Soil Moisture Estimation over Vegetated Agricultural Areas: Tigris Basin, Turkey from Radarsat-2 Data by Polarimetric Decomposition Models and a Generalized Regression Neural Network
<p>The location of the study area, presented as both (<b>a</b>) Radarsat-2 image and (<b>b</b>) Google Earth image. The black rectangular areas indicate the coverage of two experimental sites.</p> "> Figure 2
<p>Three Radarsat-2 images were acquired over the Tigris Basin, Diyarbakır and preprocessed on (<b>a</b>) 27 February 2015; (<b>b</b>) 8 April 2015; and (<b>c</b>) 10 June 2015. The Dual pol (hh + vv) RGB image was obtained by combining three different (R = hh; G = vh; B = hh/hv) bands of Radarsat-2 data.</p> "> Figure 3
<p>Three surface scattering mechanisms.</p> "> Figure 4
<p>The architecture of the GRNN model.</p> "> Figure 5
<p>The resulting Radarsat-2 data from 27 February 2015 after (<b>a</b>) standard sigma backscattering technique; (<b>b</b>) Freeman–Durden; and (<b>c</b>) H/A/α models.</p> "> Figure 6
<p>The relationship between the measured and estimated soil moistures (SM) for Dataset 1.</p> "> Figure 7
<p>The relationship between the measured and estimated soil moistures (SM) over testing areas 1–4 for Dataset 1 (<b>a</b>–<b>d</b>), respectively.</p> "> Figure 8
<p>Radarsat-2 data from 8 April 2015 after (<b>a</b>) standard sigma backscattering technique; (<b>b</b>) Freeman–Durden; and (<b>c</b>) H/A/α models.</p> "> Figure 9
<p>The relationship between measured and estimated SM for Dataset 2.</p> "> Figure 10
<p>The relationship between measured and estimated SM over testing areas 1–4 for Dataset 2 (<b>a</b>–<b>d</b>), respectively.</p> "> Figure 10 Cont.
<p>The relationship between measured and estimated SM over testing areas 1–4 for Dataset 2 (<b>a</b>–<b>d</b>), respectively.</p> "> Figure 11
<p>Radarsat-2 data from derived 10 June 2015 after (<b>a</b>) standard sigma backscattering technique; (<b>b</b>) Freeman–Durden; and (<b>c</b>) H/A/α models.</p> "> Figure 12
<p>The relationship between measured and estimated SM for Dataset 3.</p> "> Figure 13
<p>The relationship between measured and estimated SM over testing areas 1–4 for Dataset 3 (<b>a</b>–<b>d</b>), respectively.</p> "> Figure 14
<p>The relationship between measured and estimated SM for combined Datasets 1&2.</p> "> Figure 15
<p>The relationship between measured and estimated SM for combined Datasets 1&3.</p> "> Figure 16
<p>The relationship between measured and estimated SM for combined Datasets 2&3.</p> "> Figure 17
<p>The relationship between measured and estimated SM for combined Datasets 1&2&3.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Ground Measurements
2.3. SAR Data Collection
2.4. Preprocessing of SAR Data
3. Methods
3.1. Feature Extraction from SAR Data
3.1.1. Freeman–Durden Decomposition Model
3.1.2. H/A/α Decomposition Model
3.2. GRNN Algorithm
4. Results
4.1. Experiments on Dataset 1
4.2. Experiments on Dataset 2
4.3. Experiments on Dataset 3
4.4. Experiments on Combined Datasets
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Idso, S.B.; Jackson, R.D.; Reginato, R.J. Detection of soil moisture by remote surveillance. Am. Sci. 1975, 63, 549–557. [Google Scholar]
- Hajnsek, I.; Jagdhuber, T.; Schon, H.; Papathanassiou, K.P. Potential of estimating soil moisture under vegetation cover by means of PolSAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454. [Google Scholar] [CrossRef]
- Gorrab, A.; Zribi, M.; Baghdadi, N.; Mougenot, B.; Fanise, P.; Chabaane, Z.L. Retrieval of both soil moisture and texture using TerraSAR-X images. Remote Sens. 2015, 7, 10098–10116. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; Fan, H.; Huang, J.; Zhao, H. The Potential Use of Multi-Band SAR Data for Soil Moisture Retrieval over Bare Agricultural Areas: Hebei, China. Remote Sens. 2016, 8, 7. [Google Scholar] [CrossRef]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Stevenage, UK, 2004. [Google Scholar]
