Residual Trifluorosulfonic Acid in Amino-Functionalized Covalent Triazine Frameworks for Boosting Photocatalytic Hydrogen Evolution
<p>(<b>a</b>) FT-IR spectra, (<b>b</b>) XPS survey spectra, (<b>c</b>) high-resolution N 1s XPS spectra and (<b>d</b>) TG spectra of CTF-NH<sub>2</sub>-10 and CTF-NH<sub>2</sub>-10-F.</p> "> Figure 2
<p>SEM images and water contact angles of (<b>a</b>,<b>c</b>,<b>e</b>) CTF-NH<sub>2</sub>-10-F and (<b>b</b>,<b>d</b>,<b>f</b>) CTF-NH<sub>2</sub>-10.</p> "> Figure 3
<p>(<b>a</b>) H<sub>2</sub>-evolving rates of CTF-NH<sub>2</sub> and CTF-NH<sub>2</sub>-F (the values along the horizontal axis represent the mole ratio between dicyanobenzene and amino monomer), (<b>b</b>) photocatalytic H<sub>2</sub> evolution of CTF-NH<sub>2</sub>-10, CTF-NH<sub>2</sub>-10-F, CTF-1 and CTF-1-F, (<b>c</b>) wavelength-dependent AQY values (at 420 nm, 450 nm, 520 nm) and (<b>d</b>) photostability test of CTF-NH<sub>2</sub>-10-F.</p> "> Figure 4
<p>(<b>a</b>) EIS Nyquist plots, (<b>b</b>) photocurrent response curves, (<b>c</b>) steady-state PL spectra, (<b>d</b>) and time-resolved PL decay spectra of CTF-NH<sub>2</sub>-10 and CTF-NH<sub>2</sub>-10-F.</p> "> Figure 5
<p>(<b>a</b>) EIS Nyquist plots, (<b>b</b>) photocurrent response curves, (<b>c</b>) steady-state PL spectra, and (<b>d</b>) time-resolved PL decay spectra of CTF-NH<sub>2</sub>-10/Pt and CTF-NH<sub>2</sub>-F-10/Pt.</p> "> Figure 6
<p>(<b>a</b>) UV–vis diffuse reflectance spectra, (<b>b</b>) Tauc plots, (<b>c</b>,<b>d</b>) Mott–Schottky plots, (<b>e</b>) XPS-valence spectra, and (<b>f</b>) band diagrams of CTF-NH<sub>2</sub>-10 and CTF-NH<sub>2</sub>-10-F.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Samples
2.2. Photocatalytic Hydrogen Evolution
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608. [Google Scholar] [CrossRef] [PubMed]
- Hota, P.; Das, A.; Maiti, D.K. A short review on generation of green fuel hydrogen through water splitting. Int. J. Hydrogen Energy 2023, 48, 523–541. [Google Scholar] [CrossRef]
- Yan, Z.; Yin, K.; Xu, M.; Fang, N.; Yu, W.; Chu, Y.; Shu, S. Photocatalysis for synergistic water remediation and H2 production: A review. Chem. Eng. J. 2023, 472, 145066. [Google Scholar] [CrossRef]
- Meng, J.Y.; Huang, Y.M.; Wang, X.L.; Liao, Y.F.; Zhang, H.H.; Dai, W.L. Photocatalytic Production of Hydrogen Peroxide from Covalent-Organic-Framework-Based Materials: A Mini-Review. Catalysts 2024, 14, 429. [Google Scholar] [CrossRef]
- Li, Y.; Song, X.; Zhang, G.; Wang, L.; Liu, Y.; Chen, W.; Chen, L. 2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution. ChemSusChem 2022, 15, e202200901. [Google Scholar] [CrossRef]
- He, T.; Zhao, Y. Covalent Organic Frameworks for Energy Conversion in Photocatalysis. Angew. Chem. Int. Ed. 2023, 62, e202303086. [Google Scholar] [CrossRef]
- Zhao, C.; Han, C.; Yang, X.; Xu, J. Synthesis of two-dimensional ultrathin photocatalytic materials towards a more sustainable environment. Green Chem. 2022, 24, 4728–4741. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Hao, M.; Xie, Y.; Liu, X.; Yang, H.; Waterhouse, G.I.N.; Wang, X.; Ma, S. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun. 2023, 14, 1106. [Google Scholar] [CrossRef]
- López-Magano, A.; Daliran, S.; Oveisi, A.R.; Mas-Ballesté, R.; Dhakshinamoorthy, A.; Alemán, J.; Garcia, H.; Luque, R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. Adv. Mater. 2023, 35, 2209475. [Google Scholar] [CrossRef]
- An, B.; Zheng, B.; Liu, Z.; Wu, Z.; Wu, M.; Wu, W. Covalent organic frameworks for photochemical organic synthesis. Curr. Opin. Green Sustain. Chem. 2023, 41, 100798. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, D.; Wang, Y. Covalent Organic Frameworks Based Heterostructure in Solar-To-Fuel Conversion. Adv. Funct. Mater. 2023, 33, 2304071. [Google Scholar] [CrossRef]
