Exploring the Link Between Obligate Anaerobe-Related Dysbiosis and Prostate Cancer Development: A Pilot Study
<p>Alpha diversity between risk groups (Shannon index). The displayed <span class="html-italic">p</span>-value is from Welch’s two-sample <span class="html-italic">t</span>-test.</p> "> Figure 2
<p>Non-metric Multidimensional Scaling (NMDS) analysis based on Bray–Curtis distances. Stratification of samples to high/low-risk PSA groups was done based on median PSA of the PROVENT samples: PSA > 7.1—High-risk PSA group, PSA ≤ 7.1—Low-risk PSA group.</p> "> Figure 3
<p>Linear discriminant analysis Effect Size (LEfSe) analysis indicated enriched genera in the high/low PSA risk groups. Green indicates taxa enriched in the Low-risk PSA group (<span class="html-italic">n</span> = 45), and orange indicates taxa enriched in the High-risk PSA group (<span class="html-italic">n</span> = 44).</p> "> Figure 4
<p>Dot chart with Pearson correlation coefficients between relative abundance of genera and PSA. All displayed genera had a correlation with PSA with a <span class="html-italic">p</span>-value < 0.1. The <span class="html-italic">p</span>-values are displayed below each point.</p> ">
1. Introduction
2. Materials and Methods
2.1. Culturomics Cohort
2.2. 16S Sequencing Cohort
2.3. Bioinformatic Analysis (16S Sequencing Cohort)
2.3.1. Amplicon Sequence Variants
2.3.2. Taxonomic Analysis
2.3.3. Data Merging and Downstream Analysis
2.4. Statistical Assessment
2.4.1. Culturomics Cohort Analysis
2.4.2. 16S Sequencing Cohort Analysis
3. Results
3.1. Culturomics Cohort Results
3.2. 16S Sequencing Cohort Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef]
- Wei, J.T.; Barocas, D.; Carlsson, S.; Coakley, F.; Eggener, S.; Etzioni, R.; Fine, S.W.; Han, M.; Kim, S.K.; Kirkby, E.; et al. Early Detection of Prostate Cancer: AUA/SUO Guideline Part I: Prostate Cancer Screening. J. Urol. 2023, 210, 46–53. [Google Scholar] [CrossRef]
- Loeb, S.; Bjurlin, M.A.; Nicholson, J.; Tammela, T.L.; Penson, D.F.; Carter, H.B.; Carroll, P.; Etzioni, R. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 2014, 65, 1046–1055. [Google Scholar] [CrossRef]
- Hwang, T.; Oh, H.; Lee, J.A.; Kim, E.J. Prostate cancer risk prediction based on clinical factors and prostate-specific antigen. BMC Urol. 2023, 23, 100. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, M.; Choi, A.; Yoo, S. Microbiome and Prostate Cancer: Emerging Diagnostic and Therapeutic Opportunities. Pharmaceuticals 2024, 17, 112. [Google Scholar] [CrossRef]
- Oliver, R. Prostate Cancer. A Physicians perspective. Cancer Surv. 1995, 23, 309–310. [Google Scholar] [PubMed]
- Oliver, J.C.; Oliver, R.T.; Ballard, R.C. Influence of circumcision and sexual behaviour on PSA levels in patients attending a sexually transmitted disease (STD) clinic. Prostate Cancer Prostatic Dis. 2001, 4, 228–231. [Google Scholar] [CrossRef]
- Oliver, R.T. Circumcision and/or vaccination against human papillomavirus in the male to prevent infection with human immunodeficiency virus: An early surrogate endpoint for the later prevention of penile, prostate, anal and oral cancer? BJU Int. 2009, 104, 753–755. [Google Scholar] [CrossRef]
