Quantifying Drought Propagation from Soil Moisture to Vegetation Dynamics Using a Newly Developed Ecohydrological Land Reanalysis
"> Figure 1
<p>Study area (red) and the locations of the in situ observation sites of the DAHRA (purple rectangle), CARBOAFRICA (blue circle), AMMA-CATCH Belefoungou in Benin (black rectangle), and AMMA-CATCH Tondikiboro in Niger (yellow circle) networks.</p> "> Figure 2
<p>Schematic of production steps of ECHLA. See <a href="#sec2dot2-remotesensing-10-01197" class="html-sec">Section 2.2</a> and <a href="#sec2dot3-remotesensing-10-01197" class="html-sec">Section 2.3</a>, and the <a href="#app1-remotesensing-10-01197" class="html-app">Supplementary Materials</a> for details.</p> "> Figure 3
<p>(<b>a</b>) The climatological day-of-year (DOY) of the ECoHydrological Land reAnalysis (ECHLA)-simulated leaf area index’s (LAI’s) seasonal peak averaged from 2003 to 2010. (<b>b</b>) Schematic of the drought detection method. Black dashed line shows the timing of the climatological LAI’s seasonal peak. See <a href="#sec2dot4-remotesensing-10-01197" class="html-sec">Section 2.4</a> for details.</p> "> Figure 4
<p>Performance of ECHLA to reproduce satellite-observed LAI (GLASS LAI). (<b>a</b>) Correlation coefficient and (<b>b</b>) RMSE [m<sup>2</sup>/m<sup>2</sup>] of simulated LAI by the DA experiment. The differences of (<b>c</b>) correlation coefficient and (<b>d</b>) RMSE between the DA experiment and the OL experiment.</p> "> Figure 5
<p>Performance of ECHLA to reproduce satellite-observed surface soil moisture (ESA CCI SM). (<b>a</b>) Correlation coefficient and (<b>b</b>) RMSE [m<sup>3</sup>/m<sup>3</sup>] of simulated surface soil moisture by the DA experiment. The differences of (<b>c</b>) correlation coefficient and (<b>d</b>) RMSE between the DA experiment and the OL experiment. ESA CCI SM does not provide surface soil moisture retrievals in the dense vegetated area and the performance of ECHLA was not evaluated there.</p> "> Figure 6
<p>The locations of the identified drought events. Each dot shows the location of the identified drought event. The color of dots shows the year when the identified drought event occurred. The identified droughts shown by black, red, green, blue, yellow, and purple occurred in 2004, 2005, 2006, 2007, 2008, and 2009, respectively.</p> "> Figure 7
<p>Time series of SAs of soil moisture in surface (0–0.05 m) (blue), root1 (0.05–0.45 m) (red), root2 (0.45–1.05 m) (yellow), and deep (1.05–2.05 m) (grey) soil layers, and LAI (green) for the identified drought events of (<b>a</b>) Ethiopia in 2005 (36.375E; 10.25N), (<b>b</b>) India in 2009 (81.125E; 22.75N), (<b>c</b>) Thailand in 2005 (99.875E; 14.25N), and (<b>d</b>) Brazil in 2007 (46.125W; 9S). The climatological day-of-year of the LAI’s seasonal peak is set to day 0.</p> "> Figure 8
<p>Composite of the identified drought events’ SAs of LAI (green), surface (0–0.05 m) (blue), root1 (0.05–0.45 m) (red), root2 (0.45–1.05 m) (yellow), and deep (1.05–2.05 m) (grey) soil layers in the global snow-free region. The climatological day-of-year of the LAI’s seasonal peak is set to day 0.</p> "> Figure 9
<p>(<b>a</b>) Boxplot of intensity of SAs in the 3499 identified drought events. (<b>b</b>) Same as (a) but for duration. (<b>c</b>) Same as (a) but for the start date (blue) and the end date (red). Outliers are larger (smaller) than Q3 + interquartile range (Q1—interquartile range). See <a href="#sec2dot4-remotesensing-10-01197" class="html-sec">Section 2.4</a> for the definitions of intensity, duration, and the start and end date of droughts used in this study.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Area
2.2. Coupled Land and Vegetation Data Assimilation System (CLVDAS)
2.3. ECoHydrological Land reAnalysis (ECHLA)
2.4. Drought Identification and Quantification
3. Results
3.1. Validation of ECHLA
3.2. Identification and Quantification of the Drought Propagation
4. Discussions
4.1. Performance of ECHLA
- Errors in meteorological forcings: The input of the LSM may be biased. The GLDAS meteorological forcings used in this study may have large biases especially in the poorly gauged regions.
