Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region
"> Figure 1
<p>(<b>a</b>) Distribution of rain gauge network operated by Ministry of Environment, Water, and Agriculture (MEWA), Saudi Arabia; (<b>b</b>) Average annual rainfall values for rainfall stations distributed across Saudi Arabia from 1979 to 2009 [<a href="#B30-remotesensing-13-00013" class="html-bibr">30</a>].</p> "> Figure 2
<p>Schematic diagram of the event determination, matching coordinates, and data analysis modules.</p> "> Figure 3
<p>Distribution of rain gauges over the different topographical regions in Saudi Arabia (altitudes are in m).</p> "> Figure 4
<p>POD values for each season based on the seasonal evaluation.</p> "> Figure 5
<p>CC values for each season based on the seasonal evaluation.</p> "> Figure 6
<p>Evaluation of IMERG products for the different topographical regions using CC measurements for (<b>a</b>) IMERG-E, (<b>b</b>) IMERG-L, and (<b>c</b>) IMERG-F and POD indicator for (<b>d</b>) IMERG-E, (<b>e</b>) IMERG-L, and (<b>f</b>) IMERG-F.</p> "> Figure 7
<p>Evaluation of IMERG products for the different topographical regions using MAE measurements for (<b>a</b>) IMERG–E, (<b>b</b>) IMERG-L, and (<b>c</b>) IMERG-F and RMSE indicator for (<b>d</b>) IMERG-E, (<b>e</b>) IMERG-L, and (<b>f</b>) IMERG-F.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rainfall Datasets
2.2.1. Rain Gauge Dataset
2.2.2. IMERG Dataset
2.3. Data Preparation and Processing
2.4. Statistical Evaluation Indices
2.5. Evaluation Techniques
2.5.1. Seasonal Evaluation
2.5.2. Rainfall Intensity-Based Evaluation
2.5.3. Topographical (Spatial) Evaluation
3. Results
3.1. Seasonal-Based Evaluation
3.2. Rainfall Intensity-Based Evaluation
3.3. Topographical (Spatial) Evaluation
4. Discussion
4.1. Discussion of Evaluation Results
4.2. Study Limitations
5. Conclusions
- The seasonal analysis showed an improvement in the performance from IMERG-E, to IMERG-L, to IMERG-F. Nevertheless, all IMERG products showed very weak correlations with ground observations throughout all the seasons.
- Spring and summer are the most detected seasons by IMERG products. This leads to a conclusion that IMERG products have the capability to detect seasonal rainfall with both the highest (maximum daily rainfall observed on spring) and the lowest precipitation.
- It was interesting to observe the high performance of IMERG products across the various rainfall intensity classes. According to the calculated classical statistical indices, the light rain had the lowest detection errors by IMERG products. However, higher rainfall intensities exhibited higher detection errors in the IMERG products. The detectability of rainfall, as indicated by POD, was excellent for midrange classes of rainfall, whereas that for extreme rainfall intensities (light rain and large storms) was slightly lower. This finding is particularly promising for the applicability of IMERG products in arid regions dominated by light rain events.
- Even though the CC values are generally low for different rainfall intensities, large storm events showed significantly higher CCs (0.5 to 0.7) compared to lower intensity events. This is probably induced by the rarity of such large storms over arid regions such as Saudi Arabia.