- Oliver, R. Meta-analysis of impact of circumcision and vitamin D on occurrence of prostate cancer: Could they act by suppressing anaerobes colonizing areas of prostatic proliferative inflammatory atrophy? J. Clin. Oncol. 2012, 30, 259. [Google Scholar] [CrossRef]
- Oliver, T.; Lorinez, A.; Cuzick, J. Prostate cancer prevention by short-term anti-androgens: The rationale behind design of pilot studies. Recent. Results Cancer Res. 2009, 181, 195–205. [Google Scholar]
- Forman, D. Helicobacter pylori infection and cancer. Br. Med. Bull. 1998, 54, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Knight, T.; Wyatt, J.; Wilson, A.; Greaves, S.; Newell, D.; Hengels, K.; Corlett, M.; Webb, P.; Forman, D.; Elder, J. Helicobacter pylori gastritis and serum pepsinogen levels in a healthy population: Development of a biomarker strategy for gastric atrophy in high risk groups. Br. J. Cancer 1996, 73, 819–824. [Google Scholar] [CrossRef]
- Franks, L.M. Latent carcinoma of the prostate. J. Pathol. Bacteriol. 1954, 68, 603–616. [Google Scholar] [CrossRef]
- Feneley, M.R.; Young, M.P.; Chinyama, C.; Kirby, R.S.; Parkinson, M.C. Ki-67 expression in early prostate cancer and associated pathological lesions. J. Clin. Pathol. 1996, 49, 741–748. [Google Scholar] [CrossRef]
- De Marzo, A.M.; Marchi, V.L.; Epstein, J.I.; Nelson, W.G. Proliferative inflammatory atrophy of the prostate: Implications for prostatic carcinogenesis. Am. J. Pathol. 1999, 155, 1985–1992. [Google Scholar] [CrossRef]
- Ugge, H.; Udumyan, R.; Carlsson, J.; Andren, O.; Montgomery, S.; Davidsson, S.; Fall, K. Acne in late adolescence and risk of prostate cancer. Int. J. Cancer 2018, 142, 1580–1585. [Google Scholar] [CrossRef]
- Galobardes, B.; Davey Smith, G.; Jeffreys, M.; Kinra, S.; McCarron, P. Acne in adolescence and cause-specific mortality: Lower coronary heart disease but higher prostate cancer mortality: The Glasgow Alumni Cohort Study. Am. J. Epidemiol. 2005, 161, 1094–1101. [Google Scholar] [CrossRef]
- Sutcliffe, S.; Giovannucci, E.; Isaacs, W.B.; Willett, W.C.; Platz, E.A. Acne and risk of prostate cancer. Int. J. Cancer 2007, 121, 2688–2692. [Google Scholar] [CrossRef]
- Mak, T.N.; Yu, S.H.; De Marzo, A.M.; Bruggemann, H.; Sfanos, K.S. Multilocus sequence typing (MLST) analysis of Propionibacterium acnes isolates from radical prostatectomy specimens. Prostate 2013, 73, 770–777. [Google Scholar] [CrossRef]
- Kakegawa, T.; Bae, Y.; Ito, T.; Uchida, K.; Sekine, M.; Nakajima, Y.; Furukawa, A.; Suzuki, Y.; Kumagai, J.; Akashi, T.; et al. Frequency of Propionibacterium acnes Infection in Prostate Glands with Negative Biopsy Results Is an Independent Risk Factor for Prostate Cancer in Patients with Increased Serum PSA Titers. PLoS ONE 2017, 12, e0169984. [Google Scholar] [CrossRef]
- Bae, Y.; Ito, T.; Iida, T.; Uchida, K.; Sekine, M.; Nakajima, Y.; Kumagai, J.; Yokoyama, T.; Kawachi, H.; Akashi, T.; et al. Intracellular Propionibacterium acnes infection in glandular epithelium and stromal macrophages of the prostate with or without cancer. PLoS ONE 2014, 9, e90324. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.E.; Van Der Pol, B.; Dong, Q.; Revanna, K.V.; Fan, B.; Easwaran, S.; Sodergren, E.; Weinstock, G.M.; Diao, L.; Fortenberry, J.D. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE 2010, 5, e14116. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Feng, Q.; Wong, S.H.; Zhang, D.; Liang, Q.Y.; Qin, Y.; Tang, L.; Zhao, H.; Stenvang, J.; Li, Y.; et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017, 66, 70–78. [Google Scholar] [CrossRef]
