Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain
"> Figure 1
<p>(<b>a</b>) Location of the study site (in black), Catalonia Spain, (<b>b</b>) Sentinel-1 footprints over Catalonia used in the study, (<b>c</b>) digital elevation model (DEM) from shuttle radar topography mission (SRTM) data, (<b>d</b>) agricultural areas of Catalonia derived from geographical information system for agricultural parcels (SIGPAC) data. The hatched area represents the zone finally used for classification.</p> "> Figure 2
<p>Precipitation and temperature records for a local meteorological station in Tornabous of the interior plain of Catalonia, Spain.</p> "> Figure 3
<p>Distribution of the number of agricultural plots per class of crop type.</p> "> Figure 4
<p>Workflow overview using random forest (RF) and the convolutional neural network (CNN).</p> "> Figure 5
<p>Architecture of the one dimensional (1D) CNN model (CNN1D) used for classification of irrigated/non-irrigated plots using SAR and optical data.</p> "> Figure 6
<p>Temporal evolution of SAR backscattering coefficient σ° in VV polarization at plot scale (green curve) and 10 km grid scale (red curve) with precipitation data recorded at a local meteorological station for (<b>a</b>) the non-irrigated plot, (<b>b</b>) the irrigated plot.</p> "> Figure 7
<p>Scatter plot of a random sample of 2000 irrigated and 2000 non-irrigated plots using different combinations of important principal component (PC) variables. Irrigated plots are presented in blue and non-irrigated plots represented in red. (<b>a</b>) PC1 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with PC1 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>b</b>) PC16 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with PC1 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>c</b>) PC1 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with PC16 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>d</b>) PC1 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with PC2 of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>e</b>) PC16 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with PC2 of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> <mo> </mo> </mrow> </semantics></math> and (<b>f</b>) PC5 of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with PC2 of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> <mo> </mo> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">G</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> <mo> </mo> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>. “P” means plot scale and “G” means grid scale.</p> "> Figure 8
<p>Reconstruction of SAR signal in VV polarization at plot scale through the linear combinations of the ‘Haar’ wavelet coefficients using (<b>a</b>) 2 coefficients, (<b>b</b>) 4 coefficients, (<b>c</b>) 8 coefficients, (<b>d</b>) 16 coefficients, (<b>e</b>) 32 coefficients, and (<b>f</b>) 64 coefficients.</p> "> Figure 9
<p>Scatter plot of a random sample of 2000 irrigated and 2000 non-irrigated plots using different combinations of important wavelet transformation (WT) coefficients. Irrigated plots are presented in blue and non-irrigated plots represented in red (<b>a</b>) WC61 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with WC62 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>b</b>) WC62 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with WC53 of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>c</b>) WC62 of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with WC53 of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">G</mi> <mo>,</mo> <mi>VV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>PG</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi mathvariant="normal">P</mi> <mo>,</mo> <mi>VH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>. “P” means plot scale and “G” means grid scale and WC means wavelet coefficient.</p> "> Figure 10
<p>Irrigation mapping using the (<b>a</b>) WT-RF model, (<b>b</b>) PC-RF model and (<b>c</b>) the CNN model. Irrigated areas are presented in blue while non-irrigated areas are shown in red. A zoom version of the yellow box in each map is provided to better visualize different classification results.</p> "> Figure 11
<p>Comparison of accuracy indices between RF and CNN classifications in three different scenarios: (<b>a</b>) Using the S1 SAR data, (<b>b</b>) using S2 optical data and (<b>c</b>) using S1 SAR and S2 optical data.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Site
2.2. SIGPAC Data
2.3. Remote Sensing Data
2.3.1. Sentinel-1 SAR Data
2.3.2. Sentinel-2 Optical Data
3. Methodology
3.1. Overview
3.2. σ° SAR Backscattering at Plot and Grid Scale
- –
- Normalized σ° time series at plot scale in VV polarization ();
- –
- Normalized σ° time series at plot scale in VH polarization ();
- –
- Difference between the normalized σ° at plot and grid scales in VV polarization ();
- –
- Difference between the normalized σ° at plot and grid scales in VH polarization ().