- Errors in observations used for verification: The observations used for verification may be biased. The quality of the satellite products strongly depends on the skill of the algorithms to retrieve soil moisture and LAI from brightness temperature. Although in situ soil moisture observations may have relatively small instrument errors, they may not represent soil moisture in the coarse model grids.
- Errors in the data assimilation system: It includes the errors in the LSM, the RTM, and the data assimilation method.
4.2. Conceptual Model of the Ecohydrological Drought Propagation
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A. Drought: A Global Assessment; Routledge: London, UK, 2000. [Google Scholar]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Anderson, W.; Zaitchik, B.F.; Hain, C.R.; Anderson, M.C.; Yilmaz, M.T.; Mecikalski, J.; Schultz, L. Towards an integrated soil moisture drought monitor for East Africa. Hydrol. Earth Syst. Sci. 2012, 16, 2893–2913. [Google Scholar] [CrossRef] [Green Version]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wood, E.F. Multimodel seasonal forecasting of global drought onset. Geophys. Res. Lett. 2013, 40, 4900–4905. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Yuan, X.; Wood, E.F. A probabilistic framework for assessing drought recovery. Geophys. Res. Lett. 2013, 14, 3637–3642. [Google Scholar] [CrossRef]
- Sawada, Y.; Koike, T. Towards ecohydrological drought monitoring and prediction using a land data assimilation system: A case study on the Horn of Africa drought (2010–2011). J. Geophys. Res. Atmos. 2016, 121, 8229–8242. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10. [Google Scholar] [CrossRef]
- Sawada, Y.; Koike, T.; Jaranilla-Sanchez, P.A. Modeling hydrologic and ecologic responses using a new eco-hydrological model for identification of droughts. Water Resour. Res. 2014, 50. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Harzards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef] [Green Version]
- Akarsh, A.; Mishra, V. Prediction of vegetation anomalies to improve food security and water management in India. Geophys. Res. Lett. 2015, 42, 5290–5298. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D.; De Lannoy, G.J.M.; Forman, B.M.; Liu, Q.; Mahanama, S.P.P.; Touré, A. Assessment and Enhancement of MERRA Land Surface Hydrology Estimates. J. Clim. 2011, 24, 6322–6338. [Google Scholar] [CrossRef] [Green Version]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef]
- Tang, J.; Cheng, H.; Liu, L. Assessing the recent droughts in Southwestern China using satellite gravimetry. Water Resour. Res. 2014, 50, 3030–3038. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, M.; Tregoning, J.P.; Ramillien, G.; Tweed, S.O.; Fakes, A. Basin-scale, integrated observations of the early 21st century multiyear drought in Southeast Australia. Water Resour. Res. 2009, 45, W04408. [Google Scholar] [CrossRef]
- Asoka, A.; Glesson, T.; Wada, Y.; Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 2017, 10, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Ma, Z.; Pan, M.; Shi, C. Microwave remote sensing of short-term droughts during crop growing seasons. Geophys. Res. Lett. 2015, 42, 4394–4401. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Aghakouchak, A. A Nonparametric Multivariate Multi-Index Drought Monitoring Framework. J. Hydrometeorol. 2014, 15, 89–101. [Google Scholar] [CrossRef]