- Rahman, T.U.; Roy, H.; Fariha, A.; Shoronika, A.Z.; Al-Mamun, M.R.; Islam, S.Z.; Islam, M.S.; Marwani, H.M.; Islam, A.; Alsukaibi, A.K.D.; et al. Progress in plasma doping semiconductor photocatalysts for efficient pollutant remediation and hydrogen generation. Sep. Purif. Technol. 2023, 320, 124141. [Google Scholar] [CrossRef]
- Kao, J.-C.; Teng, T.-Y.; Lin, H.-W.; Tseng, F.-G.; Ting, L.-Y.; Bhalothia, D.; Chou, H.-H.; Lo, Y.-C.; Chou, J.-P.; Chen, T.-Y. Single Atom Ag Bonding Between PF3T Nanocluster and TiO2 Leads the Ultra-Stable Visible-Light-Driven Photocatalytic H2 Production. Small 2024, 20, 2403176. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, J.; Huang, D.; Meng, S.; Zhang, Z.; Li, L.; Miao, T.; Chen, S. Trace Amount of SnO2-Decorated ZnSn(OH)6 as Highly Efficient Photocatalyst for Decomposition of Gaseous Benzene: Synthesis, Photocatalytic Activity, and the Unrevealed Synergistic Effect between ZnSn(OH)6 and SnO2. ACS Catal. 2016, 6, 957–968. [Google Scholar] [CrossRef]
- Bhalothia, D.; Wang, Z.-X.; Ting, L.-Y.; Chuang, Y.-T.; Chou, J.-P.; Lin, H.-W.; Tseng, F.-G.; Chou, H.-H.; Chen, T.-Y. Electron Coupling between the Linear-Conjugated Polymer Nanocluster and TiO2 Nanoparticle Enables a Quantum Leap for Visible Light-Driven Hydrogen Evolution. J. Phys. Chem. C 2022, 126, 18596–18604. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wang, M.; Liu, W.; Wu, Q.; Hu, P. Unraveling the Prominent Existence of Trace Metals in Photocatalysis: Exploring Iron Impurity Effects. J. Org. Chem. 2024, 89, 4156–4164. [Google Scholar] [CrossRef]
- Wu, M.Y.; Wu, Z.G.; Ang, H.T.; Wang, B.; Liu, T.; Wu, S.F.; Lei, Z.X.; Liaw, M.W.; Chanmungkalakul, S.; Lee, C.L.K.; et al. Enhanced Reactivity of Acridinium Perchlorate: Harnessing Redox Mediators for Trace Chloride Activation in Hydrogen Atom Transfer Photocatalysis. ACS Catal. 2024, 14, 9364–9373. [Google Scholar] [CrossRef]
- Qian, Z.; Wang, Z.J.; Zhang, K.A.I. Covalent Triazine Frameworks as Emerging Heterogeneous Photocatalysts. Chem. Mater. 2021, 33, 1909–1926. [Google Scholar] [CrossRef]
- Guo, L.; Wang, X.; Zhan, Z.; Zhao, Y.; Chen, L.; Liu, T.; Tan, B.; Jin, S. Crystallization of Covalent Triazine Frameworks via a Heterogeneous Nucleation Approach for Efficient Photocatalytic Applications. Chem. Mater. 2021, 33, 1994–2003. [Google Scholar] [CrossRef]
- Sun, R.; Tan, B. Covalent Triazine Frameworks (CTFs) for Photocatalytic Applications. Chem. Res. Chin. Univ. 2022, 38, 310–324. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H.; Chen, Z.; Zou, W.; Zhao, C.; Yang, X. Regulating donor-acceptor interactions in triazine-based conjugated polymers for boosted photocatalytic hydrogen production. Appl. Catal. B Environ. 2022, 312, 121374. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Cao, Y.; Peng, W.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Reversible intercalation and exfoliation of layered covalent triazine frameworks for enhanced lithium ion storage. Chem. Commun. 2019, 55, 1434–1437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, Z.; Wu, X.; Su, H.; Bai, F.-q.; Ran, X.; Yang, L.; Fang, W.; Yang, X. Theory-Guided Experimental Design of Covalent Triazine Frameworks for Efficient Photocatalytic Hydrogen Production. Small 2024, 20, 2400541. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, T.; Miao, J.; Zhao, C.; Jing, Y.; Han, F.; Zhang, K.; Yang, X. Amide-functionalized covalent triazine framework for enhanced photocatalytic hydrogen evolution. Sci. China Mater. 2023, 66, 2290–2298. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Wang, S.; Guo, W.; Wang, T.; Suo, X.; Jiang, D.-e.; Zhu, X.; Popovs, I.; Dai, S. Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking. J. Am. Chem. Soc. 2020, 142, 6856–6860. [Google Scholar] [CrossRef]
