Preparation and Application of Highly Efficient Self-Cleaning Coating g-C3N4/MoS2@PDMS
<p>(<b>a</b>) XRD, (<b>b</b>) Infrared spectra, and (<b>c</b>) UV-vis pattern of g-C<sub>3</sub>N<sub>4</sub>, MoS<sub>2</sub>, g/M1, g/M2, g/M3 and g/M4.</p> "> Figure 2
<p>XPS pattern of (<b>a</b>) g-C<sub>3</sub>N<sub>4</sub> and g/M3 composites; (<b>b</b>) C 1s; (<b>c</b>) N1s; (<b>d</b>) S 2p; and (<b>e</b>) Mo 3d; (<b>f</b>) N<sub>2</sub> adsorption/desorption isotherms and (inset) pore size distribution of g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> and g/M3.</p> "> Figure 3
<p>(<b>a</b>) Pseudo-first-order kinetic fitting curves for the degradation of Rhodamine in samples; (<b>b</b>) effect of capture agent on g/M3 degradation reaction; (<b>c</b>) cycling performance of g/M3.</p> "> Figure 4
<p>The preparation process of the coating. (<b>a</b>) and (<b>b</b>) are scanning electron microscope (SEM) images of the g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PDMS coating. (<b>c1</b>) C, (<b>c2</b>) S, and (<b>c3</b>) Si element distribution in the g-C3N4/MoS2@PDMS coating.</p> "> Figure 5
<p>Adhesion test for g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PDMS.</p> "> Figure 6
<p>(<b>a</b>) TGA curves of g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PDMS. (<b>b</b>) The degradation curve of the coating. (<b>c</b>) The degradation curve of the coating after outdoor exposure.</p> ">
Abstract
:1. Introduction
2. Results and Discussions
2.1. Physical Characterizations
2.2. Analysis of Material Formation Mechanisms
2.2.1. Formation Mechanisms of MoS2
2.2.2. Formation Mechanisms of g-C3N4/MoS2
2.2.3. Formation Mechanisms of g-C3N4/MoS2@PDMS
2.3. Photocatalytic Properties
2.4. Performance of Photocatalytic Coating
3. Experimental
3.1. Materials
3.2. Synthesize of Photocatalyst
3.2.1. Synthesize of MoS2
3.2.2. Synthesize of g-C3N4/MoS2
3.2.3. Preparation of Photocatalytic Coating
3.3. Characterization Techniques
3.4. Photocatalytic Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, J.; Zhang, Y.; Hussain, M.I.; Zhou, W.; Chen, Y.; Wang, L.-N. g-C3N4: Properties, pore modifications, and photocatalytic applications. Nanomaterials 2021, 12, 121. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y.; Liang, Y.; Long, H.; Chen, D.; Hu, H.; Ou, J.Z. Vacancy-modified gC3N4 and its photocatalytic applications. Mater. Chem. Front. 2022, 6, 3143–3173. [Google Scholar] [CrossRef]
- Li, C.; Wu, X.; Shan, J.; Liu, J.; Huang, X. Preparation, characterization of graphitic carbon nitride photo-catalytic nanocomposites and their application in wastewater remediation: A review. Crystals 2021, 11, 723. [Google Scholar] [CrossRef]
- Luo, J.; Du, X.; Ye, Q.; Fu, D. Graphite phase carbon nitride photo-fenton catalyst and its photocatalytic degradation performance for organic wastewater. Catal. Surv. Asia 2022, 26, 294–310. [Google Scholar] [CrossRef]
- Yuan, S.; Dai, L.; Xie, M.; Liu, J.; Peng, H. Modification optimization and application of graphitic carbon nitride in photocatalysis: Current progress and future prospects. Chem. Eng. Sci. 2024, 296, 120245. [Google Scholar] [CrossRef]
- Cadan, F.M.; Ribeiro, C.; Azevedo, E.B. Improving g-C3N4: WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis. Appl. Surf. Sci. 2021, 537, 147904. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Jia, Z.; Lv, J.; Lv, Y.; Wu, J. Analysis of photocatalytic properties of NS-CQDs/g-C3N4 composites. Micromachines 2023, 14, 2143. [Google Scholar] [CrossRef]
- Yuan, Y.; Chang, F.; Bi, K. Enhanced catalytic activity of modified g-C3N4 heterojunction for photocatalytic degradation of methylene blue from wastewater. Diam. Relat. Mater. 2024, 150, 111682. [Google Scholar] [CrossRef]