- Scibior-Bentkowska, D.; Banila, C.; Nedjai, B. 2022-RA-1195-ESGO Longitudinal study of vaginal microbiome pre- and post-treatment identifies biomarkers for cervical intraepithelial neoplasia 3 (CIN3). Int. J. Gynecol. Cancer 2022, 32 (Suppl. 2), A413. [Google Scholar]
- Cooper, P.N.; Millar, M.R.; Godwin, P.G. Anaerobes and carcinoma of the prostate. Br. Med. J. (Clin. Res. Ed.) 1988, 296, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.M.; Fournier, P.E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef]
- Bhudia, R.; Ahmad, A.; Akpenyi, O.; Whiley, A.; Wilks, M.; Oliver, T. Identification of low oxygen-tolerating bacteria in prostate secretions of cancer patients and discussion of possible aetiological significance. Sci. Rep. 2017, 7, 15164. [Google Scholar] [CrossRef]
- Prasher, S.; Oliver, T.; Chinegwundoh, F.; Bhudia, R.; Cuzick, J.; Wilks, M. Identification of low oxygen tolerating bacteria in prostate secretions of cancer patients: Aetiological and therapeutic relevance. Lancet 2019, 397, S71. [Google Scholar] [CrossRef]
- Bruggemann, H.; Al-Zeer, M.A. Bacterial signatures and their inflammatory potentials associated with prostate cancer. APMIS 2020, 128, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Pernigoni, N.; Guo, C.; Gallagher, L.; Yuan, W.; Colucci, M.; Troiani, M.; Liu, L.; Maraccani, L.; Guccini, I.; Migliorini, D.; et al. The potential role of the microbiota in prostate cancer pathogenesis and treatment. Nat. Rev. Urol. 2023, 20, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, Y.; Wen, Z.; Chen, C.; Wang, C.; Li, H.; Yang, X. Gut microbiota in patients with prostate cancer: A systematic review and meta-analysis. BMC Cancer 2024, 24, 261. [Google Scholar] [CrossRef] [PubMed]
- Dinneen, E.; Shaw, G.L.; Kealy, R.; Alexandris, P.; Finnegan, K.; Chu, K.; Haidar, N.; Santos-Vidal, S.; Kudahetti, S.; Moore, C.M.; et al. Feasibility of aspirin and/or vitamin D3 for men with prostate cancer on active surveillance with Prolaris(R) testing. BJUI Compass 2022, 3, 458–465. [Google Scholar] [CrossRef]
- Choi, I.J.; Kim, C.G.; Lee, J.Y.; Kim, Y.I.; Kook, M.C.; Park, B.; Joo, J. Family History of Gastric Cancer and Helicobacter pylori Treatment. N. Engl. J. Med. 2020, 382, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Kosunen, T.U.; Pukkala, E.; Sarna, S.; Seppala, K.; Aromaa, A.; Knekt, P.; Rautelin, H. Gastric cancers in Finnish patients after cure of Helicobacter pylori infection: A cohort study. Int. J. Cancer 2011, 128, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.C.; Armougom, F.; Million, M.; Hugon, P.; Pagnier, I.; Robert, C.; Bittar, F.; Fournous, G.; Gimenez, G.; Maraninchi, M.; et al. Microbial culturomics: Paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 2012, 18, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database. Bioinformatics 2022, 38, 5315–5316. [Google Scholar] [CrossRef]
- Stoddard, S.F.; Smith, B.J.; Hein, R.; Roller, B.R.K.; Schmidt, T.M. rrnDB: Improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2014, 43, D593–D598. [Google Scholar] [CrossRef]