- Madadgar, S.; AghaKouchak, A.; Farahmand, A.; Davis, S.J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 2017, 44. [Google Scholar] [CrossRef]
- Ulaby, F.; Moore, R.K.; Fung, A. (Eds.) Microwave Remote Sensing: Active and Passive—Volume Scattering and Emission Theory; Artech House: Dedham, MA, USA, 1986; Volume 3. [Google Scholar]
- Paloscia, S.; Pampaloni, P. Microwave polarization index for monitoring vegetation growth. IEEE Trans. Geosci. Remote 1988, 26, 617–621. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote 2001, 39, 1643–1654. [Google Scholar] [CrossRef] [Green Version]
- Fujii, H.; Koike, T.; Imaoka, K. Improvement of the AMSR-E Algorithm for Soil Moisture Estimation by Introducing a Fractional Vegetation Coverage Dataset Derived from MODIS Data. J. Remote Sens. Soc. Jpn. 2009, 29, 282–292. [Google Scholar]
- Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res. 2009, 114, D04113. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Font, J.; Martin-Neira, M.; Mecklenburg, S. Introduction to the Special Issue on the ESA’s Soil Moisture and Ocean Salinity Mission (SMOS)—Instrument performance and first results. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1351–1353. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2016, 204, 931–941. [Google Scholar] [CrossRef]
- Yang, K.; Watanabe, T.; Koike, T.; Li, X.; Fujii, H.; Tamagawa, K.; Ma, Y.; Ishikawa, H. Auto-calibration System Developed to Assimilate AMSR-E Data into a Land Surface Model for Estimating Soil Moisture and the Surface Energy Budget. J. Meteorol. Soc. Jpn. 2007, 85A, 229–242. [Google Scholar] [CrossRef]
- Tian, X.; Xie, Z.; Dai, A.; Shi, C.; Jia, B.; Chen, F.; Yang, K. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature. J. Geophys. Res. 2009, 114, D16102. [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Kaihotsu, I.; Qin, J. Validation of a Dual-Pass Microwave Land Data Assimilation System for Estimating Surface Soil Moisture in Semiarid Regions. J. Hydrometeorol. 2009, 10, 780–793. [Google Scholar] [CrossRef]
- Qin, J.; Liang, S.; Yang, K.; Kaihotsu, I.; Liu, R.; Koike, T. Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. J. Geophys. Res. 2009, 114, D15103. [Google Scholar] [CrossRef]
- Kumar, S.; Reichle, V.R.H.; Koster, R.D.; Crow, W.T.; Peters-Lidard, C.D. Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations. J. Hydrometeorol. 2009, 10, 1534–1547. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Toll, D.; Zhan, X.; Cosgrove, B. Improving estimated soil moisture fields through assimilation of AMSR-E soil moisture retrievals with an ensemble Kalman filter and a mass conservation constraint. Hydrol. Earth Syst. Sci. 2012, 16, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; de Rosnay, P.; Wen, J.; Wang, L.; Zeng, Y. Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 5304–5318. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Liu, J.; Belair, S.; Luo, X. Assessment of SMAP soil moisture for global simulation of gross primary production. J. Geophys. Res. Biogeosci. 2017, 122, 1549–1563. [Google Scholar] [CrossRef]
- Kumar, S.V.; Peters-Lidard, C.D.; Mocko, D.; Reichle, R.H.; Liu, Y.; Arsenault, K.R.; Xia, Y.; Ek, M.; Riggs, G.; Livneh, B.; et al. Assimilation of Remotely Sensed Soil Moisture and Snow Depth Retrievals for Drought Estimation. J. Hydrometeorol. 2014, 15, 2446–2469. [Google Scholar] [CrossRef]
