The Mechanical and Physical Properties of 3D-Printed Materials Composed of ABS-ZnO Nanocomposites and ABS-ZnO Microcomposites
<p>Nano- and micro-composite filaments’ and specimens’ fabrication methodology.</p> "> Figure 2
<p>(<b>a</b>) X-ray diffraction (XRD) spectra of ABS/ZnO nanocomposites and (<b>b</b>) XRD spectra of ABS/ZnO micro-composites in concentrations studied.</p> "> Figure 3
<p>(<b>a</b>) Scanning electron microscopy (SEM) images of pure ABS surface area; (<b>b</b>) pure ABS section area; (<b>c</b>) ABS/ZnO nano 2.5% wt. surface area; (<b>d</b>) ABS/ZnO nano 2.5% wt. section area; (<b>e</b>) ABS/ZnO nano 20% wt. surface area; (<b>f</b>) ABS/ZnO nano 20% wt. section area. “Surface area” corresponds to the 3D-printed material surface, while “section area” corresponds to the surface resulted from tensile testing.</p> "> Figure 4
<p>(<b>a</b>) SEM images of pure ABS surface area; (<b>b</b>) pure ABS section area; (<b>c</b>) ABS/ZnO micro 2.5% wt. surface area; (<b>d</b>) ABS/ZnO micro 2.5% wt. section area; (<b>e</b>) ABS/ZnO micro 20% wt. surface area; (<b>f</b>) ABS/ZnO micro 20% wt. section area “Surface area” corresponds to the 3D-printed material surface, while “section area” corresponds to the surface resulted from tensile testing.</p> "> Figure 5
<p>Thermogravimetric analysis (TGA) mass loss versus temperature curve for the ABS Terluran Hi-10 experimentally determined in this work and ABS polymer matrix manufacturer properties (courtesy of Ineos Styrolousion, material datasheet).</p> "> Figure 6
<p>(<b>a</b>) Differential scanning calorimetry (DSC) curves for ABS, ABS/ZnO nanocomposites and (<b>b</b>) ABS/ZnO micro-composites.</p> "> Figure 7
<p>(<b>a</b>) Tensile stress vs. strain graphs for ABS/ZnO nano and (<b>b</b>) ABS/ZnO micro.</p> "> Figure 8
<p>(<b>a</b>) Comparative tensile strength graph and (<b>b</b>) tensile mod. of elasticity for all the materials studied (numbers in the graph points indicate the calculated deviation for each value).</p> "> Figure 9
<p>(<b>a</b>) Flexure stress vs. strain graphs for (<b>b</b>) ABS/ZnO nano and ABS/ZnO micro.</p> "> Figure 10
<p>(<b>a</b>) Comparative flexural strength graph and (<b>b</b>) flexural mod. of elasticity for all the materials studied (numbers in the graph points indicate the calculated deviation for each value).</p> "> Figure 11
<p>Micro-Hardness Vickers results of ABS/ZnO nanocomposites (<b>a</b>) and micro-composites (<b>b</b>) versus the filler concentration (numbers in the graph points indicate the calculated deviation for each value).</p> "> Figure 12
<p>Overall comparative graphs for (<b>a</b>) ABS/ZnO nanocomposites and (<b>b</b>) ABS/ZnO micro-composites, in all scenarios studied.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Tested
2.2. Work Methods
2.2.1. Structural Characterization
2.2.2. Thermal Properties
2.2.3. Tensile Tests
2.2.4. Flexural Tests
2.2.5. Micro-Hardness Tests
3. Results
3.1. Experimental Observations Regarding Filament and Specimens’ Fabrication
3.2. Structural and Compositional Characterization
3.3. Thermal Analysis
3.4. Tensile Properties
3.5. Flexural Properties
3.6. Micro-Hardness Results
4. Discussion
4.1. Structural and Compositional Characterization
4.2. Thermal Analysis
4.3. Tensile Test Results
4.4. Flexural Test Results
4.5. Micro-Hardness Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Tech. 2013, 67, 1191–1203. [Google Scholar] [CrossRef]
