticity coordinates are
(0.500, 0.360), (0.297, 0.204), (0.205, 0.297), (0.278, 0.345), and (0.316, 0.348). In contrast,
when the VO2 layer transitions into the metallic state with varying thickness from 20 nm to
60 nm, these chromaticity coordinates are (0.458, 0.370), (0.469, 0.267), (0.264, 0.185), (0.196,
0.272), and (0.233, 0.317). It is evident that the color variation within this range for the
FROC device follows an order from orange through red, then to purple, blue, and green
while exhibiting decreased saturation, particularly within the green region.
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Figure 5. Reflection spectra (a) of the broadband filter (upper part of the FROC), (b) of the FROC,
when h2 is varied from 20 nm to 60 nm at a step of 10 nm. (c) Chromaticity coordinates marked in the
CIE1931 chromaticity diagram according to the spectrum shown in (b). The black solid lines show
the movement trajectory of the chromaticity coordinates when VO2 is in its insulating state, and the
white dashed lines show the movement trajectory of the chromaticity coordinates when VO2 is in its
metallic state.

As illustrated in Figure 6a, the variation in the Ag layer thickness (h3) from 10 nm
to 40 nm at a step of 10 nm significantly influences the reflection spectra of the FROC
device. Similar to the effects observed with variations in the thickness of the VO2 layer
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(h2), an increase in the thickness of the Ag layer (h3) leads to enhanced absorption and
reflection, which results in a significant reduction in the intensity of Fano resonance. The
corresponding chromaticity coordinates are derived from the spectral data and plotted in
the CIE1931 chromaticity diagram, as depicted in Figure 6b. When VO2 is in its insulating
state, the reflected colors change from the purplish-red region to the blue region. Conversely,
when VO2 transitions into its metallic state, the color coordinates shift leftward, while
remaining within the violet-red region.
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Figure 6. (a) Reflection spectrum of the FROC when h3 is varied from 10 nm to 40 nm at a step
of 10 nm. (b) Chromaticity coordinates marked in the CIE1931 chromaticity diagram according to
the spectrum shown in (a). The black solid lines show the movement trajectory of the chromaticity
coordinates when VO2 is in its insulating state, and the white dashed lines show the movement
trajectory of the chromaticity coordinates when VO2 is in its metallic state.

The reflectance spectra of the broadband filter are presented in Figure 7a as the length
L of the top square mesh is varied from 190 nm to 130 nm at a step of 10 nm. The results
for the reflectance spectra of the FROC device are shown in Figure 7b. The length of L was
altered to change the duty cycle of the silver mesh while maintaining a constant period P.
The duty cycle is defined as D = 1 − ( L

P )
2
, where L is the length of the square mesh and P

is the period of the device. As L decreases, the duty cycle gradually increases, which leads
to both a blue shift in the spectrum and an increased reflectance intensity for the broadband
filter. The reflectance spectrum of the FROC exhibits a similar trend to that observed with
the broadband filter; however, it is noteworthy that while its position remains essentially
unchanged, this pertains specifically to where Fano resonance peaks occur within the long-
wavelength band. The corresponding chromaticity coordinates derived from the spectral
data depicted in Figure 7b have been calculated and plotted in the CIE1931 chromaticity
diagram, as illustrated in Figure 7c. When VO2 is in its insulating state and L decreases from
190 nm to 130 nm at a step of 10 nm, the sequentially recorded chromaticity coordinates
for the FROC are (0.220, 0.315), (0.204, 0.287), (0.200, 0.264), (0.228, 0.372), (0.228, 0.239),
(0.242, 0.242), and (0.264, 0.243). And when VO2 transitions into its metallic state, the
chromaticity coordinates are (0.267, 0.193), (0.264, 0.183), (0.268, 0.185), (0.345, 0.337), (0.279,
0.210), (0.288, 0.226), and (0.314, 0.239). The colors reflected from the device predominantly
fall within both blue and fuchsia regions. It is worth noting that when L is set to 160 nm,
the device reflects blue-green (insulating state), and yellowish (metallic state), exhibiting a
color difference ∆E2000 up to 28.1.
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Figure 7. Reflection spectra (a) of the upper broadband filter, (b) of the FROC, when L is varied from
190 nm to 130 nm at a step of 10 nm. (c) Chromaticity coordinates marked in the CIE1931 chromaticity
diagram according to the spectrum shown in (b). The black solid lines show the movement trajectory
of the chromaticity coordinates when VO2 is in its insulating state, and the white dashed lines show
the movement trajectory of the chromaticity coordinates when VO2 is in its metallic state.