3.3. NDVI Temporal Series at Plot Scale
3.4. Principal Component Analysis (PCA)
3.5. Haar Wavelet Transformation
3.6. Random Forest Classifier
3.7. Convolutional Neural Network
3.8. Accuracy Assesment
4. Results
4.1. Comparison of σ° SAR Backscattering at Plot and Grid Scale
4.2. Classification Using Random Forest Classifier
4.2.1. PC-RF
4.2.2. WT-RF
4.2.3. NDVI-RF
4.2.4. RF Using Combined Optical and SAR Data
4.3. Classification Using Convolutional Neural Network
4.3.1. CNN on SAR Temporal Series
4.3.2. CNN Using NDVI Temporal Series
4.3.3. CNN Using Combined SAR and Optical Data
4.4. Irrigation Mapping
5. Discussion
5.1. Comparison of σ° SAR Backscattering at Plot and Grid Scale
5.2. Random Forest with PC and WT Transformation
5.3. CNN Approach
5.4. Inter-Comparison and Quality Assessment
5.5. Strength, Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Clark, M. Food, Agriculture & the Environment: Can We Feed the World & Save the Earth? Daedalus 2015, 144, 8–23. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiklomanov, I.A. Appraisal and Assessment of World Water Resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Cai, X.; Rosegrant, M.W. Global Water Demand and Supply Projections: Part 1. A Modeling Approach. Water Int. 2002, 27, 159–169. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.-M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef] [Green Version]
- Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef]
- Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321–334. [Google Scholar] [CrossRef]
- Boken, V.K.; Hoogenboom, G.; Kogan, F.N.; Hook, J.E.; Thomas, D.L.; Harrison, K.A. Potential of using NOAA-AVHRR data for estimating irrigated area to help solve an inter-state water dispute. Int. J. Remote Sens. 2004, 25, 2277–2286. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Schull, M.; Turral, H. Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens. Environ. 2005, 95, 317–341. [Google Scholar] [CrossRef]
- Kamthonkiat, D.; Honda, K.; Turral, H.; Tripathi, N.K.; Wuwongse, V. Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data. Int. J. Remote Sens. 2005, 26, 2527–2547. [Google Scholar] [CrossRef]
- Biggs, T.W.; Thenkabail, P.S.; Gumma, M.K.; Scott, C.A.; Parthasaradhi, G.R.; Turral, H.N. Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India. Int. J. Remote Sens. 2006, 27, 4245–4266. [Google Scholar] [CrossRef]
- Dheeravath, V.; Thenkabail, P.S.; Chandrakantha, G.; Noojipady, P.; Reddy, G.P.O.; Biradar, C.M.; Gumma, M.K.; Velpuri, M. Irrigated areas of India derived using MODIS 500 m time series for the years 2001–2003. ISPRS J. Photogramm. Remote Sens. 2010, 65, 42–59. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A. Mapping Irrigated Areas of Ghana Using Fusion of 30 m and 250 m Resolution Remote-Sensing Data. Remote Sens. 2011, 3, 816–835. [Google Scholar] [CrossRef] [Green Version]
- Pervez, M.S.; Brown, J.F. Mapping Irrigated Lands at 250-m Scale by Merging MODIS Data and National Agricultural Statistics. Remote Sens. 2010, 2, 2388–2412. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lu, D.; Luo, L.; Pokhrel, Y.; Deb, K.; Huang, J.; Ran, Y. Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data. Remote Sens. Environ. 2018, 204, 197–211. [Google Scholar] [CrossRef]
- Xiang, K.; Ma, M.; Liu, W.; Dong, J.; Zhu, X.; Yuan, W. Mapping Irrigated Areas of Northeast China in Comparison to Natural Vegetation. Remote Sens. 2019, 11, 825. [Google Scholar] [CrossRef]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Minh, D.H.T.; Ndikumana, E.; Courault, D.; Belhouchette, H. Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sens. 2019, 11, 887. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef]