- Ivanova, O.; Williams, C.; Campbell, T. Additive manufacturing (AM) and nanotechnology: Promises and challenges. Rapid Prototyp. J. 2013, 19, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.S.; Stevens, K.R.; Yang, M.T. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 2012, 11, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Skorski, M.; Esenther, J.; Ahmed, Z.; Miller, A.; Hartings, M. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Sci. Technol. Adv. Mat. 2016, 17, 89–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbleston, J.R.; Shirvanyants, D.; Ermoshkin, N. Continuous liquid interface production of 3D objects. Science 2015, 347, 1349–1352. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Stern, M.; Franchin, G. Additive Manufacturing of Optically Transparent Glass. 3D Print. Addit. Manuf. 2015. [Google Scholar] [CrossRef]
- Lewis, G.K.; Schlienger, E. Practical considerations and capabilities for laser assisted direct metal deposition. Mat. Des. 2000, 21, 417–423. [Google Scholar] [CrossRef]
- Yadoji, P.; Peelamedu, R.; Agrawal, D.; Roy, R. Microwave sintering of Ni-Zn ferrites: Comparison with conventional sintering. Mat. Sci. Eng. B-Solid State Mater. Adv. Tech. 2003, 98, 269–278. [Google Scholar] [CrossRef]
- Travitzky, N.; Bonet, A.; Dermeik, B.; Fey, T.; Schlier, L.; Schlordt, T.; Greil, P.; Filbert-Demut, I. Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 2014, 16, 729–754. [Google Scholar] [CrossRef]
- Vidakis, N.; Vairis, A.; Petousis, M.; Savvakis, K.; Κechagias, J. Fused Deposition Modelling Parts Tensile Strength Characterisation. Acad. J. Manuf. Eng. 2016, 14, 87–94. [Google Scholar]
- Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Experimental investigation and empirical modeling of FDM process for compressive strength improvement. J. Adv. Res. 2012, 3, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Rodrõ, Â.F.; Thomas, J.P.; Renaud, J.E. Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Exp. Investig. Rapid Prototyp. J. 2001, 7, 148–158. [Google Scholar]
- Ahn, S.H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic material properties of fused deposition modelling ABS. Rapid Prototyp. J. 2002, 8, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Wang, H.; Zuo, D.; Ji, A.; Liu, Y. Research on the application of MWCNTs/PLA composite material in the manufacturing of conductive composite products in 3D printing. Micromachines 2018, 9, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaska, K.; Xu, X.; Gubanski, S.; Kádár, R. Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process. Polymers 2017, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidakis, N.; Petousis, M.; Savvakis, K.; Maniadi, A.; Koudoumas, E. A comprehensive investigation of the mechanical behavior and the dielectrics of pure polylactic acid (PLA) and PLA with graphene (GnP) in fused deposition modeling (FDM). Int. J. Plast. Technol. 2019, 23, 195–206. [Google Scholar] [CrossRef]
- Devaprakasam, D.; Hatton, P.; Mobus, G.; Inkson, B. Effect of microstructure of nano- and micro-particle filled polymer composites on their tribo-mechanical performance. J. Phys. Conf. Ser. 2008, 126, 12–57. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Yu, G.; Zhang, X.; Yu, B. The Research of Crystalline Morphology and Breakdown Characteristics of Polymer/Micro-Nano-Composites. Materials 2020, 13, 1432. [Google Scholar] [CrossRef] [Green Version]
- Siti, K.; Mohd, B.; Shahrom, M.; Dasmawati, M.; Sam’an, M.M.; Azman, S. Surface morphological and mechanical properties of zinc oxide eugenol using different types of ZnO nanopowder. Mat. Sci. Eng. 2019, 100, 645–654. [Google Scholar]