Varying the thickness of the Si layer (h4), we observed that as the thickness of the
Si layer increases from 30 nm to 70 nm at a step of 10 nm, the reflection spectra of the
narrowband filter are as shown in Figure 8a. The results of the reflection spectra of the
FROC devices are shown in Figure 8b. A red shift occurs in the narrowband filter spectra
with the increase in the Si layer, accompanied by an enlargement of the reflection troughs
located within the short-wavelength band. In contrast, a similar red shift is observed for
the position of the Fano resonance peak within the reflection spectrum of the FROC, when
compared to that of the narrowband filter. Their corresponding chromaticity coordinates
were calculated from the spectral data of Figure 8b and plotted in the CIE1931 chromaticity
diagram, as illustrated in Figure 8c. When VO2 is in its insulating state and h4 increases
from 30 nm to 70 nm at a step of 10 nm, the sequentially recorded chromaticity coordinates
for FROC are (0.283, 0.271), (0.219, 0.222), (0.204, 0.287), (0.212, 0.300), and (0.220, 0.300).
And when VO2 transitions into its metallic state, the chromaticity coordinates are (0.247,
0.239), (0.295, 0.181), (0.264, 0.183), (0.234, 0.182), and (0.225, 0.208). Although variations
in the thickness of the Si layer significantly affect the reflectance spectrum of the device,
they exert only a minor influence on the color coordinates of the device; thus, it can be
concluded that the colors of the FROC predominantly reside within blue (insulating state)
versus fuchsia (metallic state) regions.
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Figure 8. Reflection spectra (a) of the upper broadband filter, (b) of the FROC, when h4 is varied from
30 nm to 70 nm at a step of 10 nm. (c) Chromaticity coordinates marked in the CIE1931 chromaticity
diagram according to the spectrum shown in (b). The black solid lines show the movement trajectory
of the chromaticity coordinates when VO2 is in its insulating state, and the white dashed lines show
the movement trajectory of the chromaticity coordinates when VO2 is in its metallic state.

To elucidate the underlying physics of the FROC, the electric field distributions of both
the broadband filter and FROC were calculated separately in the x-z plane for both insulator
and metal states of VO2. The results are illustrated in Figure 9. The broadband filter located
in the upper layer excites the SPR, which generates a strong electric field distribution at
the corners of the silver mesh. In comparison to Figure 9a, the resonance that appeared in
Figure 9b is weaker, as 688 nm is farther away from the resonant wavelength (591 nm) of
the SPR. When the FROC is assembled, partial energy transmits through the mid-Ag layer,
leading to FP resonance within the narrowband filter; this leads to an extra-strong electric
field appearing at the top of the broadband filter. Combined with the asymmetric line shape
observed in its spectrum, this phenomenon confirms that our device effectively excites Fano
resonance. Notably, the Fano resonance depicted in Figure 9d exhibits greater strength
than that shown in Figure 9c. Fano resonance facilitates transmission of the electric field
energy across different cycles within this structure, significantly influencing reflectance
spectra. When VO2 is insulating, SPR predominates over the excited Fano resonance;
thus, it primarily affects the entire reflection spectra with a maximum reflectivity reaching
43.1% located at 475 nm. Conversely, when VO2 transitions to its metallic state, Fano
resonance takes precedence within these spectra, demonstrating a peak reflectance reaching
up to 59.3% at a wavelength of 688 nm. The substantial alteration observed within these
spectra leads to a significant color difference before and after the FROC phase change. This
phenomenon explains the excellent dynamic color rendering capability of the device.
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Figure 9. Electric field distributions of the broadband filter in the x-z plane; (a) wavelength of 695 nm
light normally illustrated on VO2 (insulating state); (b) wavelength of 688 nm light vertically irradiates
on VO2 (metallic state). Electric field distributions of the FROC in the x-z plane; (c) wavelength of
695 nm light vertically irradiates on VO2 (insulating state); (d) wavelength of 688 nm light vertically
irradiates on VO2 (metallic state). The structures of the broadband filter and FROC depicted by the
solid black lines are shown in the figure.

Based on the aforementioned analysis of the FROC performance, the device is ini-
tially investigated for applications in color display and anti-counterfeiting. As shown in
Figure 10a, the pattern of “USST” consists of FROC arrays, where L is set to 160 nm while
the remaining sections of the square grid are left unprepared (L is set to 0). The “USST”
pattern becomes distinctly visible when VO2 is in its metallic state; however, it nearly com-
pletely vanishes after the heating phase transition. This observation indicates that when
VO2 is in its metal state, the “USST” character is obvious, whereas after undergoing a phase
change, the pattern almost entirely disappears. This phenomenon highlights the potential
application of the device in the field of anti-counterfeiting. As depicted in Figure 10b,
by merely varying the length L of the square grid (190 nm vs. 160 nm) along with the
temperature adjustments, the device can reflect four distinct colors, blue, purple, green,
and yellowish, which shows the potential utility of the device in color display applications.
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insulating or metallic state and the length L is set as 190 nm or 160 nm, respectively.

5. Conclusions

In this paper, we proposed a design for VO2 that facilitates dynamic color gamut mod-
ulation based on Fano resonance. This device achieves color modulation by manipulating
the phase transition state of VO2, which combines both broadband and narrowband filters.
Simulation results indicate that when the VO2 is in its insulating state and metallic state,
respectively, the maximum reflectivity of the device is observed at 475 nm (reaching 43.1%)
and 688 nm (reaching 59.3%), respectively. This phenomenon exhibits that the design
enables an excellent dynamic color tuning capability with a color difference ∆E2000 reaching
up to 36.7, while maintaining good color saturation. Electric field distribution analysis
reveals that the SPR intensity is stronger than that of the excited Fano resonance when
VO2 is in its insulating state; conversely, Fano resonance predominates the spectrum when
VO2 transitions to its metallic state. A dynamic color display can be achieved through the
formation of arrays of FROC devices. A “USST” pattern has been developed, which can
be reversibly switched between visibility and invisibility by altering temperature, thereby
offering new possibilities for anti-counterfeit labels. Furthermore, this device exhibits the
ability to display a wide range of colors, including blue, fuchsia, green, and pale yellow by
simply varying either the length L of the square grid or adjusting the temperature of the
device. In summary, this study demonstrates a novel FROC device that not only enables
dynamically tunable reflective colors, but also provides extensive applications, such as
color display and anti-counterfeiting.
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