Improved Enumeration of Weakly Fluorescent CD4+ T-lymphocytes by Confining Cells in a Spinning Sample Cartridge with a Helical Minichannel
<p>(<b>a</b>) Two-color-fluorescence imaging configuration with a Bluetooth-controlled DC (direct current) motor system; (<b>b</b>) smartphone application for motor control with an Arduino board; (<b>c</b>) helical minichannel filled with blood sample during acquisition of fluorescent cell images for counting.</p> "> Figure 2
<p>Schematic of the sample cartridge and the cross section of the helical minichannel with depths of (<b>a</b>) 100 μm and (<b>b</b>) 500 μm.</p> "> Figure 3
<p>(<b>a</b>) Schematic of particle confinement in a helical minichannel after spinning the sample cartridge; (<b>b</b>) schematic of a particle moving toward the outer wall during spinning.</p> "> Figure 4
<p>Plots of velocity–displacement as a function of channel depth for channel depths of (<b>a</b>) 100 μm, (<b>b</b>) 200 μm, (<b>c</b>) 300 μm, (<b>d</b>) 400 μm and (<b>e</b>) 500 μm.</p> "> Figure 5
<p>Plots of time–displacement for channel depths of (<b>a</b>) 100 μm, (<b>b</b>) 200 μm, (<b>c</b>) 300 μm, (<b>d</b>) 400 μm and (<b>e</b>) 500 μm; (<b>f</b>) Time taken by particles to reach the top of the channel depending on channel depth (h = 15 μm).</p> "> Figure 6
<p>Sequence of particle and CD4 (cluster of differentiation 4) cell images taken at different z-axis offsets using a 10× objective lens; (<b>a</b>) 10-µm fluorescent bead; (<b>b</b>) fluorescently-labeled CD4+ T-lymphocyte; (<b>c</b>) comparison of the signal-to-noise ratios (SNRs) of the fluorescent bead and CD4 cell.</p> "> Figure 7
<p>Particle confinement in the helical minichannel with 500 μm depth for 10-μm fluorescent beads suspended in 10% glycerol before (0 s) and after (10–120 s) spinning (<b>a</b>) at 1000 rpm, (<b>b</b>) at 2000 rpm and (<b>c</b>) at 3000 rpm. (scale bar = 0.1 mm).</p> "> Figure 8
<p>Particle counts depending on time at different spin speeds (1000, 2000 and 3000 rpm).</p> "> Figure 9
<p>CD4 cell counts before and after spinning for different channel depths (100 and 500 µm); (<b>a</b>) before and (<b>b</b>) after spinning in a 100-µm-deep channel; (<b>c</b>) before and (<b>d</b>) after spinning in a 500-µm-deep channel; (<b>e</b>) comparison of the number of CD4 cells per µL before and after spinning in each channel with the reference value determined by manual counting using a C-Chip.</p> "> Figure 10
<p>Comparison of CD4+ cell counts in diluted blood samples from human volunteers. (<b>a</b>) Helios and ADAM-II versus PIMA; (<b>b</b>) ADAM-II versus FACSCalibur.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sample Preparation
2.3. Theoretical Background
2.4. Particle Confinement
2.5. Data Acquisition and Image Analysis
3. Results
3.1. Theoretical Analysis
3.2. Experimental Results
3.2.1. Intensities of Fluorescent Beads and CD4 Cells
3.2.2. Particle Confinement
3.2.3. Particle Count
3.3. Comparison between Theory and Experiment
3.4. CD4 Cell Count by Confinement
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haleyurgirisetty, M.K.; Hewlett, I.K. Point of Care Technologies for HIV. AIDS Res. Treat. 2014, 2014, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consolidated Guidelines on HIV Prevention, Diagnosis, Treatment and Care for Key Populations 2016 World Health Organization. Available online: http://www.who.int/hiv/pub/guidelines/keypopulations/en/ (accessed on 2 March 2018).
