Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote Sensing Techniques
<p>Location of studied paddocks. The red boundary shows the paddocks studied in 2017 and the blue boundary illustrates the paddocks studied in 2018.</p> "> Figure 2
<p>Location of studied plots. The red boundary shows the plots used for the hyperspectral imagery (HSI) test and the black boundary shows the plots used for the multispectral imagery (MSI) test.</p> "> Figure 3
<p>The biomass models (BM) and crude protein models (CPM) calculated using partial least squares regression (PLSR) and stepwise multi-linear regression (MLR). HSI: hyperspectral imagery; MSI: multispectral imagery; Sat: Satellite; UAV: unmanned aircraft vehicle.</p> "> Figure 4
<p>Important wavelengths identified using the HSI dataset for predicting biomass (BM-1) and crude protein (CPM-1). Blue bars indicate significant wavelength with <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Important bands and spectral indices identified using the MSI-UAV dataset (BM-2) and MSI- Sentinel-2 dataset (BM-3) for predicting biomass. Blue bars indicate significant bands and indices with <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>Important bands and spectral indices identified using the MSI-UAV dataset (CMP-2) and MSI-Sentinel-2 dataset (CMP-3) for predicting CP. Blue bars indicate significant bands and indices with <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Spectral Datasets
2.2.1. MSI-UAV Dataset
2.2.2. HSI Dataset
2.2.3. MSI-Sentinel-2 Dataset
2.3. Grass Sampling and Measurements
2.4. Image Processing
2.5. Developing Spectral Models Using HSI
2.6. Developing Spectral Models Using MSI (UAV and Sentinel-2)
2.7. Evaluation of Spectral Models
2.8. Statistical Analysis and Mapping Indicators
3. Results
3.1. Predicting GQ Indicators Using PLSR
3.2. Predicting GQ Indicators Using MLR
3.3. Evaluating Spectral Models
4. Discussion
4.1. PLSR Prediction of GQ Indicators
4.2. MLR Prediction of Grass CP and BM
4.3. Comparing the Predictability of Spectral Models
4.4. The Efficiency of Remote Sensing for Assessing GQ
5. Conclusions
- (a)
- The HSI technique yielded better prediction of grass BM and CP than MSI techniques. In this regard, excellent accuracy was obtained using HSI and good accuracy was acquired using both MSI-UAV and MSI-Sentinel-2 for predicting BM and using MSI-UAV for predicting CP.
- (b)
- Based on the HSI dataset, the red-edge range was identified as the most effective wavelength range for predicting grass BM, while the NIR range had the greatest influence on the spectral predictability of grass CP. A combination of red-edge, red and green bands (MCAR) was identified as the most useful index for estimating BM using MSI-UAV, and a ration of red and green bands (SR3) had the maximum impact on the prediction of CP using Sequoia images. Band 11 centred at 1610 nm was found to be the most important band for modelling GQ indicators using Sentinel-2 images.
- (c)
- Both the PLSR and MLR techniques yielded accurate models for prediction of BM and CP. The PLSR yielded better model outputs, though the results from both techniques were sufficiently robust to be used.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Price, K.; Crooks, T.J.; Martinko, E.A. Grasslands across time and scale: A remote sensing perspective. Photogramm. Eng. Remote Sens. 2001, 67, 414–420. [Google Scholar]
- Hollberg, J.; Schellberg, J. Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices. Remote Sens. 2017, 9, 81. [Google Scholar] [CrossRef]
- Askari, M.S.; Holden, N.M. Indices for quantitative evaluation of soil quality under grassland management. Geoderma 2014, 230–231, 131–142. [Google Scholar] [CrossRef]
- Askari, M.S.; Cui, J.; Holden, N.M. The visual evaluation of soil structure under arable management. Soil Tillage Res. 2013, 134, 1–10. [Google Scholar] [CrossRef]