- Topographical features had a significant influence on the performance of IMERG products. The detectability (POD) was improved significantly in higher altitudes (mountains and foothills regions), particularly for IMERG-F. However, the areas adjacent to the coasts showed a significant reduction in the estimation errors of IMERG-F, whereas the highest estimation errors were observed in coastal regions, foothills, and mountainous regions.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Year | Date | No of Obs. | Mean | Median | Std. Error | Std. Dev. | Var. | Kurtosis | Skew. | Min | Max | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 22-November | 36 | 9.49 | 5 | 2.29 | 13.73 | 188.43 | 20.47 | 4.09 | 0.5 | 80 | 341.8 |
23-November | 41 | 7.20 | 6 | 0.80 | 5.15 | 26.57 | 0.98 | 0.93 | 0.8 | 22 | 295.1 | |
24-November | 33 | 11.44 | 7 | 1.73 | 9.94 | 98.82 | −0.39 | 0.95 | 1 | 35 | 377.5 | |
30-November | 48 | 11.37 | 8.4 | 1.32 | 9.17 | 84.05 | 0.53 | 1.08 | 1 | 38 | 545.9 | |
2015 | 21-March | 34 | 7.27 | 6.1 | 1.27 | 7.40 | 54.81 | 2.89 | 1.74 | 0.3 | 31 | 247.1 |
28-October | 35 | 8.32 | 3.6 | 2.70 | 15.97 | 255.04 | 18.01 | 4.12 | 0.5 | 86 | 291.3 | |
17-November | 40 | 7.44 | 4.5 | 1.07 | 6.75 | 45.60 | 5.06 | 2.22 | 1 | 30 | 297.5 | |
23-November | 59 | 11.68 | 10.5 | 1.07 | 8.24 | 67.83 | 1.37 | 1.04 | 0.5 | 39 | 689.2 | |
24-November | 56 | 23.62 | 17.75 | 2.39 | 17.92 | 321.19 | −0.19 | 0.69 | 1 | 77 | 1322.7 | |
2-December | 35 | 12.32 | 10 | 1.54 | 9.09 | 82.69 | 0.67 | 1.14 | 1 | 33.5 | 431.3 | |
23-December | 57 | 8.16 | 5.6 | 1.13 | 8.54 | 72.90 | 6.80 | 2.48 | 0.5 | 42 | 465 | |
30-December | 46 | 5.11 | 4 | 0.51 | 3.46 | 11.96 | 1.40 | 1.26 | 0.5 | 15 | 235.2 | |
2016 | 4-April | 49 | 13.31 | 9 | 2.11 | 14.78 | 218.42 | 11.73 | 3.05 | 1.3 | 84 | 652.35 |
12-April | 70 | 11.12 | 7.75 | 1.23 | 10.29 | 105.94 | 9.23 | 2.38 | 0.5 | 64 | 778.7 | |
13-April | 31 | 30.12 | 21 | 4.56 | 25.40 | 645.09 | 0.35 | 1.07 | 0 | 96 | 933.65 | |
29-April | 46 | 9.93 | 6.7 | 1.49 | 10.09 | 101.81 | 5.25 | 2.22 | 0.5 | 45.2 | 456.9 | |
31-July | 32 | 25.52 | 22.75 | 2.78 | 15.74 | 247.78 | 1.07 | 0.98 | 2.5 | 71 | 816.5 | |
25-November | 44 | 10.22 | 7.4 | 1.33 | 8.86 | 78.41 | 1.22 | 1.21 | 1 | 36 | 449.8 | |
26-November | 60 | 10.23 | 5.5 | 1.23 | 9.54 | 91.03 | 0.38 | 1.18 | 1 | 35 | 614 | |
27-November | 51 | 17.69 | 15 | 2.43 | 17.36 | 301.54 | 9.10 | 2.59 | 1 | 98.2 | 902.2 | |
28-November | 49 | 16.28 | 15.8 | 1.44 | 10.09 | 101.78 | 1.77 | 1.02 | 2 | 51 | 797.7 | |
2017 | 14-February | 41 | 23.69 | 15 | 5.33 | 34.14 | 1165.5 | 12.35 | 3.45 | 1.5 | 165 | 971.2 |
13-May | 38 | 11.81 | 8.25 | 1.76 | 10.83 | 117.37 | 2.60 | 1.66 | 1.2 | 47 | 448.7 | |
21-November | 32 | 19.57 | 9.3 | 4.43 | 25.08 | 628.87 | 1.56 | 1.61 | 0.4 | 90 | 626.1 | |
2018 | 24-February | 58 | 10.17 | 8.25 | 1.06 | 8.06 | 64.90 | 8.91 | 2.58 | 1 | 48 | 589.9 |
6-April | 37 | 10.66 | 8 | 1.28 | 7.79 | 60.72 | 1.18 | 1.26 | 2 | 34.4 | 394.6 | |
8-April | 34 | 8.99 | 6.5 | 1.48 | 8.60 | 74.04 | 0.73 | 1.29 | 0.5 | 32 | 305.6 | |
10-April | 39 | 16.23 | 17 | 1.82 | 11.35 | 128.87 | −0.42 | 0.55 | 0.5 | 45 | 632.9 |
References