- Vidakis, N.; Maniadi, A.; Petousis, M.; Koudoumas, E.; Kenanakis, G. Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–Butadiene–Styrene Graphene and Carbon Nanocomposites. J. Mat. Eng. Perform. 2020. [Google Scholar] [CrossRef]
- Dorigato, A.; Moretti, V.; Dul, S.; Unterberger, S.H.; Pegoretti, A. Electrically conductive nanocomposites for fused deposition modelling. Synth. Metals 2017, 226, 7–14. [Google Scholar] [CrossRef]
- Dul, S.; Fambri, L.; Pegoretti, A. Fused deposition modelling with ABS–graphene nanocomposites. Compos. Part A 2016, 85, 181–191. [Google Scholar] [CrossRef]
- Collares, F.M.; Garcia, I.M.; Klein, M.; Parolo, C.F.; Sánchez, F.A.L.; Takimi, A.; Bergmann, C.P.; Samuel, S.M.W.; Melo, M.A.; Leitune, V.C. Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties. Polymers 2020, 12, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, J.O.; Tigli, O. Zinc oxide nanostructures: From growth to application. J. Mat. Sci. 2013, 48, 612–624. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Moezzi, A.; McDonagh, A.M.; Cortie, M.B. Zinc oxide particles: Synthesis, properties and applications. Chem. Eng. J. 2012, 185, 1–22. [Google Scholar] [CrossRef]
- Karahaliou, E.; Tarantili, P.A. Preparation of Poly (Acrylonitrile–Butadiene–Styrene)/Montmorillonite Nanocomposites and Degradation Studies During Extrusion Reprocessing. J. Appl. Polym. Sci. 2009, 113, 2271–2281. [Google Scholar] [CrossRef]
- Aalaie, J.; Rahmatpour, A. Study on Preparation and Properties of Acrylonitrile-Butadiene-Styrene/Montmorillonite. Nanocomposites. J. Macromol. Sci. Part B 2007, 46, 1255–1265. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Maniadi, A.; Koudoumas, E.; Vairis, A.; Kechagias, J. Sustainable Additive Manufacturing: Mechanical Response of Acrylonitrile-Butadiene-Styrene over Multiple Recycling Processes. Sustainability 2020, 12, 3568. [Google Scholar] [CrossRef]
- Li, Y.; Shimizu, H. Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): Morphology and properties. Eur. Polym. J. 2009, 45, 738–746. [Google Scholar] [CrossRef]
- Wu, D.; Bateman, S.; Partlett, M. Ground rubber/acrylonitrile–butadiene–styrene composites. Compos. Sci. Technol. 2007, 67, 1909–1919. [Google Scholar] [CrossRef]
- Shenavar, A.; Abbasi, F. Morphology, Thermal, and Mechanical Properties of Acrylonitrile–Butadiene–Styrene/Carbon Black Composites. J. Appl. Polym. Sci. 2007, 105, 2236–2244. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhang, L.Q.; Tian, M. Mechanical and tribological properties of acrylonitrile–butadiene rubber filled with graphite and carbon black. Mater. Des. 2012, 39, 450–457. [Google Scholar] [CrossRef]
- Yeh, S.K.; Agarwal, S.; Gupta, R.K. Wood–plastic composites formulated with virgin and recycled ABS. Compos. Sci. Technol. 2009, 69, 2225–2230. [Google Scholar] [CrossRef]
- ASTM D638-02a. In Standard Test Method for Tensile Properties of Plastics; American Society for Testing and Materials International: West Conshohocken, PA, USA, 2003.
- ASTM D790-10. In Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; American Society for Testing and Materials International: West Conshohocken, PA, USA, 2010.
- ASTM D384-11. In Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; American Society for Testing and Materials International: West Conshohocken, PA, USA, 2012.