- Askari, M.S.; O’Rourke, S.M.; Holden, N.M. Evaluation of soil quality for agricultural production using visible–near-infrared spectroscopy. Geoderma 2015, 243–244, 80–91. [Google Scholar] [CrossRef]
- Ramoelo, A.; Cho, M.A.; Mathieu, R.; Madonsela, S.; van de Kerchove, R.; Kaszta, Z.; Wolff, E. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 43–54. [Google Scholar] [CrossRef]
- Tudsri, S.; Jorgensen, S.; Riddach, P.; Pookpakdi, A. Effect of cutting height and dry season closing date on yield and quality of five napier grass cultivars in Thailand. Trop. Grassl. 2002, 36, 248–252. [Google Scholar]
- Skidmore, A.K.; Ferwerda, J.G.; Mutanga, O.; Van Wieren, S.E.; Peel, M.; Grant, R.C.; Prins, H.H.T.; Balcik, F.B.; Venus, V. Forage quality of savannas—Simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery. Remote Sens. Environ. 2010, 114, 64–72. [Google Scholar] [CrossRef]
- Sibanda, M.; Mutanga, O.; Rouget, M. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS J. Photogramm. Remote Sens. 2015, 110, 55–65. [Google Scholar] [CrossRef]
- Schut, A.G.T.; Ketelaars, J.J.M.H.; Meuleman, J.; Kornet, J.G.; Lokhorst, C. AE—Automation and Emerging Technologies: Novel Imaging Spectroscopy for Grass Sward Characterization. Biosyst. Eng. 2002, 82, 131–141. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. In-field hyperspectral proximal sensing for estimating quality parameters of mixed pasture. Precis. Agric. 2012, 13, 351–369. [Google Scholar] [CrossRef]
- Safari, H.; Fricke, T.; Wachendorf, M. Determination of fibre and protein content in heterogeneous pastures using field spectroscopy and ultrasonic sward height measurements. Comput. Electron. Agric. 2016, 123, 256–263. [Google Scholar] [CrossRef]
- Zhao, D.; Starks, P.J.; Brown, M.A.; Phillips, W.A.; Coleman, S.W. Assessment of forage biomass and quality parameters of bermudagrass using proximal sensing of pasture canopy reflectance. Grassl. Sci. 2007, 53, 39–49. [Google Scholar] [CrossRef]
- Schweiger, A.K.; Risch, A.C.; Damm, A.; Kneubühler, M.; Haller, R.; Schaepman, M.E.; Schütz, M. Using imaging spectroscopy to predict above-ground plant biomass in alpine grasslands grazed by large ungulates. J. Veg. Sci. 2015, 26, 175–190. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, X.; Manlike, A.; Jin, Y.; Zheng, F.; Guo, J.; Shen, G.; Zhang, Y.; Xu, B. Comparative study of remote sensing estimation methods for grassland fractional vegetation coverage—A grassland case study performed in Ili prefecture, Xinjiang, China. Int. J. Remote Sens. 2018, 1–16. [Google Scholar] [CrossRef]
- Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.-L. Scale issues in remote sensing: a review on analysis, processing and modeling. Sensors (Basel, Switzerland) 2009, 9, 1768–1793. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Change 2013, 3, 875. [Google Scholar] [CrossRef]
- Jia, Z.L.; Lu, X.P.; Zheng, F.J.; Zang, W.Q.; Liu, Q.C. Research on atmospheric correction and surface reflectance inversion of UAV (Unmanned Aerial Vehicle) remote sensing data. Appl. Mech. Mater. 2013, 427–429, 1485–1488. [Google Scholar] [CrossRef]
- Fava, F.; Colombo, R.; Bocchi, S.; Meroni, M.; Sitzia, M.; Fois, N.; Zucca, C. Identification of hyperspectral vegetation indices for Mediterranean pasture characterization. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 233–243. [Google Scholar] [CrossRef]
- Lugassi, R.; Chudnovsky, A.; Zaady, E.; Dvash, L.; Goldshleger, N. Estimating Pasture Quality of Fresh Vegetation Based on Spectral Slope of Mixed Data of Dry and Fresh Vegetation—Method Development. Remote Sens. 2015, 7, 8045. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Helman, D.; Mussery, A.; Lensky, I.M.; Leu, S. Detecting changes in biomass productivity in a different land management regimes in drylands using satellite-derived vegetation index. Soil Use Manag. 2014, 30, 32–39. [Google Scholar] [CrossRef]