- Gao, Q.; Zribi, M.; Escorihuela, M.; Baghdadi, N.; Segui, P. Irrigation Mapping Using Sentinel-1 Time Series at Field Scale. Remote Sens. 2018, 10, 1495. [Google Scholar] [CrossRef]
- Demarez, V.; Helen, F.; Marais-Sicre, C.; Baup, F. In-Season Mapping of Irrigated Crops Using Landsat 8 and Sentinel-1 Time Series. Remote Sens. 2019, 11, 118. [Google Scholar] [CrossRef]
- Fieuzal, R.; Duchemin, B.; Jarlan, L.; Zribi, M.; Baup, F.; Merlin, O.; Hagolle, O.; Garatuza-Payan, J. Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops. Hydrol. Earth Syst. Sci. 2011, 15, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Abou Chaaya, J.; Zribi, M. Semiempirical Calibration of the Integral Equation Model for SAR Data in C-Band and Cross Polarization Using Radar Images and Field Measurements. IEEE Geosci. Remote Sens. Lett. 2011, 8, 14–18. [Google Scholar] [CrossRef]
- Baghdadi, N.; Choker, M.; Zribi, M.; Hajj, M.; Paloscia, S.; Verhoest, N.; Lievens, H.; Baup, F.; Mattia, F. A New Empirical Model for Radar Scattering from Bare Soil Surfaces. Remote Sens. 2016, 8, 920. [Google Scholar] [CrossRef]
- Aubert, M.; Baghdadi, N.N.; Zribi, M.; Ose, K.; El Hajj, M.; Vaudour, E.; Gonzalez-Sosa, E. Toward an Operational Bare Soil Moisture Mapping Using TerraSAR-X Data Acquired Over Agricultural Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 900–916. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef]
- Baghdadi, N.; Camus, P.; Beaugendre, N.; Issa, O.M.; Zribi, M.; Desprats, J.F.; Rajot, J.L.; Abdallah, C.; Sannier, C. Estimating Surface Soil Moisture from TerraSAR-X Data over Two Small Catchments in the Sahelian Part of Western Niger. Remote Sens. 2011, 3, 1266–1283. [Google Scholar] [CrossRef] [Green Version]
- Hajj, M.; Baghdadi, N.; Belaud, G.; Zribi, M.; Cheviron, B.; Courault, D.; Hagolle, O.; Charron, F. Irrigated Grassland Monitoring Using a Time Series of TerraSAR-X and COSMO-SkyMed X-Band SAR Data. Remote Sens. 2014, 6, 10002–10032. [Google Scholar] [CrossRef] [Green Version]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, J.; Zhu, D.; Liu, J.; Guo, H.; Bayartungalag, B.; Li, B. Integrating Multitemporal Sentinel-1/2 Data for Coastal Land Cover Classification Using a Multibranch Convolutional Neural Network: A Case of the Yellow River Delta. Remote Sens. 2019, 11, 1006. [Google Scholar] [CrossRef]
- Carrasco, L.; O’Neil, A.; Morton, R.; Rowland, C. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine. Remote Sens. 2019, 11, 288. [Google Scholar] [CrossRef]
- Ahishali, M.; Kiranyaz, S.; Ince, T.; Gabbouj, M. Dual and Single Polarized SAR Image Classification Using Compact Convolutional Neural Networks. Remote Sens. 2019, 11, 1340. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Interdonato, R.; Ienco, D.; Gaetano, R.; Ose, K. DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn. ISPRS J. Photogramm. Remote Sens. 2019, 149, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Ho Tong Minh, D.; Ienco, D.; Gaetano, R.; Lalande, N.; Ndikumana, E.; Osman, F.; Maurel, P. Deep Recurrent Neural Networks for Winter Vegetation Quality Mapping via Multitemporal SAR Sentinel-1. IEEE Geosci. Remote Sens. Lett. 2018, 15, 464–468. [Google Scholar] [CrossRef]
- He, W.; Yokoya, N. Multi-Temporal Sentinel-1 and -2 Data Fusion for Optical Image Simulation. ISPRS Int. J. Geo-Inf. 2018, 7, 389. [Google Scholar] [CrossRef]
- Liu, J.; Gong, M.; Qin, K.; Zhang, P. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 545–559. [Google Scholar] [CrossRef]
- SIGPAC. Departament D’Agricultura, Ramaderia, Pesca i Alimentació. Available online: http://agricultura.gencat.cat/ca/serveis/cartografia-sig/aplicatius-tematics-geoinformacio/sigpac/ (accessed on 1 February 2019).