- Saravanan, V.; Lakshmanan, P.; Ramalingan, C. Alumina surface modified with graphitic carbon nitride: Synthesis, characterization and its application as photocatalyst. Diam. Relat. Mater. 2021, 114, 108291. [Google Scholar] [CrossRef]
- Vavilapalli, D.S.; Peri, R.G.; Muthuraaman, B.; Sridharan, K.; Rao, M.R.; Singh, S. Enhanced photocatalytic and photoelectrochemical performance of KBiFe2O5/g-C3N4 heterojunction photocatalyst under visible light. Phys. B Condens. Matter 2023, 648, 414411. [Google Scholar] [CrossRef]
- Xie, L.; Lu, D.; Zeng, Y.; Kondamareddy, K.K.; Wu, Q.; Li, L.; Fan, H.; Ho, W. The mechanism insight for improved photocatalysis and interfacial charges transfer of surface-dispersed Ag0 modified layered graphite-phase carbon nitride nanosheets. Adv. Powder Technol. 2023, 34, 103936. [Google Scholar] [CrossRef]
- Wu, M.-H.; Li, L.; Liu, N.; Wang, D.-J.; Xue, Y.-C.; Tang, L. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Process Saf. Environ. Prot. 2018, 118, 40–58. [Google Scholar] [CrossRef]
- Ren, Y.; Zeng, D.; Ong, W.-J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin. J. Catal. 2019, 40, 289–319. [Google Scholar] [CrossRef]
- Baig, U.; Hawsawi, A.; Ansari, M.; Gondal, M.; Dastageer, M.; Falath, W. Synthesis, characterization and evaluation of visible light active cadmium sulfide-graphitic carbon nitride nanocomposite: A prospective solar light harvesting photo-catalyst for the deactivation of waterborne pathogen. J. Photochem. Photobiol. B Biol. 2020, 204, 111783. [Google Scholar] [CrossRef] [PubMed]
- Alnahdi, K.M. Boosted visible-light photocatalysis via pn heterojunction synergy in 3D tin Sulfide-Graphitic carbon nitride nanohybrids. Inorg. Chem. Commun. 2024, 160, 111870. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, X.; Gu, X.; Liu, J. Investigation into the degradation of air and runoff pollutants using nano g-C3N4 photocatalytic road surfaces. Constr. Build. Mater. 2024, 411, 134553. [Google Scholar] [CrossRef]
- Hang, Z.; Yu, H.; Luo, L.; Huai, X. Nanoporous g-C3N4/MOF: High-performance photoinitiator for UV-curable coating. J. Mater. Sci. 2019, 54, 13959–13972. [Google Scholar] [CrossRef]
- Huang, J.; Li, D.; Liu, Y.; Li, R.; Chen, P.; Liu, H.; Lv, W.; Liu, G.; Feng, Y. Ultrathin Ag2WO4-coated P-doped g-C3N4 nanosheets with remarkable photocatalytic performance for indomethacin degradation. J. Hazard. Mater. 2020, 392, 122355. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, Z.; Qi, Y. Preparation of g-C3N4/TNTs/CNTs Photocatalytic Composite Powder and Its Enhancement of Antifouling Performance of Polydimethylsiloxane Coatings. Nanomaterials 2022, 12, 2442. [Google Scholar] [CrossRef]
- Sun, L.; Tan, Y.; Xu, H.; Shu, R.; Liu, Z.; Zhang, R.; Hou, J.; Zhang, R. A Novel Photocatalytic Functional Coating Applied to the Degradation of Xylene in Coating Solvents under Solar Irradiation. Nanomaterials 2023, 13, 570. [Google Scholar] [CrossRef]
- Wang, D.; Yu, B.; Li, H.; Liu, Q.; Sun, D.; Wang, J.; Che, G.; Liu, C. Two-dimensional ultrathin MoS2 modified hydrogenated TiO2 nanoparticles for superior photocatalytic degradation under simulated sunlight. J. Phys. D Appl. Phys. 2021, 55, 125103. [Google Scholar] [CrossRef]
- Huang, S.; Chen, C.; Tsai, H.; Shaya, J.; Lu, C. Photocatalytic degradation of thiobencarb by a visible light-driven MoS2 photocatalyst. Sep. Purif. Technol. 2018, 197, 147–155. [Google Scholar] [CrossRef]
- Xie, C.; Xu, L.; Ye, X.; Xia, Y.; Gang, R.; Ye, Q. Composites of MoS2 nanosheets and graphitic carbon nitride nanosheets for photocatalytic mercury removal. ACS Appl. Nano Mater. 2021, 4, 11861–11869. [Google Scholar] [CrossRef]