- Yiran, G.A.B.; Kusimi, J.M.; Kufogbe, S.K. A synthesis of remote sensing and local knowledge approaches in land degradation assessment in the Bawku East District, Ghana. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 204–213. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Numata, I.; Roberts, D.A.; Chadwick, O.A.; Schimel, J.P.; Galvão, L.S.; Soares, J.V. Evaluation of hyperspectral data for pasture estimate in the Brazilian Amazon using field and imaging spectrometers. Remote Sens. Environ. 2008, 112, 1569–1583. [Google Scholar] [CrossRef]
- Clevers, J.; Van der Heijden, G.; Verzakov, S.; Schaepman, M. Estimating grassland biomass using SVM band shaving of hyperspectral data. Photogramm. Eng. Remote Sens. 2007, 73, 1141–1148. [Google Scholar] [CrossRef]
- Gao, J. Quantification of grassland properties: how it can benefit from geoinformatic technologies? Int. J. Remote Sens. 2006, 27, 1351–1365. [Google Scholar] [CrossRef]
- Nordkvist, E.; Larsson, K. An approach to the use of multivariate analysis of near infrared spectroscopy (NIR) data from field-trials. Field Crops Res. 1994, 37, 33–38. [Google Scholar] [CrossRef]
- Cozzolino, D. Use of Infrared Spectroscopy for In-Field Measurement and Phenotyping of Plant Properties: Instrumentation, Data Analysis, and Examples. Appl. Spectrosc. Rev. 2014, 49, 564–584. [Google Scholar] [CrossRef]
- Gong, Z.; Kawamura, K.; Ishikawa, N.; Inaba, M.; Alateng, D. Estimation of herbage biomass and nutritive status using band depth features with partial least squares regression in Inner Mongolia grassland, China. Grassl. Sci. 2016, 62, 45–54. [Google Scholar] [CrossRef]
- Nouri, M.; Gomez, C.; Gorretta, N.; Roger, J.M. Clay content mapping from airborne hyperspectral Vis-NIR data by transferring a laboratory regression model. Geoderma 2017, 298, 54–66. [Google Scholar] [CrossRef]
- McEvoy, M.; O’Donovan, M.; Shalloo, L. Development and application of an economic ranking index for perennial ryegrass cultivars. J. Dairy Sci. 2011, 94, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods and Analysis, 15th ed.; Method 990-03; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Kokaly, R.F. Investigating a Physical Basis for Spectroscopic Estimates of Leaf Nitrogen Concentration. Remote Sens. Environ. 2001, 75, 153–161. [Google Scholar] [CrossRef]
- Lugassi, R.; Zaady, E.; Goldshleger, N.; Shoshany, M.; Chudnovsky, A. Spatial and Temporal Monitoring of Pasture Ecological Quality: Sentinel-2-Based Estimation of Crude Protein and Neutral Detergent Fiber Contents. Remote Sens. 2019, 11, 799. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Schleicher, T.D.; Bausch, W.C.; Delgado, J.A.; Ayers, P.D. Evaluation and Refinement of the Nitrogen Reflectance Index (NRI) for Site-Specific Fertilizer Management; The American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2001. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated Sentinel 2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Goel, N.S.; Qin, W. Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation. Remote Sens. Rev. 1994, 10, 309–347. [Google Scholar] [CrossRef]
- Yang, Z.; Willis, P.; Mueller, R. Impact of band-ratio enhanced AWIFS image to crop classification accuracy. In Proceedings of the Pecora 17—The Future of Land Imaging, Denver, CO, USA, 18–20 November 2008. [Google Scholar]
- Ramoelo, A.; Skidmore, A.K.; Cho, M.A.; Schlerf, M.; Mathieu, R.; Heitkönig, I.M.A. Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor. Int. J. Appl. Earth Obs. Geoinform. 2012, 19, 151–162. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Smith, R.; Adams, J.; Stephens, D.; Hick, P. Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Aust. J. Agric. Res. 1995, 46, 113–125. [Google Scholar] [CrossRef]
- Lu, H.; Mack, J.; Yang, Y.; Shen, Z. Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev. 2014, 43, 4778–4823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sousa, C.; Souza, C.; Zanella, L.; De Carvalho, L. Analysis of Rapideye’s Red edge band for image segmentation and classification. In Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 7–9 May 2019; 2012; p. 58. [Google Scholar]