- He, B.; Xing, M.; Bai, X. A Synergistic methodology for soil moisture estimation in an alpine prairie using radar and optical satellite data. Remote Sens. 2014, 6, 10966–10985. [Google Scholar] [CrossRef]
- Yang, J.; Yamaguchi, Y.; Lee, J.S.; Touzi, R.; Boerner, W.M. Applications of Polarimetric SAR. J. Sens. 2015, 316391, 1–3. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Hajnsek, I.; Bronstert, A.; Papathanassiou, K.P. Soil Moisture Estimation Under low vegetation cover using a multi-angular polarimetric decomposition. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2201–2215. [Google Scholar] [CrossRef]
- Xiaodong, H.; Jinfei, W.; Jiali, S. Adaptive Two-Component Model-Based Decomposition on Soil Moisture Estimation for C-Band RADARSAT-2 Imagery over Wheat Fields at Early Growing Stages. IEEE Geosci. Remote Sens. Lett. 2016, 13, 414–418. [Google Scholar]
- Bai, X.; He, B.; Li, X. Optimum surface roughness to parameterize advanced integral equation model for soil moisture retrieval in prairie area using Radarsat-2 data. IEEE Trans. Geosci. Remote Sens. 2016, 5, 2437–2449. [Google Scholar] [CrossRef]
- Hajnsek, I.; Cloude, S.R.; Lee, J.S.; Pottier, E. Inversion of surface parameters from polarimetric SAR data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; pp. 1095–1097. [Google Scholar]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Dubois, P.C.; Van Zyl, J.J.; Engman, E.T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef]
- Oh, Y. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1348–1355. [Google Scholar] [CrossRef]
- Fung, A.K.; Chen, K.S. An update on the IEM surface backscattering model. IEEE Geosci. Remote Sens. Lett. 2004, 1, 75–77. [Google Scholar] [CrossRef]
- Notarnicola, C.; Angiulli, M.; Posa, F. Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens. 2008, 46, 547–557. [Google Scholar] [CrossRef]
- Said, S.; Kothyari, U.C.; Arora, M.K. ANN-based soil moisture retrieval over bare and vegetated areas using ERS-2 SAR data. J. Hydrol. Eng. 2008, 13, 461–475. [Google Scholar] [CrossRef]
- Pasolli, L.; Notarnicola, C.; Bruzzone, L. Estimating soil moisture with the support vector regression technique. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1080–1084. [Google Scholar] [CrossRef]
- Pasolli, L.; Notarnicola, C.; Bruzzone, L.; Bertoldi, G.; Chiesa, S.D.; Niedrist, G.; Tappeiner, U.; Zebisch, M. Polarimetric RADARSAT-2 imagery for soil moisture retrieval in alpine areas. Can. J. Remote Sens. 2011, 37, 535–547. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P.; Pettinato, S.; Santi, E. A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3274–3284. [Google Scholar] [CrossRef]
- Weimann, A. Inverting a microwave backscattering model by the use of a neural network for the estimation of soil moisture. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998; pp. 1837–1839. [Google Scholar]
- Xie, X.M.; Xu, J.W.; Zhao, J.F.; Liu, S.; Wang, P. Soil moisture inversion using AMSR-E remote sensing data: An artificial neural network approach. Appl. Mech. Mater. 2014, 501–504, 2073–2076. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Ramirez, M.R.; Islam, T. Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour. Manag. 2013, 27, 3127–3144. [Google Scholar] [CrossRef]
- Prasad, R.; Kumar, R.; Singh, D. A radial basis function approach to retrieve soil moistrure and crop variables from Xband scatterometer ovservations. Prog. Electromagn. Res. B 2009, 12, 201–217. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Leblon, B.; Charbonneau, F.; Buckley, J.R. Evaluation of polarimetric Radarsat-2 SAR data for development of soil moisture retrieval algorithms over a chronosequence of black spruce boreal forests. Remote Sens. Environ. 2013, 132, 71–85. [Google Scholar] [CrossRef]
- Charbonneau, F. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Can. J. Remote Sens. 2012, 38, 514–527. [Google Scholar]
- European Space Agency (ESA). Available online: https://earth.esa.int (accessed on 13 February 2017).