- Li, Z.; Yang, D.; Hong, Y. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol. 2013, 500, 157–169. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Hong, Y.; Tian, Y.; Policelli, F. Evaluation of Global Flood Detection Using Satellite-Based Rainfall and a Hydrologic Model. J. Hydrometeorol. 2012, 13, 1268–1284. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.T.; Al-Zahrani, M.A.; Sharif, H.O. Assessment of global precipitation measurement satellite products over Saudi Arabia. J. Hydrol. 2018, 559, 1–12. [Google Scholar] [CrossRef]
- Saouabe, T.; El Khalki, E.M.; Saidi, M.E.M.; Najmi, A.; Hadri, A.; Rachidi, S.; Jadoud, M.; Tramblay, Y. Evaluation of the GPM-IMERG precipitation product for flood modeling in a semi-arid mountainous basin in Morocco. Water 2020, 12, 2516. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Meng, X.; Zhou, Y.; Lai, Y.; Cao, Y. Comparison study of multiple precipitation forcing data on hydrological modeling and projection in the qujiang river basin. Water 2020, 12, 2626. [Google Scholar] [CrossRef]
- Boushaki, F.I.; Hsu, K.-L.; Sorooshian, S.; Park, G.-H.; Mahani, S.; Shi, W. Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Measurement: A Case Study Evaluation over the Southwestern United States. J. Hydrometeorol. 2009, 10, 1231–1242. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Hobouchian, M.P.; Salio, P.; García Skabar, Y.; Vila, D.; Garreaud, R. Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmos. Res. 2017, 190, 43–54. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [2.3.CO;2" target='_blank'>Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D. TRMM and Other Data Precipitation Data Set Documentation; NASA: Greenbelt, MD, USA, 2007; pp. 1–25.
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2018, 556, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Gebremichael, M.; Hopson, T. Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteorol. Climatol. 2010, 49, 1044–1051. [Google Scholar] [CrossRef]
- Kim, K.; Park, J.; Baik, J.; Choi, M. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res. 2017, 187, 95–105. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- De Coning, E.; Poolman, E. South African Weather Service operational satellite based precipitation estimation technique: Applications and improvements. Hydrol. Earth Syst. Sci. 2011, 15, 1131–1145. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Connor, S.J.; Ceccato, P. Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America. Satell. Rainfall Appl. Surf. Hydrol. 2010, 193–204. [Google Scholar] [CrossRef]
- Habib, E.; Haile, A.T.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect of bias correction of satellite-rainfall estimates on runoff simulations at the source of the Upper Blue Nile. Remote Sens. 2014, 6, 6688–6708. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.C.; Liu, M.F. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2013, 17, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Blacutt, L.A.; Herdies, D.L.; de Gonçalves, L.G.G.; Vila, D.A.; Andrade, M. Precipitation comparison for the CFSR, MERRA, TRMM3B42 and Combined Scheme datasets in Bolivia. Atmos. Res. 2015, 163, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Salio, P.; Hobouchian, M.P.; García Skabar, Y.; Vila, D. Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmos. Res. 2015, 163, 146–161. [Google Scholar] [CrossRef]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Cressman, K.; Connor, S.J. Evaluating detection skills of satellite rainfall estimates over desert locust recession regions. J. Appl. Meteorol. Climatol. 