- Daneau, G.; Aboud, S.; Prat, I.; Urassa, W.; Kestens, L. Performance of FACSPresto Point-of-Care Instrument for CD4-T Cell Enumeration in Human Immunodeficiency Virus (HIV)-Infected Patients Attending Care and Treatment Clinics in Belgium and Tanzania. PLoS ONE 2017, 12, e0170248. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Gurkan, U.A.; Blander, J.; Fawzi, W.W.; Aboud, S.; Mugusi, F.; Kuritzkes, D.R.; Demirci, U. Enumeration of CD4+ T-Cells Using a Portable Microchip Count Platform in Tanzanian HIV-Infected Patients. PLoS ONE 2011, 6, e21409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, S.S. Early initiation of antiretroviral therapy and universal HIV testing in sub-Saharan Africa: Has WHO offered a milestone for HIV prevention? J. Public Heal. Policy 2010, 31, 385–400. [Google Scholar] [CrossRef] [Green Version]
- Geffen, N. World Health Organization guidelines should not change the CD4 count threshold for antiretroviral therapy initiation. S. Afr. J. HIV. Med. 2013, 14, 6–7. [Google Scholar] [CrossRef]
- Hammer, S.M.; Eron, J.J.; Reiss, P.; Schooley, R.T.; Thompson, M.A.; Walmsley, S.L.; Cahn, P.; Fischl, M.A.; Gatell, J.M.; Hirsch, M.S.; et al. Antiretroviral Treatment of Adult HIV Infection. JAMA 2008, 300, 555–570. [Google Scholar] [CrossRef]
- Howard, A.L.; Pezzi, H.M.; Beebe, D.J.; Berry, S.M. Exclusion-Based Capture and Enumeration of CD4+ T Cells from Whole Blood for Low-Resource Settings. J. Lab. Autom. 2013, 19, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.; Colonna, M.; Brooks, E.; Falco, M.; Ferrara, G.; Strominger, J. How does HIV cause AIDS? Science 1993, 260, 1273–1279. [Google Scholar] [CrossRef]
- Douek, D.C.; Roederer, M.; Koup, R.A. Emerging Concepts in the Immunopathogenesis of AIDS. Annu. Rev. Med. 2009, 60, 471–484. [Google Scholar] [CrossRef] [Green Version]
- May, M.T. Better to know: The importance of early HIV diagnosis. Lancet Public Health 2016, 2, e6–e7. [Google Scholar] [CrossRef] [Green Version]
- Gervais, L.; De Rooij, N.; Delamarche, E. Microfluidic chips for point-of-care immunodiagnostics. Adv. Mater. 2011, 23, H151–H176. [Google Scholar] [CrossRef] [PubMed]
- Sia, S.K.; Linder, V.; Parviz, B.A.; Siegel, A.; Whitesides, G.M. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem. Int. Ed. Engl. 2004, 43, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.D.; Laksanasopin, T.; Cheung, Y.K.; Steinmiller, D.; Linder, V.; Parsa, H.; Wang, J.; Moore, H.; Rouse, R.; Umviligihozo, G.; et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 2011, 17, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Glynn, M.T.; Kinahan, D.J.; Ducrée, J. CD4 counting technologies for HIV therapy monitoring in resource-poor settings-state-of-the-art and emerging microtechnologies. Lab Chip 2013, 13, 2731–2748. [Google Scholar] [CrossRef]
- Rodriguez, W.R.; Christodoulides, N.; Floriano, P.N.; Graham, S.; Mohanty, S.; Dixon, M.; Hsiang, M.; Peter, T.; Zavahir, S.; Thior, I.; et al. A microchip CD4 counting method for HIV monitoring in resource-poor settings. PLoS Med. 2005, 2, e182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Irimia, D.; Dixon, M.; Sekine, K.; Demirci, U.; Zamir, L.; Tompkins, R.G.; Rodriguez, W.; Toner, M. A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab Chip 2007, 7, 170–178. [Google Scholar] [CrossRef]
- Hattori, A.; Yasuda, K. Extended depth of field optics for precise image analysis in microfluidic flow cytometry. Jpn. J. Appl. Phys. 2012, 51, 06FK05. [Google Scholar] [CrossRef]