- Gnanasekaran, K.; Heijmansa, T.; Bennekom, S.; Woldhuis, H.; Wijniab, S.; Witha, G.; Friedrich, H. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modelling. Appl. Mat. Today 2017, 9, 21–28. [Google Scholar] [CrossRef]
- Hamming, L.M.; Qiao, R.; Messersmith, P.B.; Brinson, L.C. Effects of dispersion and interfacial modification on the macroscale properties of TiO2 polymer–matrix nanocomposites. Compos. Sci. Technol. 2009, 69, 1880–1886. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Tan, D.; Cao, Y.; Tuncer, E.; Irwin, P. Nanofiller Dispersion in Polymer Dielectrics. Mat. Sci. Appl. 2013, 4, 6–15. [Google Scholar] [CrossRef] [Green Version]
Material | Tg (°C) | Relaxation (°C) |
---|---|---|
ABS | 107 | 112 |
0.5% wt. ZnO nano | 107 | 112 |
5.0% wt. ZnO nano | 107 | 111 |
10.0% wt. ZnO nano | 108 | 111 |
0.5% wt. ZnO micro | 107 | 112 |
5.0% wt. ZnO micro | 107 | 111 |
10.0% wt. ZnO micro | 110 | 113 |
Material | Tensile Strength (MPa) | Youngs Modulus (GPa) * | Flexural Strength (MPa) | Flexural Modulus (GPa) * |
---|---|---|---|---|
ABS | 26.7 ± 0.4 | 0.69 ± 0.02 | 46.8 ± 2.2 | 1.64 ± 0.09 |
0.5% wt. ZnO nano | 30.3 ± 1.3 | 0.60 ± 0.00 | 54.0 ± 0.3 | 1.76 ± 0.00 |
2.5% wt. ZnO nano | 38.3 ± 0.6 | 0.58 ± 0.00 | 49.9 ± 0.2 | 1.61 ± 0.02 |
5.0% wt. ZnO nano | 27.8 ± 0.6 | 0.60 ± 0.02 | 48.0 ± 0.1 | 1.52 ± 0.02 |
10.0% wt. ZnO nano | 26.6 ± 0.6 | 0.58 ± 0.01 | 47.3 ± 1.2 | 1.57 ± 0.04 |
20.0% wt. ZnO nano | 24.8 ± 0.9 | 0.63 ± 0.00 | 43.2 ± 0.9 | 1.48 ± 0.04 |
0.5% wt. ZnO micro | 30.4 ± 0.3 | 0.79 ± 0.02 | 50.5 ± 1.2 | 1.71 ± 0.02 |
2.5% wt. ZnO micro | 29.6 ± 0.4 | 0.84 ± 0.02 | 50.5 ± 1.7 | 1.71 ± 0.02 |
5.0% wt. ZnO micro | 29.8 ± 0.6 | 0.78 ± 0.01 | 54.8 ± 2.0 | 1.86 ± 0.08 |
10.0% wt. ZnO micro | 29.2 ± 0.6 | 0.74 ± 0.03 | 48.4 ± 1.2 | 1.63 ± 0.06 |
20.0% wt. ZnO micro | 27.9 ± 1.1 | 0.70 ± 0.00 | 46.1 ± 3.8 | 1.52 ± 0.02 |
Reflection (hkl) | (°)—2.5% | |||
---|---|---|---|---|
(100) | 0.341 | 0.331 | 0.292 | 0.269 |
(002) | 0.321 | 0.303 | 0.285 | 0.271 |
(101) | 0.334 | 0.323 | 0.294 | 0.272 |
Reflection (hkl) | ||||
---|---|---|---|---|
(100) | 0.260 | 0.262 | 0.254 | 0.252 |
(002) | 0.258 | 0.254 | 0.249 | 0.245 |
(101) | 0.263 | 0.257 | 0.255 | 0.253 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidakis, N.; Petousis, M.; Maniadi, A.; Koudoumas, E.; Kenanakis, G.; Romanitan, C.; Tutunaru, O.; Suchea, M.; Kechagias, J. The Mechanical and Physical Properties of 3D-Printed Materials Composed of ABS-ZnO Nanocomposites and ABS-ZnO Microcomposites. Micromachines 2020, 11, 615. https://doi.org/10.3390/mi11060615
Vidakis N, Petousis M, Maniadi A, Koudoumas E, Kenanakis G, Romanitan C, Tutunaru O, Suchea M, Kechagias J. The Mechanical and Physical Properties of 3D-Printed Materials Composed of ABS-ZnO Nanocomposites and ABS-ZnO Microcomposites. Micromachines. 2020; 11(6):615. https://doi.org/10.3390/mi11060615
Chicago/Turabian StyleVidakis, Nectarios, Markos Petousis, Athena Maniadi, Emmanuel Koudoumas, George Kenanakis, Cosmin Romanitan, Oana Tutunaru, Mirela Suchea, and John Kechagias. 2020. "The Mechanical and Physical Properties of 3D-Printed Materials Composed of ABS-ZnO Nanocomposites and ABS-ZnO Microcomposites" Micromachines 11, no. 6: 615. https://doi.org/10.3390/mi11060615
APA StyleVidakis, N., Petousis, M., Maniadi, A., Koudoumas, E., Kenanakis, G., Romanitan, C., Tutunaru, O., Suchea, M., & Kechagias, J. (2020). The Mechanical and Physical Properties of 3D-Printed Materials Composed of ABS-ZnO Nanocomposites and ABS-ZnO Microcomposites. Micromachines, 11(6), 615. https://doi.org/10.3390/mi11060615