2010, 49, 1322–1332. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Hamouda, M.A.; Mohamed, M.M. Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates. Atmos. Res. 2019, 219, 200–212. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Wang, X. Assessment of satellite-based precipitation measurement products over the hot desert climate of Egypt. Remote Sens. 2019, 11, 555. [Google Scholar] [CrossRef] [Green Version]
- Almazroui, M. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res. 2011, 99, 400–414. [Google Scholar] [CrossRef]
- Hasanean, H.; Almazroui, M. Rainfall: Features and variations over Saudi Arabia, a review. Climate 2015, 3, 578–626. [Google Scholar] [CrossRef] [Green Version]
- Al-Zahrani, M.; Husain, T. An algorithm for designing a precipitation network in the south-western region of Saudi Arabia. J. Hydrol. 1998, 205, 205–216. [Google Scholar] [CrossRef]
- Horton, R.; Gornitz, V.; Bowman, M.; Blake, R. Climate observations and projections. Ann. N. Y. Acad. Sci. 2010, 1196, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Hag-elsafi, S.; El-Tayib, M. Spatial and statistical analysis of rainfall in the Kingdom of Saudi Arabia from 1979 to 2008. Weather 2016, 71, 262–266. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Zheng, J.; Liao, K.; Zhu, Q.; Yang, G.; Li, Q. Soil moisture response to rainfall in forestland and vegetable plot in Taihu Lake Basin, China. Chinese Geogr. Sci. 2014, 25, 426–437. [Google Scholar]
- Elnesr, M.N.; Abu-Zreig, M.M.; Alazba, A.A. Temperature trends and distribution in the arabian peninsula. Am. J. Environ. Sci. 2010, 6, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Shi, J.; Yuan, F.; Shi, C.; Zhao, C.; Zhang, L.; Ren, L.; Zhu, Y.; Jiang, S.; Liu, Y. Statistical evaluation of the latest GPM-Era IMERG and GSMaP satellite precipitation products in the Yellow River source region. Water 2020, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Xia, J.; Zou, L. Evaluation of multi-satellite precipitation products and their ability in capturing the characteristics of extreme climate events over the Yangtze River Basin, China. Water 2020, 12, 1179. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Hou, S.; Yang, L.; Hu, H.; Hou, A. How Does the Evaluation of the GPM IMERG Rainfall Product Depend on Gauge Density and Rainfall Intensity? J. Hydrometeorol. 2017, 19, 339–349. [Google Scholar] [CrossRef]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Kummerow, C.; Tapiador, F.J. Assessment of IMERG precipitation estimates over Europe. Remote Sens. 2019, 11, 2470. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Ahmad, I.; Ijaz, M.W.; Farid, H.U.; Yagoub, Y.E.; Zaman, M.; Adnan, M. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. Res. 2018, 205, 134–146. [Google Scholar] [CrossRef]
Year | Mean a | Standard Deviation | Sample Variance | Kurtosis | Skewness | Range | Average Annual Rainfall |
---|---|---|---|---|---|---|---|
2014 | 9.77 | 6.68 | 44.66 | 3.62 | 1.55 | 38.55 | 43.64 b |
2015 | 10.10 | 6.38 | 40.66 | 0.75 | 0.89 | 30.30 | 89.65 |
2016 | 11.59 | 7.81 | 61.02 | 3.07 | 1.33 | 50.00 | 110.80 |
2017 | 10.57 | 7.45 | 55.54 | 2.16 | 1.31 | 41.00 | 69.05 |