- Almeida, A.; Nayfach, S.; Boland, M.; Strozzi, F.; Beracochea, M.; Shi, Z.J.; Pollard, K.S.; Sakharova, E.; Parks, D.H.; Hugenholtz, P.; et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 2021, 39, 105–114. [Google Scholar] [CrossRef] [PubMed]
- King, T.; Butcher, S.; Zalewski, L. Apocrita-High Performance Computing Cluster for Queen Mary University of London; Zenodo: Geneva, Switzerland, 2017. [Google Scholar]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Cao, Y.; Dong, Q.; Wang, D.; Zhang, P.; Liu, Y.; Niu, C. microbiomeMarker: An R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics 2022, 38, 4027–4029. [Google Scholar] [CrossRef]
- Ashida, S.; Kawada, C.; Tanaka, H.; Kurabayashi, A.; Yagyu, K.I.; Sakamoto, S.; Maejima, K.; Miyano, S.; Daibata, M.; Nakagawa, H.; et al. Cutibacterium acnes invades prostate epithelial cells to induce BRCAness as a possible pathogen of prostate cancer. Prostate 2024, 84, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, E.; Coulter, J.B.; Guzman, W.; Ozbek, B.; Hess, M.M.; Mummert, L.; Ernst, S.E.; Maynard, J.P.; Meeker, A.K.; Heaphy, C.M.; et al. Oncogenic gene fusions in nonneoplastic precursors as evidence that bacterial infection can initiate prostate cancer. Proc. Natl. Acad. Sci. USA 2021, 118, e2018976118. [Google Scholar] [CrossRef] [PubMed]
- Kalinen, S.; Kallonen, T.; Gunell, M.; Ettala, O.; Jambor, I.; Knaapila, J.; Syvanen, K.T.; Taimen, P.; Poutanen, M.; Aronen, H.J.; et al. Differences in Gut Microbiota Profiles and Microbiota Steroid Hormone Biosynthesis in Men with and Without Prostate Cancer. Eur. Urol. Open Sci. 2024, 62, 140–150. [Google Scholar] [CrossRef]
- Goncalves, M.F.M.; Pina-Vaz, T.; Fernandes, A.R.; Miranda, I.M.; Silva, C.M.; Rodrigues, A.G.; Lisboa, C. Microbiota of Urine, Glans and Prostate Biopsies in Patients with Prostate Cancer Reveals a Dysbiosis in the Genitourinary System. Cancers 2023, 15, 1423. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Wang, C.; Usyk, M.; Wu, F.; Freedman, N.D.; Huang, W.Y.; McCullough, M.L.; Um, C.Y.; Shrubsole, M.J.; Cai, Q.; et al. Oral Microbiome and Subsequent Risk of Head and Neck Squamous Cell Cancer. JAMA Oncol. 2024, 10, 1537. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Lin, X.; Li, D.; Yang, C.; Lv, S.; Chen, X.; Yang, X.; Pan, B.; Xu, R.; Ren, L.; et al. Prevotella copri exhausts intrinsic indole-3-pyruvic acid in the host to promote breast cancer progression: Inactivation of AMPK via UHRF1-mediated negative regulation. Gut Microbes 2024, 16, 2347757. [Google Scholar] [CrossRef] [PubMed]
- Tito, R.Y.; Verbandt, S.; Aguirre Vazquez, M.; Lahti, L.; Verspecht, C.; Llorens-Rico, V.; Vieira-Silva, S.; Arts, J.; Falony, G.; Dekker, E.; et al. Microbiome confounders and quantitative profiling challenge predicted microbial targets in colorectal cancer development. Nat. Med. 2024, 30, 1339–1348. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, P.; Wang, F.; Xi, S.; Wu, S.; Sun, L.; Du, Y.; Zheng, J.; Yang, H.; Tang, M.; et al. UHRF1 inhibition epigenetically reprograms cancer stem cells to suppress the tumorigenic phenotype of hepatocellular carcinoma. Cell Death Dis. 2023, 14, 381. [Google Scholar] [CrossRef]