- Freeman, A.; Durden, S.L. A three component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Li, H.; Su, L. Hybrid Forecasting Approach Based on GRNN Neural Network and SVR Machine for Electricity Demand Forecasting. Energies 2017, 10, 44. [Google Scholar] [CrossRef]
- Zribi, M.; Baghdadi, N.; Holah, N.; Fafin, O.; Guérin, C. Evaluation of a rough soil surface description with ASAR-ENVISAT Radar Data. Remote Sens. Environ. 2005, 95, 67–76. [Google Scholar] [CrossRef]
- Le Morvan, A.; Zribi, M.; Baghdadi, N.; Chanzy, A. Soil Moisture Profile Effect on Radar Signal Measurement. Sensors 2008, 8, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Magagi, R.; Goita, K.; Jagdhuber, T.; Hajnsek, I. Evaluation of Simplified Polarimetric Decomposition for Soil Moisture Retrieval over Vegetated Agricultural Fields. Remote Sens. 2016, 8, 142. [Google Scholar] [CrossRef]
- Yang, G.; Yue, J.; Li, C.; Feng, H.; Yang, H.; Lan, Y. Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data. Trans. Chin. Soc. Agric. Eng. 2016, 32, 146–153. [Google Scholar]
- Xie, Q.; Meng, Q.; Zhang, L.; Wang, C.; Sun, Y.; Sun, Z. A Soil Moisture Retrieval Method Based on Typical Polarization Decomposition Techniques for a Maize Field from Full-Polarization Radarsat-2 Data. Remote Sens. 2017, 9, 168. [Google Scholar] [CrossRef]
- Lakhankar, T.; Ghedira, H.; Temimi, M.; Sengupta, M.; Khanbilvardi, R.; Blake, R. Non-Parametric methods for soil moisture retrieval from satellite remote sensing data. Remote Sens. 2009, 1, 3–21. [Google Scholar] [CrossRef]
- Baghdadi, N.; Cresson, R.; El Hajj, M.; Ludwig, R.; La Jeunesse, I. Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks. Hydrol. Earth Syst. Sci. 2012, 16, 1607–1621. [Google Scholar] [CrossRef]
Measurement Period | Experimental Area | # Sample Points | Min SM | Max SM | Mean SM | SD of SM |
---|---|---|---|---|---|---|
27 February 2015 | Sparsely Vegetated | 335 | 18.76 | 43.6 | 29.72 | 4.76 |
8 April 2015 | Densely Vegetated | 285 | 20.24 | 41.37 | 30.36 | 3.93 |
10 June 2015 | Bare | 272 | 0.79 | 44.73 | 7.46 | 7.01 |
Spread Parameter (ς) | R | RMSE (%) | MAE (%) |
---|---|---|---|
0.5 | 0.73 | 3.47 | 2.66 |
0.6 | 0.78 | 3.04 | 2.50 |
0.7 | 0.79 | 2.93 | 2.41 |
0.8 | 0.80 | 2.86 | 2.35 |
0.9 | 0.80 | 2.85 | 2.32 |
1.0 | 0.80 | 2.84 | 2.31 |
1.1 | 0.80 | 2.88 | 2.35 |
1.2 | 0.79 | 2.93 | 2.39 |
1.3 | 0.78 | 2.99 | 2.43 |
1.4 | 0.77 | 3.05 | 2.48 |
1.5 | 0.76 | 3.12 | 2.52 |
Experimental Dataset | Average SM (%) | RMSE (%) | MAE (%) | R | CV of SM |
---|---|---|---|---|---|
Dataset 1 | 29. 72 | 2.84 | 2.31 | 0.80 | 0.16 |
Dataset 2 | 30. 36 | 2.65 | 2.11 | 0.74 | 0.13 |
Dataset 3 | 7.46 | 2.77 | 2.10 | 0.92 | 0.94 |
Datasets 1 & 2 | 30.01 | 3.23 | 2.46 | 0.68 | 0.14 |
Datasets 2 & 3 | 19.18 | 4.05 | 2.70 | 0.95 | 0.66 |
Datasets 1 & 3 | 19.75 | 9.76 | 7.09 | 0.63 | 0.63 |
Datasets 1 & 2 & 3 | 23.14 | 8.26 | 5.70 | 0.71 | 0.50 |