- Schwerdt, M.; Schmidt, K.; Tous Ramon, N.; Klenk, P.; Yague-Martinez, N.; Prats-Iraola, P.; Zink, M.; Geudtner, D. Independent System Calibration of Sentinel-1B. Remote Sens. 2017, 9, 511. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Angelliaume, S. Analysis of Sentinel-1 Radiometric Stability and Quality for Land Surface Applications. Remote Sens. 2016, 8, 406. [Google Scholar] [CrossRef]
- Amri, R.; Zribi, M.; Lili-Chabaane, Z.; Wagner, W.; Hasenauer, S. Analysis of C-Band Scatterometer Moisture Estimations Derived Over a Semiarid Region. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2630–2638. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Singh, V.P. Assimilation of observed soil moisture data in storm rainfall-runoff modeling. J. Hydrol. Eng. 2009, 14, 153–165. [Google Scholar] [CrossRef]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M. Potential of Sentinel-1 Surface Soil Moisture Product for Detecting Heavy Rainfall in the South of France. Sensors 2019, 19, 802. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Berg, W.; Kidd, C.; Kirschbaum, D.B.; Petersen, W.A.; Huffman, G.J.; Takayabu, Y.N. Global precipitation measurement (GPM): Unified precipitation estimation from space. In Remote Sensing of Clouds and Precipitation; Springer: Berlin/Heidelberg, Germany, 2018; pp. 175–193. [Google Scholar]
- Baghdadi, N.; King, C.; Bourguignon, A.; Remond, A. Potential of ERS and Radarsat data for surface roughness monitoring over bare agricultural fields: Application to catchments in Northern France. Int. J. Remote Sens. 2002, 23, 3427–3442. [Google Scholar] [CrossRef]
- Jain, A.K. Fundamentals of Digital Image Processing; Prentice Hall Information and System Sciences Series; Prentice Hall: Englewood Cliffs, NJ, USA, 1989; ISBN 978-0-13-336165-0. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wu, X. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms. Remote Sens. 2018, 10, 294. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear units and dropout. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 8609–8613. [Google Scholar]
- Benedetti, P.; Ienco, D.; Gaetano, R.; Ose, K.; Pensa, R.; Dupuy, S. M3fusion: A deep learning architecture for multi-{Scale/Modal/Temporal} satellite data fusion. arXiv 2018, arXiv:1803.01945. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Gaetano, R.; Ienco, D.; Ose, K.; Cresson, R. A Two-Branch CNN Architecture for Land Cover Classification of PAN and MS Imagery. Remote Sens. 2018, 10, 1746. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef]
- Dietterich, T.G. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Comput. 1998, 10, 1895–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidayat, S.; Matsuoka, M.; Baja, S.; Rampisela, D.A. Object-Based Image Analysis for Sago Palm Classification: The Most Important Features from High-Resolution Satellite Imagery. Remote Sens. 2018, 10, 1319. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Lennert, M.; Vanhuysse, S.; Johnson, B.; Wolff, E. Scale Matters: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Large and Heterogeneous Satellite Images. Remote Sens. 2018, 10, 1440. [Google Scholar] [CrossRef]
Data | Type | Satellite | Spatial Resolution | Images Number | Frequency Used | Calibration Performed | Bands Polarization |
---|---|---|---|---|---|---|---|
