Supplementation of Miso to a Western-Type Diet Stimulates ILC3s and Decreases Inflammation in the Small Intestine
<p>Study design, changes in body weight, weight gain, and food intake, and concentration of SCFAs. (<b>A</b>) Administration of HFHSD or HFHSD+M started at 8 weeks of age; mice were sacrificed at 16 weeks of age. (<b>B</b>) Body weight changes from week 8 to 16 (<span class="html-italic">n</span> = 6). (<b>C</b>) Weight gain (<span class="html-italic">n</span> = 6). (<b>D</b>) Food intake changes (<span class="html-italic">n</span> = 6). Concentration of (<b>E</b>) acetic acid, (<b>F</b>) butanoic acid, and (<b>G</b>) propanoic acid in faeces of 16-week-old mice (<span class="html-italic">n</span> = 6). Data are represented as the mean ± SD values; data were analysed using a one-way ANOVA with a Holm–Šídák multiple-comparison test; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 2
<p>Results of iPGTT and ITT and blood biochemistry. (<b>A</b>,<b>B</b>) Results of intraperitoneal glucose tolerance testing (iPGTT; 1g/kg of body weight) and area under the curve (AUC) analysis in 15-week-old mice (<span class="html-italic">n</span> = 6). (<b>C</b>,<b>D</b>) Results of insulin tolerance testing (ITT; 0.5 U/kg) and AUC analysis in 15-week-old mice (<span class="html-italic">n</span> = 6). Serum levels of (<b>E</b>) ALT, (<b>F</b>) TG, and (<b>G</b>) NEFAs in 16-week-old mice (<span class="html-italic">n</span> = 6). Data are represented as the mean ± SD values; data were analysed using a one-way ANOVA with a Holm–Šídák multiple-comparison test; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 3
<p>Histological evaluation of the small and large intestines and immune cells in the small intestine. (<b>A</b>) Representative images of haematoxylin and eosin (H&E)-stained jejunum and periodic acid–Schiff (PAS)-stained colon sections, collected at 16 weeks of age. The scale bar represents 100 μm. (<b>B</b>) Villus height, (<b>C</b>) villus depth, and (<b>D</b>) crypt depth in the jejunum (<span class="html-italic">n</span> = 6). (<b>E</b>) Total goblet cells per crypt in the colon (<span class="html-italic">n</span> = 6). (<b>F</b>) Ratio of ILC1s to CD45-positive cells (<span class="html-italic">n</span> = 6). (<b>G</b>,<b>H</b>) Ratios of ILC3s to CD45-positive cells and of T-bet positive ILC3s to CD45-positive cells (<span class="html-italic">n</span> = 6). (<b>I</b>) Ratio of M1 to M2 macrophages (<span class="html-italic">n</span> = 6). Data are represented as the mean ± SD values; data were analysed using a one-way ANOVA with a Holm–Šídák multiple-comparison test; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 4
<p>Gene expression of genes involved in inflammation, mucus production, and lipid metabolism in the small intestine. Relative mRNA expression of (<b>A</b>) IL-22, (<b>B</b>) Tnfa, (<b>C</b>) Il1b, and (<b>D</b>) Ifng normalised to the expression of Gapdh in 16-week-old mice (n = 2 or 3 each). Relative mRNA expression of (<b>E</b>) Muc2, (<b>F</b>) Pept1, and (<b>G</b>) Sglt1 normalised to the expression of Gapdh in 16-week-old mice (n = 2 or 3 each). Data are represented as the mean ± SD values; data were analysed using a one-way ANOVA with a Holm–Šídák multiple-comparison test; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p>Histological evaluation of livers, liver weights, and immune cells in the liver. (<b>A</b>) Representative images of haematoxylin and eosin (H&E)-stained, Masson’s Trichome (MT)-stained, and Oil-Red-stained liver sections. Tissue was collected at 16 