- Bardu, A.L.; Calvet, J.-C.; Mahfouf, J.-F.; Albergel, C.; Lafont, S. Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: Grassland case study. Biogeosciences 2011, 8, 1971–1986. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.-W.; Bongiovanni, T.; Monsivais-Huertero, A.; Judge, J.; Steele-Dunne, S.; Bindlish, R.; Jackson, T.J. Assimilation of Active and Passive Microwave Observations for Improved Estimates of Soil Moisture and Crop Growth. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 1357–1369. [Google Scholar] [CrossRef]
- Sawada, Y.; Koike, T. Simultaneous estimation of both hydrological and ecological parameters in an ecohydrological model by assimilating microwave signal. J. Geophys. Res. Atmos. 2014, 119. [Google Scholar] [CrossRef]
- Sawada, Y.; Koike, T.; Walker, J.P. A land data assimilation system for simultaneous simulation of soil moisture and vegetation dynamics. J. Geophys. Res. Atmos. 2015, 120. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Kachi, M.; Naoki, K.; Hori, M.; Imaoka, K. AMSR2 validation results. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, VIC, Australia, 21–26 July 2013; pp. 831–834. [Google Scholar] [CrossRef]
- Liu, Y.Y.; de Jeu, R.A.M.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Global long-term passive microwave satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 2011, 38, L18402. [Google Scholar] [CrossRef]
- Global Soil Data Task Group, Global Gridded Surfaces of Selected Soil Characteristics (IGBPDIS). 2000. Available online: https://daac.ornl.gov (accessed on 13 February 2018).
- Food and Agricultural Organization, Digital Soil Map of the World and Derived Soil Properties, Land Water Digital Media Ser. 1 [CR-ROM], Rome. 2003. Available online: http://www.fao.org/ag/agl/lwdms.stm (accessed on 13 February 2018).
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time Series MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2013, 52, 209–223. [Google Scholar] [CrossRef]
- Huang, D.; Knyazikhin, Y.; Wang, W.; Deering, D.W.; Stenberg, P.; Shabanov, N.V.; Tan, B.; Myneni, R.B. Stochastic transport theory for investigating the three-dimensional canopy structure from space measurements. Remote Sens. Environ. 2008, 112, 35–50. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 15, 185–215. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Crow, W.; Wagner, W. Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Trans. Geosci. Remote 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Lebel, T.; Cappelaere, B.; Galle, S.; Hanan, N.; Kergoat, L.; Levis, S.; Vieux, B.; Descroix, L.; Gosset, M.; Mougin, E.; et al. AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol. 2009, 375, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Ardö, J. A 10-Year Dataset of Basic Meteorology and Soil Properties in Central Sudan. Dataset Pap. Geosci. 2013, 2013, 297973. [Google Scholar] [CrossRef]