- Shourav, M.K.; Kim, K.; Kim, S.; Kim, J.K. Wide field-of-view fluorescence imaging with optical-quality curved microfluidic chamber for absolute cell counting. Micromachines 2016, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Sukapirom, K.; Onlamoon, N.; Thepthai, C.; Polsrila, K.; Tassaneetrithep, B.; Pattanapanyasat, K. Performance evaluation of the Alere PIMA CD4 test for monitoring HIV-infected individuals in resource-constrained settings. J. Acquir. Immune Defic. Syndr. 2011, 58, 41–147. [Google Scholar] [CrossRef]
- Kim, J.K.; Shourav, M.K.; Cho, M.-O.; Lee, Y. Nut and bolt microfluidics with helical minichannel for counting CD4+ T-cells. Bioengineering 2019, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Kim, S.; Cho, M.; Kim, K.; Shourav, M.K.; Kim, S.; Lee, J.; Kim, J.K. Evaluation of particle counting by smartphone-based fluorescence Smartscope and particle positioning in spinning helical channel. J. Korea Ind. Inf. Syst. Res. 2015, 20, 19–28. [Google Scholar]
- Schäffer, E.; Nørrelykke, S.F.; Howard, J. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir 2007, 23, 3654–3665. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.O.; Kim, S.; Lee, J.Y.; Oh, J.H.; Kim, J.Y.; Bong, S.R.; Chung, C.; Kim, J.K. Performance evaluation of an automated image-based fluorescence CD4+ cell analyzer. Technol. Health Care 2018, 26, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kwon, D.; Choi, W.; Jung, G.Y.; Au, A.K.; Folch, A.; Jeon, S. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 2015, 5, 7717. [Google Scholar] [CrossRef]
- Kuntaegowdanahalli, S.S.; Bhagat, A.A.; Kumar, G.; Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 2009, 9, 2973–2980. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Guan, G.; Hou, H.W.; Bhagat, A.A.S.; Han, J. Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal. Chem. 2012, 84, 9324–9331. [Google Scholar] [CrossRef]
- Shields IV, C.W.; Cruz, D.F.; Ohiri, K.A.; Yellen, B.B.; Lopez, G.P. Fabrication and operation of acoustofluidic devices supporting bulk acoustic standing waves for sheathless focusing of particles. J. Vis. Exp. 2016, 109, e53861. [Google Scholar] [CrossRef] [Green Version]
- Shields IV, C.W.; Livingston, C.E.; Yellen, B.B.; López, G.P.; Murdoch, D.M. Magnetographic array for the capture and enumeration of single cells and cell pairs. Biomicrofluidics 2014, 8, 3–6. [Google Scholar] [CrossRef]
- Imran, J.H.; Kim, J.K. A nut-and-bolt microfluidic mixing system for the rapid labeling of immune cells with antibodies. Micromachines 2020, 11, 280. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Imran, J.H.; Shourav, M.K.; Kim, J.K. Improved Enumeration of Weakly Fluorescent CD4+ T-lymphocytes by Confining Cells in a Spinning Sample Cartridge with a Helical Minichannel. Micromachines 2020, 11, 618. https://doi.org/10.3390/mi11060618
Kim S, Imran JH, Shourav MK, Kim JK. Improved Enumeration of Weakly Fluorescent CD4+ T-lymphocytes by Confining Cells in a Spinning Sample Cartridge with a Helical Minichannel. Micromachines. 2020; 11(6):618. https://doi.org/10.3390/mi11060618
Chicago/Turabian StyleKim, Subin, Jakir Hossain Imran, Mohiuddin Khan Shourav, and Jung Kyung Kim. 2020. "Improved Enumeration of Weakly Fluorescent CD4+ T-lymphocytes by Confining Cells in a Spinning Sample Cartridge with a Helical Minichannel" Micromachines 11, no. 6: 618. https://doi.org/10.3390/mi11060618
APA StyleKim, S., Imran, J. H., Shourav, M. K., & Kim, J. K. (2020). Improved Enumeration of Weakly Fluorescent CD4+ T-lymphocytes by Confining Cells in a Spinning Sample Cartridge with a Helical Minichannel. Micromachines, 11(6), 618. https://doi.org/10.3390/mi11060618