Satellite Images | (Synthetic aperture radar) SAR | Sentinel-1 | 10 m | 82 | 6 days | Geometric/Radiometric | VV, VH |
Optical | Sentinel-2 | 10 m | 17 | One month | Ortho-rectified Reflectance | Near Infrared, Red |
Index | Equation |
---|---|
OA | |
EA | |
Kappa | |
F1 score | |
Precision | |
Recall |
Method | Class | Precision | Recall | F-Score |
---|---|---|---|---|
PC-RF 328 Variables | Irrigated | 0.95 | 0.79 | 0.86 |
Non-Irrigated | 0.90 | 0.98 | 0.94 | |
OA | 91.2% | |||
Kappa | 0.79 | |||
F-score | 0.91 | |||
PC-RF 15 Important Variables | Irrigated | 0.92 | 0.81 | 0.86 |
Non-Irrigated | 0.90 | 0.96 | 0.93 | |
OA | 90.7% | |||
Kappa | 0.79 | |||
F-score | 0.91 |
Method | Class | Precision | Recall | F-Score |
---|---|---|---|---|
WT-RF 256 Variables | Irrigated | 0.94 | 0.81 | 0.87 |
Non-Irrigated | 0.90 | 0.97 | 0.94 | |
OA | 91.4% | |||
Kappa | 0.81 | |||
F-score | 0.91 | |||
WT-RF 18 Important Variables | Irrigated | 0.89 | 0.78 | 0.83 |
Non-Irrigated | 0.89 | 0.95 | 0.92 | |
OA | 89.1% | |||
Kappa | 0.75 | |||
F-score | 0.89 |
Method | Class | Precision | Recall | F-Score |
---|---|---|---|---|
NDVI-RF 17 Variables | Irrigated | 0.94 | 0.78 | 0.85 |
Non-Irrigated | 0.89 | 0.97 | 0.93 | |
OA | 90.5% | |||
Kappa | 0.78 | |||
F-score | 0.91 | |||
NDVI-RF 7 Important Variables | Irrigated | 0.92 | 0.76 | 0.84 |
Non-Irrigated | 0.88 | 0.96 | 0.92 | |
OA | 89.5% | |||
Kappa | 0.76 | |||
F-score | 0.88 |
Method | Class | Precision | Recall | F-Score |
---|---|---|---|---|
15 variable SAR PC-RF + 7 variable NDVI-RF | Irrigated | 0.95 | 0.82 | 0.88 |
Non-Irrigated | 0.91 | 0.98 | 0.94 | |
OA | 92.3% | |||
Kappa | 0.82 | |||
F-score | 0.91 |
Method | Class | Precision | Recall | F-Score |
---|---|---|---|---|
CNN on SAR Data | Irrigated | 0.93 | 0.89 | 0.91 |
Non-Irrigated | 0.95 | 0.96 | 0.96 | |
OA | 94.1% 0.06 | |||
Kappa | 0.87 0.0014 | |||
F-score | 0.94 0.0006 |
Method | Class | Precision | Recall | F-Score |
---|---|---|---|---|
CNN on Optical Data | Irrigated | 0.93 | 0.81 | 0.87 |
Non-Irrigated | 0.91 | 0.97 | 0.94 | |
OA | 91.6% 0.06 | |||
Kappa | 0.81 0.0016 | |||
F-score | 0.91 0.0006 |
Method | Class | Precision | Recall | F-Score |
---|---|---|---|---|
CNN on Combined SAR and Optical Data | Irrigated | 0.94 | 0.90 | 0.92 |
Non-Irrigated | 0.95 | 0.97 | 0.96 | |
OA | 94.5% 0.05 | |||
Kappa | 0.88 0.0016 | |||
F-score | 0.95 0.0005 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazzi, H.; Baghdadi, N.; Ienco, D.; El Hajj, M.; Zribi, M.; Belhouchette, H.; Escorihuela, M.J.; Demarez, V. Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain. Remote Sens. 2019, 11, 1836. https://doi.org/10.3390/rs11151836
Bazzi H, Baghdadi N, Ienco D, El Hajj M, Zribi M, Belhouchette H, Escorihuela MJ, Demarez V. Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain. Remote Sensing. 2019; 11(15):1836. https://doi.org/10.3390/rs11151836
Chicago/Turabian StyleBazzi, Hassan, Nicolas Baghdadi, Dino Ienco, Mohammad El Hajj, Mehrez Zribi, Hatem Belhouchette, Maria Jose Escorihuela, and Valérie Demarez. 2019. "Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain" Remote Sensing 11, no. 15: 1836. https://doi.org/10.3390/rs11151836
APA StyleBazzi, H., Baghdadi, N., Ienco, D., El Hajj, M., Zribi, M., Belhouchette, H., Escorihuela, M. J., & Demarez, V. (2019). Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain. Remote Sensing, 11(15), 1836. https://doi.org/10.3390/rs11151836