- Martens, H.; Martens, M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual. Prefer. 2000, 11, 5–16. [Google Scholar] [CrossRef]
- Lee, H.W.; Bawn, A.; Yoon, S. Reproducibility, complementary measure of predictability for robustness improvement of multivariate calibration models via variable selections. Anal. Chim. Acta 2012, 757, 11–18. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Jin, H.; Liu, Z. Developing a NIR multispectral imaging for prediction and visualization of peanut protein content using variable selection algorithms. Infrared Phys. Technol. 2018, 88, 92–96. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Variable selection in regression—A tutorial. J. Chemom. 2010, 24, 728–737. [Google Scholar] [CrossRef]
- Feilhauer, H.; Asner, G.P.; Martin, R.E. Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens. Environ. 2015, 164, 57–65. [Google Scholar] [CrossRef]
- Askari, M.S.; O’Rourke, S.M.; Holden, N.M. A comparison of point and imaging visible-near infrared spectroscopyfor determining soil organic carbon. J. Near Infrared Spectrosc. 2018, 26, 133–146. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Q.; Liang, T.; Liu, B.; Zhang, W.; Xie, H. Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Martínez Gila, D.M.; Cano Marchal, P.; Gómez Ortega, J.; Gámez García, J. Non-Invasive Methodology to Estimate Polyphenol Content in Extra Virgin Olive Oil Based on Stepwise Multilinear Regression. Sensors 2018, 18, 975. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.; Lotfi, A.; Langensiepen, C. User Activities Outliers Detection; Integration of Statistical and Computational Intelligence Techniques. Comput. Intell. 2016, 32, 49–71. [Google Scholar] [CrossRef]
- Williams, J.D.; Woodall, W.H.; Birch, J.B.; Sullivan, J.H. Distribution of Hotelling’s T2 Statistic Based on the Successive Differences Estimator. J. Qual. Technol. 2006, 38, 217–229. [Google Scholar] [CrossRef]
- Pitman, E.J.G. A Note on Normal Correlation. Biometrika 1939, 31, 9–12. [Google Scholar] [CrossRef]
- Morgan, W.A. A Test for the Significance of the Difference Between the Two Variances in a Sample From a Normal Bivariate Population. Biometrika 1939, 31, 13–19. [Google Scholar] [CrossRef]
- Muñoz-Montplet, C.; Marruecos, J.; Buxó, M.; Jurado-Bruggeman, D.; Romera-Martínez, I.; Bueno, M.; Vilanova, J.C. Dosimetric impact of Acuros XB dose-to-water and dose-to-medium reporting modes on VMAT planning for head and neck cancer. Phys. Med. 2018, 55, 107–115. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A. Robust Modelling of Soil Diffuse Reflectance Spectra by “Bagging-Partial Least Squares Regression”. J. Near Infrared Spectrosc. 2007, 15, 39–47. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: a tutorial. Anal. Chimi. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- McEniry, J.; Crosson, P.; Finneran, E.; McGee, M.; Keady, T.; O’Kiely, P. How much grassland biomass is available in Ireland in excess of livestock requirements? Irish J. Agric. Food Res. 2013, 67–80. [Google Scholar]
- Meehan, P.; Burke, B.; Doyle, D.; Barth, S.; Finnan, J. Exploring the potential of grass feedstock from marginal land in Ireland: Does marginal mean lower yield? Biomass Bioenerg. 2017, 107, 361–369. [Google Scholar] [CrossRef]
- Burns, G.A.; Gilliland, T.J.; Grogan, D.; Watson, S.; O’Kiely, P. Assessment of herbage yield and quality traits of perennial ryegrasses from a national variety evaluation scheme. J. Agric. Sci. 2012, 151, 331–346. [Google Scholar] [CrossRef]
- Edirisinghe, A.; Hill, M.J.; Donald, G.E.; Hyder, M. Quantitative mapping of pasture biomass using satellite imagery. Int. J. Remote Sens. 2011, 32, 2699–2724. [Google Scholar] [CrossRef]
- Ramoelo, A.; Skidmore, A.K.; Cho, M.A.; Mathieu, R.; Heitkönig, I.M.A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H.H.T. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS J. Photogramm. Remote Sens. 2013, 82, 27–40. [Google Scholar] [CrossRef]