- Lojanapiwat, B.; Anutrakulchai, W.; Chongruksut, W.; Udomphot, C. Correlation and diagnostic performance of the prostate-specific antigen level with the diagnosis, aggressiveness, and bone metastasis of prostate cancer in clinical practice. Prostate Int. 2014, 2, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Sfanos, K.S.; De Marzo, A.M. Prostate cancer and inflammation: The evidence. Histopathology 2012, 60, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, D.B.; Vaghasia, A.M.; Yu, S.H.; Mak, T.N.; Bruggemann, H.; Nelson, W.G.; De Marzo, A.M.; Yegnasubramanian, S.; Sfanos, K.S. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 2013, 73, 1007–1015. [Google Scholar] [CrossRef]
- Sfanos, K.S.; Yegnasubramanian, S.; Nelson, W.G.; De Marzo, A.M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 2018, 15, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Chaux, A.; Peskoe, S.B.; Gonzalez-Roibon, N.; Schultz, L.; Albadine, R.; Hicks, J.; De Marzo, A.M.; Platz, E.A.; Netto, G.J. Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer. Mod. Pathol. 2012, 25, 1543–1549. [Google Scholar] [CrossRef]
- Yu, S.H.; Maynard, J.P.; Vaghasia, A.M.; De Marzo, A.M.; Drake, C.G.; Sfanos, K.S. A role for paracrine interleukin-6 signaling in the tumor microenvironment in prostate tumor growth. Prostate 2019, 79, 215–222. [Google Scholar] [CrossRef]
- Peto, R.; Darby, S.; Deo, H.; Silcocks, P.; Whitley, E.; Doll, R. Smoking, smoking cessation, and lung cancer in the UK since 1950: Combination of national statistics with two case-control studies. BMJ 2000, 321, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, S.; Zenilman, J.M.; Ghanem, K.G.; Jadack, R.A.; Sokoll, L.J.; Elliott, D.J.; Nelson, W.G.; De Marzo, A.M.; Cole, S.R.; Isaacs, W.B.; et al. Sexually transmitted infections and prostatic inflammation/cell damage as measured by serum prostate specific antigen concentration. J. Urol. 2006, 175, 1937–1942. [Google Scholar] [CrossRef]
- Langston, M.E.; Pakpahan, R.; Nevin, R.L.; De Marzo, A.M.; Elliott, D.J.; Gaydos, C.A.; Isaacs, W.B.; Nelson, W.G.; Sokoll, L.J.; Zenilman, J.M.; et al. Sustained influence of infections on prostate-specific antigen concentration: An analysis of changes over 10 years of follow-up. Prostate 2018, 78, 1024–1034. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.M.; Tsai, C.L.; Kao, J.T.; Hsieh, C.T.; Shieh, D.C.; Lee, Y.J.; Tsay, G.J.; Cheng, K.S.; Wu, Y.Y. PD-1 and PD-L1 Up-regulation Promotes T-cell Apoptosis in Gastric Adenocarcinoma. Anticancer. Res. 2018, 38, 2069–2078. [Google Scholar] [PubMed]
- Patel, R.; English, L.; Liu, W.K.; Tree, A.C.; Ayres, B.; Watkin, N.; Pickering, L.M.; Afshar, M. Red cell differential width (RDW) as a predictor of survival outcomes with palliative and adjuvant chemotherapy for metastatic penile cancer. Int. Urol. Nephrol. 2020, 52, 2301–2306. [Google Scholar] [CrossRef]
- Ugge, H.; Downer, M.K.; Carlsson, J.; Bowden, M.; Davidsson, S.; Mucci, L.A.; Fall, K.; Andersson, S.O.; Andren, O. Circulating inflammation markers and prostate cancer. Prostate 2019, 79, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- Appleton, E.; Hassan, J.; Chan Wah Hak, C.; Sivamanoharan, N.; Wilkins, A.; Samson, A.; Ono, M.; Harrington, K.J.; Melcher, A.; Wennerberg, E. Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade. Front. Immunol. 2021, 12, 754436. [Google Scholar] [CrossRef]