- Yang, W.; Ding, K.; Chen, G.; Wang, H.; Deng, X. Synergistic multisystem photocatalytic degradation of anionic and cationic dyes using graphitic phase carbon nitride. Molecules 2023, 28, 2796. [Google Scholar] [CrossRef]
- Qi, Y.; Liang, Q.; Lv, R.; Shen, W.; Kang, F.; Huang, Z.-H. Synthesis and photocatalytic activity of mesoporous g-C3N4/MoS2 hybrid catalysts. R. Soc. Open Sci. 2018, 5, 180187. [Google Scholar] [CrossRef]
- Truong, D.H.; Vo, V.; Van Gerven, T.; Leblebici, M.E. A Facile Method for the Synthesis of a MoS2/g-C3N4 Photocatalyst. Chem. Eng. Technol. 2019, 42, 2691–2699. [Google Scholar] [CrossRef]
- Pasini, S.M.; Valerio, A.; Yin, G.; Wang, J.; de Souza, S.M.G.U.; Hotza, D.; de Souza, A.A.U. An overview on nanostructured TiO2–containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment. J. Water Process Eng. 2021, 40, 101827. [Google Scholar] [CrossRef]
- Kumar, R.; Sudhaik, A.; Raizada, P.; Nguyen, V.-H.; Van Le, Q.; Ahamad, T.; Thakur, S.; Hussain, C.M.; Singh, P. Integrating K and P co-doped g-C3N4 with ZnFe2O4 and graphene oxide for S-scheme-based enhanced adsorption coupled photocatalytic real wastewater treatment. Chemosphere 2023, 337, 139267. [Google Scholar] [CrossRef]
- Feng, X.; Li, X.; Su, B.; Ma, J. Hydrothermal construction of flower-like g-C3N4/NiZnAl-LDH S-scheme heterojunction with oxygen vacancies for enhanced visible-light triggered photocatalytic performance. J. Alloys Compd. 2022, 922, 166098. [Google Scholar] [CrossRef]
- Liang, L.; Shi, L.; Wang, F. Fabrication of large surface area nitrogen vacancy modified graphitic carbon nitride with improved visible-light photocatalytic performance. Diam. Relat. Mater. 2019, 91, 230–236. [Google Scholar] [CrossRef]
- Chung, H.Y.; Wu, X.; Amal, R.; Ng, Y.H. Balancing the crystallinity and specific surface area of bismuth tungstate for photocatalytic water oxidation. Mol. Catal. 2020, 487, 110887. [Google Scholar] [CrossRef]
- ISO 2409:2020; Paints and Varnishes-Cross Cut Test. lSO: Geneva, Switzerland, 2020; IX-CEN.
- Liu, G.; Xia, H.; Zhang, W.; Song, L.; Chen, Q.; Niu, Y. Improvement mechanism of NO photocatalytic degradation performance of self-cleaning synergistic photocatalytic coating under high humidity. J. Hazard. Mater. 2021, 418, 126337. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, S.; Yan, Z.; Lin, L.; Ji, T. Improved purification efficiency and stability of photocatalytic cement-based pavement coated with colloidal graphitic carbon nitride. Surf. Interfaces 2024, 53, 105040. [Google Scholar] [CrossRef]
- Yuan, B.; Guo, M.; Murugadoss, V.; Song, G.; Guo, Z. Immobilization of graphitic carbon nitride on wood surface via chemical crosslinking method for UV resistance and self-cleaning. Adv. Compos. Hybrid Mater. 2021, 4, 286–293. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Sima, Y.; Xiang, C.; Lv, Z. Preparation and Application of Highly Efficient Self-Cleaning Coating g-C3N4/MoS2@PDMS. Catalysts 2025, 15, 10. https://doi.org/10.3390/catal15010010
Gao C, Sima Y, Xiang C, Lv Z. Preparation and Application of Highly Efficient Self-Cleaning Coating g-C3N4/MoS2@PDMS. Catalysts. 2025; 15(1):10. https://doi.org/10.3390/catal15010010
Chicago/Turabian StyleGao, Chunhua, Yifei Sima, Cong Xiang, and Zerun Lv. 2025. "Preparation and Application of Highly Efficient Self-Cleaning Coating g-C3N4/MoS2@PDMS" Catalysts 15, no. 1: 10. https://doi.org/10.3390/catal15010010
APA StyleGao, C., Sima, Y., Xiang, C., & Lv, Z. (2025). Preparation and Application of Highly Efficient Self-Cleaning Coating g-C3N4/MoS2@PDMS. Catalysts, 15(1), 10. https://doi.org/10.3390/catal15010010