- Clifton, K.E.; Bradbury, J.W.; Vehrencanp, S.L. The fine-scale mapping of grassland protein densities. Grass Forage Sci. 1994, 49, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crops Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Elarab, M.; Ticlavilca, A.M.; Torres-Rua, A.F.; Maslova, I.; McKee, M. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinformat. 2015, 43, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Starks, P.J.; Zhao, D.; Phillips, W.A.; Coleman, S.W. Development of canopy reflectance algorithms for real-time prediction of bermudagrass pasture biomass and nutritive values. Crop Sci. 2006, 46, 927–934. [Google Scholar] [CrossRef]
- Kawamura, K.; Watanabe, N.; Sakanoue, S.; Inoue, Y. Estimating forage biomass and quality in a mixed sown pasture based on partial least squares regression with waveband selection. Grassl. Sci. 2008, 54, 131–145. [Google Scholar] [CrossRef]
- Bassegio, D.; Santos, R.F.; de Oliveira, E.; Wernecke, I.; Secco, D.; de Souza, S.N.M. Effect of nitrogen fertilization and cutting age on yield of tropical forage plants. Afr. J. Agric. Res. 2013, 8, 1427–1432. [Google Scholar]
- Card, D.H.; Peterson, D.L.; Matson, P.A.; Aber, J.D. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sens. Environ. 1988, 26, 123–147. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Hedley, M.J.; Tuohy, M.P.; Dynes, R.A.; King, W.M. Multi-spectral radiometry to estimate pasture quality components. Precis. Agric. 2012, 13, 442–456. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Green, S. Modeling Managed Grassland Biomass Estimation by Using Multitemporal Remote Sensing Data—A Machine Learning Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3254–3264. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.; Corsi, F.; van Wieren, S.E.; Sobhan, I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 414–424. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Bao, Y.; Luo, J.; Jin, X.; Xu, X.; Song, X.; Yang, G. Exploring the Best Hyperspectral Features for LAI Estimation Using Partial Least Squares Regression. Remote Sens. 2014, 6, 6221. [Google Scholar] [CrossRef]
- Park, R.S.; Gordon, F.J.; Agnew, R.E.; Barnes, R.J.; Steen, R.W.J. The use of Near Infrared Reflectance Spectroscopy on dried samples to predict biological parameters of grass silage. Anim. Feed Sci. Technol. 1997, 68, 235–246. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Pu, H.-B.; Wang, Q.-J.; Chen, Y.-N. Suitability of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet. Food Chem. 2015, 171, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Igne, B.; Reeves, J.B.; McCarty, G.; Hively, W.D.; Lund, E.; Hurburgh, C.R. Evaluation of Spectral Pretreatments, Partial Least Squares, Least Squares Support Vector Machines and Locally Weighted Regression for Quantitative Spectroscopic Analysis of Soils. J. Near Infrared Spectrosc. 2010, 18, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, E.M.; Mutanga, O.; Odindi, J.; Adam, E.; Odindo, A.; Ismail, R. A comparison of partial least squares (PLS) and sparse PLS regressions for predicting yield of Swiss chard grown under different irrigation water sources using hyperspectral data. Comput. Electron. Agric. 2014, 106, 11–19. [Google Scholar] [CrossRef]
- Adjorlolo, C.; Mutanga, O.; Cho, M.A. Predicting C3 and C4 grass nutrient variability using in situ canopy reflectance and partial least squares regression. Int. J. Remote Sens. 2015, 36, 1743–1761. [Google Scholar] [CrossRef]
- Mansour, K.; Mutanga, O.; Everson, T. Remote sensing based indicators of vegetation species for assessing rangeland degradation: opportunities and challenges. Afr. J. Agric. Res. 2012, 7, 3261–3270. [Google Scholar]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Teagasc. National Grass Growth Curve from Pasture Base Ireland. Available online: https://www.teagasc.ie/crops/grassland/pasturebase-ireland/grass-curve/ (accessed on 15 July 2019).