weeks of age. The scale bar represents 100 μm. (<b>B</b>,<b>C</b>) NAFLD activity score and fibrosis stage (<span class="html-italic">n</span> = 6). (<b>D</b>) Oil-Red-stained area (<span class="html-italic">n</span> = 6). (<b>E</b>) Liver weight at 16 weeks (<span class="html-italic">n</span> = 6). (<b>F</b>) Ratio of liver weight to body weight at 16 weeks (<span class="html-italic">n</span> = 6). (<b>G</b>) Ratio of ILC1s to CD45-positive cells (<span class="html-italic">n</span> = 6). (<b>H</b>) Ratio of ILC3s to CD45-positive cells (<span class="html-italic">n</span> = 6). (<b>I</b>) Ratio of M1 to M2 macrophages (<span class="html-italic">n</span> = 6). Data are represented as the mean ± SD values; data were analysed using one-way ANOVA with Holm–Šídák multiple-comparison test; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Measurement of Fatty Acid Levels
2.3. Analytical Procedures for Glucose and Insulin Tolerance Tests
2.4. Blood Biochemistry
2.5. Histology of Small Intestine and Large Intestine
2.6. Isolation of Mononuclear Cells from Small Intestine and Liver
2.7. Flow Cytometry
2.8. Gene Expression Analysis in Small Intestine
2.9. Histology of Liver
2.10. Statistical Analysis
3. Results
3.1. Body Weight and Oral Intake Were Monitored During the Treatment with HFHSD or HFHSD+M
3.2. SCFA Concentration in the Intestine Was Increased by Miso Supplementation
3.3. Glucose Tolerance Was Increased but Insulin Resistance Was Unaffected by Miso Supplementation in KI/w Mice
3.4. Serum Metabolic Markers Were Not Affected by Miso Supplementation
3.5. Intestinal Barrier Integrity Was Protected by Miso Supplementation in KI/w Mice
3.6. ILC Differentiation and Macrophage Polarisation in the Small Intestine Were Affected by Miso Supplementation in KI/w Mice
3.7. Pro- and Anti-Inflammatory Cytokine Production in the Small Intestine Was Affected by Miso Supplementation
3.8. Liver Damage and Weight Were Not Affected by Miso Supplementation
3.9. ILC Differentiation and Macrophage Polarisation in the Liver Were Affected by Miso Supplementation in KI/w Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef] [PubMed]
- Croci, S.; D’Apolito, L.I.; Gasperi, V.; Catani, M.V.; Savini, I. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients 2021, 13, 1389. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Kopp, W. How Western Diet and Lifestyle Drive The Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019, 12, 2221–2236. [Google Scholar] [CrossRef]
- Moszak, M.; Szulińska, M.; Bogdański, P. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review. Nutrients 2020, 12, 1096. [Google Scholar] [CrossRef]
- Singh, R.B.; Fedacko, J.; Fatima, G.; Magomedova, A.; Watanabe, S.; Elkilany, G. Why and How the Indo-Mediterranean Diet May Be Superior to Other Diets: The Role of Antioxidants in the Diet. Nutrients 2022, 14, 898. [Google Scholar] [CrossRef]
- Kinashi, Y.; Hase, K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front. Immunol. 2021, 12, 673708. [Google Scholar] [CrossRef]
- Paray, B.A.; Albeshr, M.F.; Jan, A.T.; Rather, I.A. Leaky Gut and Autoimmunity: An Intricate Balance in Individuals Health and the Diseased State. Int. J. Mol. Sci. 2020, 21, 9770. [Google Scholar] [CrossRef]
- Ikeda, T.; Nishida, A.; Yamano, M.; Kimura, I. Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacol. Ther. 2022, 239, 108273. [Google Scholar] [CrossRef]
- Jayachandran, M.; Xu, B. An insight into the health benefits of fermented soy products. Food Chem. 2019, 271, 362–371. [Google Scholar] [CrossRef]