Reference | Province | Dataset | Accuracy | Methods |
---|---|---|---|---|
Proposed method | Bare & Vegetated fields (Turkey) | Radarsat-2 data & Ground measurements | R = [0.74–0.92] for each dataset R = [0.63–0.95] for combined datasets | Polarimetric Decomposition & GRNN |
[2] | Vegetated fields (Germany) | POLSAR data & Ground measurements | R2 = [0.4–0.7] | Polarimetric Decomposition |
[4] | Bare fields: (China) | Radarsat-2,TerraSAR-X data & Ground measurements | R2 = [0.82–0.86] | SVR & Modified Dubois |
[6] | Bare & Vegetated fields (China) | Radarsat-2, Optical data & Ground measurements | R2 = 0.71 | IEM & WCM |
[9] | Vegetated fields (Canada) | Radarsat-2 data & Ground measurements | RMSE = 7.12% | Adaptive Two Component Decomposition |
[10] | Vegetated fields (China) | Radarsat-2 data & Ground measurements | R = 0.84 | Advanced IEM |
[21] | Bare and Lightly Vegetated fields (Italy) | ENVISAT/ASAR data & Ground measurements | R2 = 0.82 all dataset R2 = [0.45–0. 65] for single day data set. | IEM, ANN, Bayesian & Nelder–Mead |
[36] | Vegetated fields (Canada) | UAVSAR data & Ground measurements | R = [non–0.66] | Simplified Polarimetric Decomposition |
[37] | Farmland (China) | Radarsat-2 data & Ground measurements | R2 = 0.41 | Improved WCM |
[38] | Vegetated fields (China) | Radarsat-2 data & Ground measurements | R2 = [0.83–0.88] | Polarimetric Decomposition, Bragg, X-Bragg & ISSM |
[39] | Vegetated fields (USA) | Radarsat-1, Landsat data & Ground measurements | R2 = [0.72–0.76] | ANN, Fuzzy & Multivariate Statistics |
[40] | Bare fields: (France) | Radarsat-2 data & Ground measurements | RMSE = [0.06–0.09] cm3/cm3 | MLP & IEM |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özerdem, M.S.; Acar, E.; Ekinci, R. Soil Moisture Estimation over Vegetated Agricultural Areas: Tigris Basin, Turkey from Radarsat-2 Data by Polarimetric Decomposition Models and a Generalized Regression Neural Network. Remote Sens. 2017, 9, 395. https://doi.org/10.3390/rs9040395
Özerdem MS, Acar E, Ekinci R. Soil Moisture Estimation over Vegetated Agricultural Areas: Tigris Basin, Turkey from Radarsat-2 Data by Polarimetric Decomposition Models and a Generalized Regression Neural Network. Remote Sensing. 2017; 9(4):395. https://doi.org/10.3390/rs9040395
Chicago/Turabian StyleÖzerdem, Mehmet Siraç, Emrullah Acar, and Remzi Ekinci. 2017. "Soil Moisture Estimation over Vegetated Agricultural Areas: Tigris Basin, Turkey from Radarsat-2 Data by Polarimetric Decomposition Models and a Generalized Regression Neural Network" Remote Sensing 9, no. 4: 395. https://doi.org/10.3390/rs9040395
APA StyleÖzerdem, M. S., Acar, E., & Ekinci, R. (2017). Soil Moisture Estimation over Vegetated Agricultural Areas: Tigris Basin, Turkey from Radarsat-2 Data by Polarimetric Decomposition Models and a Generalized Regression Neural Network. Remote Sensing, 9(4), 395. https://doi.org/10.3390/rs9040395