- McMahon, R.A.; D’Souza, C.; Neeson, P.J.; Siva, S. Innate immunity: Looking beyond T-cells in radiation and immunotherapy combinations. Neoplasia 2023, 46, 100940. [Google Scholar] [CrossRef] [PubMed]
Samples | MA Status | OA Status | PSA (ng/mL) | |
---|---|---|---|---|
MA/OA-Negative | Neg | Neg | Mean = 4.75 | |
n = 22 samples | Median = 3.40 | |||
MA-positive sample ID | MA status | OA status | PSA (ng/mL) | Bacterial species |
8JL | Pos | Neg | 12 | Brevibacterium casei |
17SR | Pos | Neg | 5.36 | Actinomyces neuii |
3 PO | Pos | Neg | 7.31 | Actinomyces neuii |
13 PL * | Pos | Pos | 7.4 | A. turicecis, B. paucvorans + 2 OA |
9DG | Pos | Neg | 4.54 | Cutibacterium acnes |
13EA | Pos | Neg | 2.43 | Cutibacterium acnes |
n = 6 samples | Mean = 6.51 Median = 6.34 | |||
OA-positive sample ID | MA status | OA status | PSA (ng/mL) | Bacterial species |
2 PH | Neg | Pos | 4.54 | Peptoniphilus harei, Veillonella montpellierensis |
12 ST | Neg | Pos | 26 | Peptoniphilus harei |
16 WP | Neg | Pos | 26 | Peptoniphilus harei, Peptostreptococcus anaerobius, Finegoldia magna |
13 PL * | Neg | Pos | 7.4 | Veillonella parvula, Actinobaculum schaalii + 2 MA |
4 HS | Neg | Pos | 6.1 | Peptoniphilus harei, Fusobacterium nucleatum, Fusobacterium gondiaformans, Actinobaculum schaalii |
3 PSS | Neg | Pos | 1.5 | Peptostreptococcus anaerobius |
4 NC | Neg | Pos | 9.64 | Peptoniphilus harei |
11 ND | Neg | Pos | 13.6 | Veillonella dispar |
15 AS | Neg | Pos | 1.12 | Veillonella ratti, Prevotella buccalis |
18 HS | Neg | Pos | 2.54 | Peptoniphilus harei, Peptoniphilus lacrimalis |
19 PS | Neg | Pos | 7.75 | Prevotella melaninogenica |
21 JF | Neg | Pos | 4.78 | Peptoniphilus harei |
n = 12 samples | Mean = 9.25 Median = 6.75 |
Bacteria Present | Rank Order | N | Median PSA (ng/mL) |
---|---|---|---|
Neither | 1 | 22 | 3.54 |
Microaerophilic | 2 | 6 * | 6.34 |
Obligate Anaerobes | 3 | 12 | 6.75 |
Z | 2.00 | ||
p-value | 0.034 | ||
CI | 0.026–0.042 |
OA-Positive | OA-Negative | OA Threshold | |
---|---|---|---|
Culturomics cohort (n = 39) | 30.8% (n = 12) | 69.2% (n = 27) | - |
PSA (mean ng/mL) | 9.25 (p = 0.132) | 5.04 | - |
PROVENT series (n = 89) | 23.6% (n = 21) | 76.4% (n = 68) | ≥10% of all genera |
PSA (mean ng/mL) | 8.48 (p = 0.133) | 7.15 | ≥10% of all genera |
PROVENT series (n = 89) | 21.3% (n = 19) | 78.7% (n = 70) | ≥15% of all genera |
PSA (mean ng/mL) | 8.75 (p = 0.082) | 7.11 | ≥15% of all genera |
PROVENT series (n = 89) | 15.7% (n = 14) | 84.3 (n = 75) | ≥20% of all genera |
PSA (mean μg/L) | 9.47 (p = 0.006) | 7.08 | ≥20% of all genera |
Number of samples (pooled relative abundance threshold: ≥10%) | Obligate anaerobe Negative * | Obligate anaerobe Positive * |
Low-risk PSA group | 40 | 5 |
High-risk PSA group | 28 | 16 |
Fisher’s exact test | ||
p-value | 0.006 | |
Odds ratio | 4.493 | |
95 CI | 1.369–17.57 | |
Number of samples (pooled relative abundance threshold: ≥15%) | Obligate anaerobe negative | Obligate anaerobe positive |
Low-risk PSA group | 42 | 3 |
High-risk PSA group | 28 | 16 |
Fisher’s exact test | ||
p-value | <0.001 | |
Odds ratio | 7.82 | |
95 CI | 1.980–45.71 | |
Number of samples (pooled relative abundance threshold: ≥20%) | Obligate anaerobe negative | Obligate anaerobe positive |
Low-risk PSA group | 44 | 1 |
High-risk PSA group | 31 | 13 |
Fisher’s exact test | ||
p -value | <0.001 | |