2018 | 8.53 | 5.32 | 28.35 | −0.50 | 0.59 | 20.38 | 26.5 b |
Statistical Indices | Formulae | Optimum Value |
---|---|---|
Probability of Detection (POD) | 1 | |
Mean Absolute Error (MAE) | 0 | |
Root Mean Square Error (RMSE) | 0 | |
Relative Bias (RBIAS) | 0% | |
Correlation Coefficient (CC) | 1 |
Rainfall Class | Light Rainfall | Moderate Rainfall | Heavy Rainfall | Storm | Large Storm | Extreme Large Storm |
---|---|---|---|---|---|---|
24 h Rainfall (mm) | <10 | 10–25 | 25–50 | 50–100 | 100–250 | ≥250 |
Topographical Regions | No. of Observations * | No. of Stations | Station Density #/1000 km2 |
---|---|---|---|
Coastal region | 1140 | 63 | 0.14 |
Areas adjacent to the coasts | 1657 | 58 | 0.15 |
Inland region | 1918 | 96 | 0.46 |
Foothills region | 215 | 19 | 0.52 |
High mountains region | 213 | 12 | 0.01 |
Total | 5143 | 248 ** |
Season | MAE | RMSE | RBIAS | ||||||
---|---|---|---|---|---|---|---|---|---|
IMERG-E | IMERG-L | IMERG-F | IMERG-E | IMERG-L | IMERG-F | IMERG-E | IMERG-L | IMERG-F | |
Fall | 11.51 | 11.00 | 9.22 | 17.39 | 16.70 | 13.84 | −0.02 | −0.01 | −0.15 |
Spring | 10.32 | 9.43 | 7.82 | 15.70 | 14.42 | 12.52 | 0.004 | −0.19 | −0.16 |
Summer | 11.95 | 11.34 | 10.85 | 16.94 | 16.08 | 15.44 | −0.16 | −0.18 | −0.38 |
Winter | 13.48 | 12.92 | 11.72 | 18.12 | 18.29 | 14.28 | 0.12 | 1.50 | −0.15 |
Event Date | Product | CC | MAE | RMSE | BIAS | POD |
---|---|---|---|---|---|---|
Light | IMERG-E | 0.093 | 7.51 | 13.04 | 0.03 | 0.84 |
IMERG-L | 0.075 | 8.68 | 17.17 | 0.04 | 0.87 | |
IMERG-F | 0.145 | 4.26 | 6.66 | 0.001 | 0.87 | |
Moderate | IMERG-E | 0.045 | 12.59 | 16.49 | −0.01 | 0.89 |
IMERG-L | 0.039 | 13.32 | 18.83 | −0.01 | 0.9 | |
IMERG-F | 0.073 | 11.41 | 13.39 | −0.03 | 0.9 | |
Heavy | IMERG-E | 0.012 | 23.58 | 26.55 | −0.1 | 0.9 |
IMERG-L | 0.034 | 23.18 | 26.36 | −0.09 | 0.91 | |
IMERG-F | 0.113 | 24.46 | 26.55 | −0.14 | 0.91 | |
Storm | IMERG-E | 0.173 | 41.68 | 45.66 | −0.64 | 0.93 |
IMERG-L | 0.147 | 40.46 | 44.52 | −0.61 | 0.96 | |
IMERG-F | 0.175 | 43.22 | 47.24 | -0.69 | 0.96 | |
Large storm | IMERG-E | 0.488 | 121.19 | 123.97 | −13.03 | 0.71 |
IMERG-L | 0.714 | 117.57 | 119.64 | −12.64 | 0.86 | |
IMERG-F | 0.621 | 110.01 | 112.5 | −11.83 | 0.86 |
Region Name | Altitude (m) | IMERG-E | IMERG-L | IMERG-F |
---|---|---|---|---|
Coastal region | 0–100 | 0.001 | −0.03 | 0.01 |
Areas adjacent to the coasts | 100 to 200 | −0.02 | −0.03 | −0.01 |
Inland region | 200 to 1000 | 0.01 | −0.02 | 0.02 |
Foothills region | 1000 to 2000 | −0.08 | −0.25 | 0.11 |
High mountains region | More than 2000 | −0.09 | −0.23 | −0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region. Remote Sens. 2021, 13, 13. https://doi.org/10.3390/rs13010013
Mahmoud MT, Mohammed SA, Hamouda MA, Mohamed MM. Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region. Remote Sensing. 2021; 13(1):13. https://doi.org/10.3390/rs13010013
Chicago/Turabian StyleMahmoud, Mohammed T., Safa A. Mohammed, Mohamed A. Hamouda, and Mohamed M. Mohamed. 2021. "Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region" Remote Sensing 13, no. 1: 13. https://doi.org/10.3390/rs13010013
APA StyleMahmoud, M. T., Mohammed, S. A., Hamouda, M. A., & Mohamed, M. M. (2021). Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region. Remote Sensing, 13(1), 13. https://doi.org/10.3390/rs13010013