- Huang, W.; Li, B.; Wu, Y.; Zhang, Y.; Zhang, W.; Chen, S.; Fu, Y.; Yan, T.; Ma, H. In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature. ACS Appl. Mater. Interfaces 2021, 13, 13604–13612. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Li, C.; Li, H.; Fang, Q.; Xie, T. Fabrication of electron–acceptor staggered AB Covalent triazine-based frameworks for enhanced visible-light-driven H2 evolution. J. Colloid Interface Sci. 2022, 608, 1449–1456. [Google Scholar] [CrossRef]
- Ran, J.; Gao, G.; Li, F.T.; Ma, T.Y.; Du, A.; Qiao, S.Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Sun, Z.; Sun, Y.; Pan, L. Novel yolk–shell structure bismuth-rich bismuth molybdate microspheres for enhanced visible light photocatalysis. J. Colloid Interf. Sci. 2015, 452, 109–115. [Google Scholar] [CrossRef]
- Liu, C.; Busse, S.; Liu, J.; Godin, R. Aminosilanized Interface Promotes Electrochemically Stable Carbon Nitride Films with Fewer Trap States on FTO for (Photo)electrochemical Systems. ACS Appl. Mater. Interfaces 2023, 15, 46902–46915. [Google Scholar] [CrossRef]
- Gao, H.; Neale, A.R.; Zhu, Q.; Bahri, M.; Wang, X.; Yang, H.; Xu, Y.; Clowes, R.; Browning, N.D.; Little, M.A.; et al. A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode. J. Am. Chem. Soc. 2022, 144, 9434–9442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, W.; Zhang, G.; Chen, Y. Interface molecular wires induce electron transfer from COFs to Pt for enhanced photocatalytic H2 evolution. J. Mater. Chem. A 2023, 11, 26052–26062. [Google Scholar] [CrossRef]
- Furuya, Y.; Mashio, T.; Ohma, A.; Dale, N.; Oshihara, K.; Jerkiewicz, G. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid. J. Chem. Phys. 2014, 141, 164705. [Google Scholar] [CrossRef]
- Tang, M.; Yan, H.; Zhang, X.; Zheng, Z.; Chen, S. Materials Strategies Tackling Interfacial Issues in Catalyst Layers of Proton Exchange Membrane Fuel Cells. Adv. Mater. 2023, 2306387. [Google Scholar] [CrossRef]
- Zhang, T.; Hou, Y.; Dzhagan, V.; Liao, Z.Q.; Chai, G.L.; Loffler, M.; Olianas, D.; Milani, A.; Xu, S.Q.; Tommasini, M.; et al. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nat. Commun. 2018, 9, 1140. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Y.; Gong, N.; Zhang, W.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Band-gap engineering of layered covalent organic frameworks via controllable exfoliation for enhanced visible-light-driven hydrogen evolution. Int. J. Hydrogen Energy 2020, 45, 2689–2698. [Google Scholar] [CrossRef]
- Kong, D.; Han, X.; Xie, J.; Ruan, Q.; Windle, C.D.; Gadipelli, S.; Shen, K.; Bai, Z.; Guo, Z.; Tang, J. Tunable covalent triazine-based frame works (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting. ACS Catal. 2019, 9, 7697–7707. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Li, Z.; Xiao, W. Residual Trifluorosulfonic Acid in Amino-Functionalized Covalent Triazine Frameworks for Boosting Photocatalytic Hydrogen Evolution. Catalysts 2025, 15, 12. https://doi.org/10.3390/catal15010012
Zhao C, Li Z, Xiao W. Residual Trifluorosulfonic Acid in Amino-Functionalized Covalent Triazine Frameworks for Boosting Photocatalytic Hydrogen Evolution. Catalysts. 2025; 15(1):12. https://doi.org/10.3390/catal15010012
Chicago/Turabian StyleZhao, Chengxiao, Zhaolin Li, and Weiping Xiao. 2025. "Residual Trifluorosulfonic Acid in Amino-Functionalized Covalent Triazine Frameworks for Boosting Photocatalytic Hydrogen Evolution" Catalysts 15, no. 1: 12. https://doi.org/10.3390/catal15010012
APA StyleZhao, C., Li, Z., & Xiao, W. (2025). Residual Trifluorosulfonic Acid in Amino-Functionalized Covalent Triazine Frameworks for Boosting Photocatalytic Hydrogen Evolution. Catalysts, 15(1), 12. https://doi.org/10.3390/catal15010012