Odds ratio | 17.97 | |
95 CI | 2.462–798.2 |
OA-Positive (≥10% RA) | OA-Negative | OA-Positive (≥5% RA) | OA-Negative | OA-Positive (>0% RA) | OA -Negative | |
---|---|---|---|---|---|---|
Peptostreptococcus | 0% (n = 0) | 100% (n = 89) | 0% (n = 0) | 100% (n = 89) | 10.11% (n = 9) | 89.89% (n = 80) |
PSA (mean ng/mL) | n/a | 7.46 | n/a | 7.46 | 9.73 (p = 0.033) | 7.21 |
Fusobacterium | 2.25% (n = 2) | 97.75% (n = 87) | 2.25% (n = 2) | 97.75% (n = 87) | 11.24% (n = 10) | 88.76% (n = 79) |
PSA (mean ng/mL) | 11 (p = 0.253) | 7.38 | 11 (p = 0.253) | 7.38 | 10.04 (p = 0.009) | 7.14 |
Prevotella | 19.1% (n = 17) | 80.9% (n = 72) | 24.72% (n = 22) | 75.28% (n = 67) | 49.44% (n = 44) | 50.56% (n = 45) |
PSA (mean ng/mL) | 8.55 (p = 0.197) | 7.21 | 8.02 (p = 0.409) | 7.28 | 7.07 (p = 0.265) | 7.84 |
Peptoniphilus_A | 1.12% (n = 1) | 98.88% (n = 88) | 2.25% (n = 2) | 97.75% (n = 87) | 48.31% (n = 43) | 51.69% (n = 46) |
PSA (mean ng/mL) | 8.2 (p = n/a) | 7.46 | 8.30 (p = 0.022) | 7.44 | 6.94 (p = 0.144) | 7.95 |
Veillonella_A | 0% (n = 0) | 100% (n = 89) | 0% (n = 0) | 100% (n = 89) | 2.25% (n = 2) | 97.75% (n = 87) |
PSA (mean ng/mL) | n/a | 7.46 | n/a | 7.46 | 8.10 (p = 0.513) | 7.45 |
Finegoldia | 0% (n = 0) | 100% (n = 89) | 2.25% (n = 2) | 97.75% (n = 87) | 51.69% (n = 46) | 48.31% (n = 43) |
PSA (mean ng/mL) | n/a | 7.46 | 7.35 (p = 0.747) | 7.47 | 7.23 (p = 0.490) | 7.71 |
Predictor | Coefficient | Standard Error | t Value | p-Value |
---|---|---|---|---|
Intercept | 6.974 | 0.396 | 17.604 | <0.001 *** |
Peptostreptococcus | 1.715 | 0.621 | 2.76 | 0.007 ** |
Ochrobactrum_A | 8.974 | 3.374 | 2.659 | 0.009 ** |
Prevotella | 0.03 | 0.025 | 1.194 | 0.236 |
Methylobacterium | −2.457 | 1.381 | −1.78 | 0.079 * |
Peptoniphilus_A | 0.013 | 0.045 | 0.291 | 0.772 |
Fusobacterium | 0.04 | 0.071 | 0.572 | 0.569 |
Finegoldia | −0.144 | 0.325 | −0.444 | 0.658 |
Veillonella_A | 0.498 | 0.9 | 0.554 | 0.581 |
Model fit statistics | ||||
Residual standard error: 3.005 on 80 degrees of freedom | ||||
Multiple R-squared: 0.225 | ||||
Adjusted R-squared: 0.147 | ||||
F-statistic: 2.894 on 8 and 80 degrees of freedom, | ||||
p-value: 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladoukakis, E.; Oliver, T.; Wilks, M.; Lane, E.F.; Chinegwundoh, F.; Shaw, G.; Nedjai, B. Exploring the Link Between Obligate Anaerobe-Related Dysbiosis and Prostate Cancer Development: A Pilot Study. Cancers 2025, 17, 70. https://doi.org/10.3390/cancers17010070
Ladoukakis E, Oliver T, Wilks M, Lane EF, Chinegwundoh F, Shaw G, Nedjai B. Exploring the Link Between Obligate Anaerobe-Related Dysbiosis and Prostate Cancer Development: A Pilot Study. Cancers. 2025; 17(1):70. https://doi.org/10.3390/cancers17010070
Chicago/Turabian StyleLadoukakis, Efthymios, Tim Oliver, Mark Wilks, Emily F. Lane, Frank Chinegwundoh, Greg Shaw, and Belinda Nedjai. 2025. "Exploring the Link Between Obligate Anaerobe-Related Dysbiosis and Prostate Cancer Development: A Pilot Study" Cancers 17, no. 1: 70. https://doi.org/10.3390/cancers17010070
APA StyleLadoukakis, E., Oliver, T., Wilks, M., Lane, E. F., Chinegwundoh, F., Shaw, G., & Nedjai, B. (2025). Exploring the Link Between Obligate Anaerobe-Related Dysbiosis and Prostate Cancer Development: A Pilot Study. Cancers, 17(1), 70. https://doi.org/10.3390/cancers17010070