Plots | Paddocks | ||||
---|---|---|---|---|---|
Plot ID | N (kg/ha) | 2017 | 2018 | ||
Paddock ID | N (kg/ha) | Paddock ID | N (kg/ha) | ||
1 (A, B, C, D) | 0 | 2 (A, B, C, D, E, F) | 225 | 37 (A) | 150 |
2 (A, B, C, D) | 244 | 3 (B, C) | 250 | 37 (B) | 100 |
3 (A, B, C, D) | 0 | 4 (A, B, C) | 250 | 37 (C) | 250 |
4 (A, B, C, D) | 244 | 9 (A, B, C, D) | 225 | 38 (A) | 250 |
5 (A, B, C, D) | 480 | 10 (A, B, C, D, E, F) | 225 | 38 (B) | 100 |
6 (A, B, C, D) | 480 | 11 (A, B, C, D, E, F) | 250 | 38 (C) | 150 |
7 (A, B, C, D) | 119 | 12 (A, B) | 225 | ||
8 (A, B, C, D) | 119 | 20 (A, B, C) | 265 | ||
9 (A, B, C, D) | 0 | 21 (A, B, C) | 265 | ||
10 (A, B, C, D) | 480 | 42 (A, B, C) | 265 | ||
11 (A, B, C, D) | 480 | 43 (A, B, C) | 265 | ||
12 (A, B, C, D) | 244 | 44 (A, B, C) | 250 | ||
13 (A, B, C, D) | 119 | 45 (A, B, C) | 250 | ||
14 (A, B, C, D) | 244 | ||||
15 (A, B, C, D) | 119 | ||||
16 (A, B, C, D) | 0 |
Spectral Datasets | Operation Location | Sensor | Bands | Resolution | Wavelength Range |
---|---|---|---|---|---|
HIS 1 | 16 plots | BaySpec | 124 | 0.5 cm | 450 to 950 nm |
MSI 2-UAV 3 | 64 plots | Sequoia | 4 | 2.86 and 11.29 cm | B1 (550 nm), B2 (660 nm), B3 (735 nm), B4 (790 nm) |
6 paddocks | |||||
MSI-Sentinel-2 | 47 paddocks | Sentinel-2 | 10 | 10 and 20 m | B2 (490 nm), B3 (560 nm), B4 (665 nm), B5 (705 nm), B6 (740 nm), B7 (783 nm), B8 (842 nm), B8a (865 nm), B11 (1610 nm), B12 (2190 nm) |
6 paddocks |
Spectral Index | Equation | References |
---|---|---|
NDVI 1 | (NIR − Red)/(NIR + RED) | [2] |
GNDVI 2 | NIR − Green)/(NIR + Green) | [2] |
NDRE 3 | (NIR − Rededge)/(NIR + Rededge) | [23] |
SAVI 4 | [38] | |
MTVI 5 | 1.2[1.2(NIR − Green) − 2.5(Red − Green)] | [39] |
MCAR 6 | ((Rededge − Red) − 0.2) × (Rededge − Green) × (Rededge/Red) | [40] |
LCI 7 | (NIR − Rededge)/(NIR − Red) | [2] |
MTCI 8 | (NIR − Rededge)/(Rededge − Red) | [41] |
NRI 9 | (Green − Red)/(Green + Red) | [42] |
CI-Rededge 10 | (NIR/Rededge) − 1 | [23,43] |
CI-Green 11 | (NIR/Green) − 1 | [23,43] |
PSRI 12 | Red − Green)/NIR | [44] |
NLI 13 | [45] | |
MNLI 14 | [46] | |
SR 15 1 | NIR/Red | [47] |
SR2 | NIR/Rededge | [47] |
SR3 | Red/Green | [48] |
SR4 | Green/Red | [49] |
SR5 | NIR/Green | [40] |
SR6 | Red/NIR | [50] |
SR7 | Rededge/NIR | [51] |
Grass Data | Collected Year | Location | Number | Modelling Type | Total Number | Grass Quality Indicator | Mean Kg ha−1 | Std |
---|---|---|---|---|---|---|---|---|
G1 | 2017 | 16 plots | 84 | HSI Modelling | 84 | Dry matter | 1331.7 | 508.1 |
Crude protein | 164.3 | 25.4 | ||||||
G2 | 2017 | 64 plots | 109 | MSI-UAV Modelling | 126 | Dry matter | 1235.2 | 444.6 |
G3 | 2018 | 6 paddocks | 17 | Crude protein | 190.1 | 32.2 | ||
G4 | 2017 | 47 paddocks | 61 | MSI-Sat Modelling | 176 | Dry matter | 1880.2 | 1262.9 |
G5 | 2018 | 6 paddocks | 115 | Crude protein | 208.8 | 21.4 |
Dataset | Latent Variables | RPD | Model | R2 | RMSEP |
---|---|---|---|---|---|
BM-1 | 8 | 3.21 | Calibration | 0.92 | 155 |
Validation | 0.88 | 160 | |||