- Binienda, A.; Twardowska, A.; Makaro, A.; Salaga, M. Dietary Carbohydrates and Lipids in the Pathogenesis of Leaky Gut Syndrome: An Overview. Int. J. Mol. Sci. 2020, 21, 8368. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented Foods, Health and the Gut Microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef]
- Cao, Z.H.; Green-Johnson, J.M.; Buckley, N.D.; Lin, Q.Y. Bioactivity of soy-based fermented foods: A review. Biotechnol. Adv. 2019, 37, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Sarkar, S.; Borsingh Wann, S.; Kalita, J.; Manna, P. Current perspectives on the anti-inflammatory potential of fermented soy foods. Food Res. Int. 2022, 152, 110922. [Google Scholar] [CrossRef]
- Park, J.; Baik, I. Consumption of poly-γ-glutamate-vitamin B6 supplement and urinary microbiota profiles in Korean healthy adults: A randomized, double-blinded, placebo-controlled intervention study. Nutr. Res. Pract. 2024, 18, 663–673. [Google Scholar] [CrossRef]
- Annunziata, G.; Arnone, A.; Ciampaglia, R.; Tenore, G.C.; Novellino, E. Fermentation of Foods and Beverages as a Tool for Increasing Availability of Bioactive Compounds. Focus on Short-Chain Fatty Acids. Foods 2020, 9, 999. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, M.; Yuan, L.; Du, X.; Wu, M.; Yang, Y.; Wang, L.; Zhou, K.; Yang, M.; Zou, Y.; et al. Innate lymphoid cells are double-edged swords under the mucosal barrier. J. Cell. Mol. Med. 2021, 25, 8579–8587. [Google Scholar] [CrossRef]
- Zeng, B.; Shi, S.; Ashworth, G.; Dong, C.; Liu, J.; Xing, F. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 2019, 10, 315. [Google Scholar] [CrossRef]
- Chun, E.; Lavoie, S.; Fonseca-Pereira, D.; Bae, S.; Michaud, M.; Hoveyda, H.R.; Fraser, G.L.; Gallini Comeau, C.A.; Glickman, J.N.; Fuller, M.H.; et al. Metabolite-Sensing Receptor Ffar2 Regulates Colonic Group 3 Innate Lymphoid Cells and Gut Immunity. Immunity 2019, 51, 871–884.e6. [Google Scholar] [CrossRef]
- Ivanov, I.I.; McKenzie, B.S.; Zhou, L.; Tadokoro, C.E.; Lepelley, A.; Lafaille, J.J.; Cua, D.J.; Littman, D.R. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006, 126, 1121–1133. [Google Scholar] [CrossRef] [PubMed]
- Eberl, G.; Marmon, S.; Sunshine, M.J.; Rennert, P.D.; Choi, Y.; Littman, D.R. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 2004, 5, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, M.; Okamura, T.; Fukuda, T.; Nishida, K.; Yoshimura, Y.; Hashimoto, Y.; Ushigome, E.; Nakanishi, N.; Majima, S.; Asano, M.; et al. Group 3 Innate Lymphoid Cells Protect Steatohepatitis From High-Fat Diet Induced Toxicity. Front. Immunol. 2021, 12, 648754. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Okamura, T.; Bamba, R.; Yoshimura, Y.; Munekawa, C.; Kaji, A.; Miki, A.; Majima, S.; Senmaru, T.; Ushigome, E. Miso, fermented soybean paste, suppresses high-fat/high-sucrose diet-induced muscle atrophy in mice. J. Clin. Biochem. Nutr. 2024, 74, 63. [Google Scholar] [CrossRef]
- Kawai, S.; Takagi, Y.; Kaneko, S.; Kurosawa, T. Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp. Anim. 2011, 60, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Hamaguchi, M.; Hasegawa, Y.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Ushigome, E.; Nakanishi, N.; Asano, M.; Yamazaki, M.; et al. Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes. Environ. Health Perspect. 2023, 131, 27006. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Senior, J.R. Alanine aminotransferase: A clinical and regulatory tool for detecting liver injury-past, present, and future. Clin. Pharmacol. Ther. 2012, 92, 332–339. [Google Scholar] [CrossRef]