BM-2 | 4 | 2.14 | Calibration | 0.83 | 182 |
Validation | 0.78 | 215 | |||
BM-3 | 5 | 2.04 | Calibration | 0.83 | 484 |
Validation | 0.82 | 600 |
Dataset | Latent Variables | RPD | Model | R2 | RMSEP |
---|---|---|---|---|---|
CPM-1 | 5 | 2.51 | Calibration | 0.88 | 8.5 |
Validation | 0.82 | 10.0 | |||
CPM-2 | 5 | 2.37 | Calibration | 0.82 | 12.6 |
Validation | 0.77 | 13.6 | |||
CPM-3 | 8 | 1.60 | Calibration | 0.76 | 10.4 |
Validation | 0.62 | 13.3 |
Dataset | Important Band and Indices | RPD | Model | R2 | RMSEP |
---|---|---|---|---|---|
BM-4 | SR2, B473nm, B481nm, B913nm, B909nm, B675nm, B687nm, B945nm, B927nm | 3.02 | Calibration | 0.88 | 177 |
Validation | 0.86 | 179 | |||
BM-5 | Band 3 and SR5 | 1.94 | Calibration | 0.82 | 189 |
Validation | 0.76 | 226 | |||
BM-6 | Band 2, Band 8, Band 11, Band 12, GNDVI, and BRI | 1.92 | Calibration | 0.79 | 561 |
Validation | 0.81 | 661 |
Dataset | Important Band and Indices | RPD | Model | R2 | RMSEP |
---|---|---|---|---|---|
CPM-4 | B452nm, B464nm, B470nm, B476nm, B489nm, MCAR, PSRI, SR1, SR7 | 2.49 | Calibration | 0.86 | 9.6 |
Validation | 0.80 | 10.1 | |||
CPM-5 | Band2, MCAR, and SR3 | 2.21 | Calibration | 0.82 | 14.7 |
Validation | 0.78 | 14.6 | |||
CPM-6 | Band6, Band11, Band8a, GNDVI, and LCI | 1.39 | Calibration | 0.65 | 15.2 |
Validation | 0.58 | 16.6 |
Model | Spectral Data | Paired Differences | Pitman–Morgan | ||
---|---|---|---|---|---|
t | p-value | rDS | p-value | ||
PLSR | BM-1 | −1.289 | 0.208 | 0.195 | 0.3193 |
BM-2 | 0.171 | 0.865 | 0.466 | 0.0036 | |
BM-3 | 1.611 | 0.113 | 0.513 | 0.0001 | |
MLR | BM-4 | 0.49 | 0.628 | 0.144 | 0.4647 |
BM-5 | 0.111 | 0.912 | 0.514 | 0.0011 | |
BM-6 | 1.555 | 0.126 | 0.468 | 0.0004 |
Model | Spectral Data | Paired Differences | Pitman–Morgan | ||
---|---|---|---|---|---|
t | p-value | rDS | p-value | ||
PLSR | CPM-1 | −0.05 | 0.958 | 0.010 | 0.605 |
CPM-2 | −0.94 | 0.354 | −0.142 | 1.597 | |
CPM-3 | −0.24 | 0.808 | 0.352 | 0.010 | |
MLR | CPM-4 | 0.794 | 0.434 | 0.300 | 0.121 |
CMP-5 | −1.091 | 0.283 | −0.170 | 1.687 | |
CPM-6 | −0.152 | 0.880 | 0.309 | 0.024 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askari, M.S.; McCarthy, T.; Magee, A.; Murphy, D.J. Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote Sensing Techniques. Remote Sens. 2019, 11, 1835. https://doi.org/10.3390/rs11151835
Askari MS, McCarthy T, Magee A, Murphy DJ. Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote Sensing Techniques. Remote Sensing. 2019; 11(15):1835. https://doi.org/10.3390/rs11151835
Chicago/Turabian StyleAskari, Mohammad Sadegh, Timothy McCarthy, Aidan Magee, and Darren J. Murphy. 2019. "Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote Sensing Techniques" Remote Sensing 11, no. 15: 1835. https://doi.org/10.3390/rs11151835
APA StyleAskari, M. S., McCarthy, T., Magee, A., & Murphy, D. J. (2019). Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote Sensing Techniques. Remote Sensing, 11(15), 1835. https://doi.org/10.3390/rs11151835