- Vallejo-Vaz, A.J.; Corral, P.; Schreier, L.; Ray, K.K. Triglycerides and residual risk. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 95–103. [Google Scholar] [CrossRef]
- Johnston, L.W.; Harris, S.B.; Retnakaran, R.; Giacca, A.; Liu, Z.; Bazinet, R.P.; Hanley, A.J. Association of NEFA composition with insulin sensitivity and beta cell function in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort. Diabetologia 2018, 61, 821–830. [Google Scholar] [CrossRef]
- Kai, Y. Intestinal villus structure contributes to even shedding of epithelial cells. Biophys. J. 2021, 120, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Bonis, V.; Rossell, C.; Gehart, H. The Intestinal Epithelium—Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip. Front. Cell Dev. Biol. 2021, 9, 661931. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Liu, S.; Xie, X.N.; Tan, Z.R. Regulation profile of the intestinal peptide transporter 1 (PepT1). Drug Des. Dev. Ther. 2017, 11, 3511–3517. [Google Scholar] [CrossRef]
- Song, P.; Onishi, A.; Koepsell, H.; Vallon, V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin. Ther. Targets 2016, 20, 1109–1125. [Google Scholar] [CrossRef]
- Allwood, J.G.; Wakeling, L.T.; Bean, D.C. Fermentation and the microbial community of Japanese koji and miso: A review. J. Food Sci. 2021, 86, 2194–2207. [Google Scholar] [CrossRef]
- Takahashi, F.; Hashimoto, Y.; Kaji, A.; Sakai, R.; Miki, A.; Okamura, T.; Kitagawa, N.; Okada, H.; Nakanishi, N.; Majima, S.; et al. Habitual Miso (Fermented Soybean Paste) Consumption Is Associated with Glycemic Variability in Patients with Type 2 Diabetes: A Cross-Sectional Study. Nutrients 2021, 13, 1488. [Google Scholar] [CrossRef]
- Okouchi, R.; Sakanoi, Y.; Tsuduki, T. Miso (Fermented Soybean Paste) Suppresses Visceral Fat Accumulation in Mice, Especially in Combination with Exercise. Nutrients 2019, 11, 560. [Google Scholar] [CrossRef] [PubMed]
- The Jackson Laboratory. B6.129P2-Rorctm1Litt/J. Available online: https://www.jax.org/strain/007571 (accessed on 11 May 2024).
- Kotake, K.; Kumazawa, T.; Nakamura, K.; Shimizu, Y.; Ayabe, T.; Adachi, T. Ingestion of miso regulates immunological robustness in mice. PLoS ONE 2022, 17, e0261680. [Google Scholar] [CrossRef]
- Liang, L.; Liu, L.; Zhou, W.; Yang, C.; Mai, G.; Li, H.; Chen, Y. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clin. Sci. 2022, 136, 291–307. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budau, R.; Okamura, T.; Hasegawa, Y.; Nakanishi, N.; Hamaguchi, M.; Fukui, M. Supplementation of Miso to a Western-Type Diet Stimulates ILC3s and Decreases Inflammation in the Small Intestine. Nutrients 2024, 16, 3743. https://doi.org/10.3390/nu16213743
Budau R, Okamura T, Hasegawa Y, Nakanishi N, Hamaguchi M, Fukui M. Supplementation of Miso to a Western-Type Diet Stimulates ILC3s and Decreases Inflammation in the Small Intestine. Nutrients. 2024; 16(21):3743. https://doi.org/10.3390/nu16213743
Chicago/Turabian StyleBudau, River, Takuro Okamura, Yuka Hasegawa, Naoko Nakanishi, Masahide Hamaguchi, and Michiaki Fukui. 2024. "Supplementation of Miso to a Western-Type Diet Stimulates ILC3s and Decreases Inflammation in the Small Intestine" Nutrients 16, no. 21: 3743. https://doi.org/10.3390/nu16213743
APA StyleBudau, R., Okamura, T., Hasegawa, Y., Nakanishi, N., Hamaguchi, M., & Fukui, M. (2024). Supplementation of Miso to a Western-Type Diet Stimulates ILC3s and Decreases Inflammation in the Small Intestine. Nutrients, 16(21), 3743. https://doi.org/10.3390/nu16213743