- Tagesson, T.; Fensholt, R.; Guiro, I.; Rasmussen, M.O.; Huber, S.; Mbow, C.; Garcia, M.; Horion, S.; Sandholt, I.; Holm-Rasmussen, B.; et al. Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability. Glob. Chang. Biol. 2015, 21, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Tsutsui, H.; Koike, T. Ground Truth of Passive Microwave Radiative Transfer on Vegetated Land Surfaces. Remote Sens. 2017, 9, 655. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Jackson, R.B.; Canadell, J.G.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. A global analysis of root distributions for terrestrial biomes. Oecologia 1996, 108, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Minamide, M.; Zhang, F. Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance. Mon. Weather Rev. 2017, 145, 1063–1081. [Google Scholar] [CrossRef]
- Jaranilla-Sanchez, P.A.; Wang, L.; Koike, T. Modeling the hydrological responses of the Pampanga River basin, Philippines: A quantitative approach for identifying droughts. Water Resour. Res. 2011, 47, W03514. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. TIMESAT—A program for analysing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Jarlan, L.; Balsamo, G.; Lafont, S.; Beljaars, A.; Calvet, J.-C.; Mougin, E. Analysis of leaf area index in the ECMWF land surface model and impact on latent heat and carbon fluxes: Application to West Africa. J. Geophys. Res. 2008, 113, D24117. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, J.; Ju, W.; Zhu, G.; Wu, X.; Fan, W.; Li, D.; Zhou, Y. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens. Environ. 2018, 206, 174–188. [Google Scholar] [CrossRef]
- Crow, W.T.; Chan, S.; Entekhabi, D.; Hsu, A.; Jackson, T.J.; Njoku, E.; O’Neill, P.; Shi, J. An observing system simulation experiment for hydros radiometer-only soil moisture and freeze-thaw products. IEEE Trans. Geosci. Remote 2005, 43, 1289–1303. [Google Scholar] [CrossRef]
- Kobayashi, C.; Endo, H.; Ota, Y.; Kobayashi, S.; Onoda, H.; Harada, Y.; Onogi, K.; Kamahori, H. Preliminary Results of the JRA-55C, an Atmospheric Reanalysis Assimilating Conventional Observations Only. SOLA 2014, 10, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
Depth [m] | RMSE [m3/m3] | ubRMSE [m3/m3] | R | |
---|---|---|---|---|
0.05 | DA | 0.079 | 0.057 | 0.42 |
OL | 0.091 | 0.075 | 0.45 | |
0.10 | DA | 0.13 | 0.022 | 0.61 |
OL | 0.16 | 0.023 | 0.42 | |
0.30 | DA | 0.13 | 0.021 | 0.61 |
OL | 0.16 | 0.019 | 0.53 | |
0.50 | DA | 0.13 | 0.019 | 0.66 |
OL | 0.16 | 0.018 | 0.54 | |
1.00 | DA | 0.13 | 0.021 | 0.54 |
OL | 0.16 | 0.023 | 0.46 |
Depth [m] | RMSE [m3/m3] | ubRMSE [m3/m3] | R | |
---|---|---|---|---|
0.05 | DA | 0.086 | 0.035 | 0.67 |
OL | 0.092 | 0.039 | 0.72 | |
0.15 | DA | 0.12 | 0.026 | 0.68 |
OL | 0.15 | 0.022 | 0.56 | |
0.30 | DA | 0.092 | 0.023 | 0.66 |
OL | 0.12 | 0.017 | 0.65 | |
0.60 | DA | 0.082 | 0.022 | 0.56 |
OL | 0.12 | 0.018 | 0.56 | |
1.00 | DA | 0.12 | 0.020 | 0.41 |
OL | 0.16 | 0.020 | 0.45 | |
1.50 | DA | 0.12 | 0.024 | 0.20 |
OL | 0.17 | 0.021 | 0.39 | |
2.00 | DA | 0.12 | 0.027 | −0.03 |
OL | 0.17 | 0.024 | 0.30 |
Depth [m] | RMSE [m3/m3] | ubRMSE [m3/m3] | R | |
---|---|---|---|---|
0.05 | DA | 0.064 | 0.051 | 0.86 |
OL | 0.068 | 0.064 | 0.86 | |
0.10 | DA | 0.082 | 0.049 | 0.86 |
OL | 0.086 | 0.051 | 0.85 | |
0.20 | DA | 0.072 | 0.049 | 0.84 |
OL | 0.075 | 0.049 | 0.86 | |
0.40 | DA | 0.063 | 0.051 | 0.83 |
OL | 0.059 | 0.049 | 0.88 | |
0.60 | DA | 0.053 | 0.046 | 0.85 |
OL | 0.050 | 0.044 | 0.89 | |
1.00 | DA | 0.058 | 0.031 | 0.81 |
OL | 0.049 | 0.024 | 0.91 |
Depth [m] | RMSE [m3/m3] | ubRMSE [m3/m3] | R | |
---|---|---|---|---|
0.05 | DA | 0.078 | 0.044 | 0.65 |
OL | 0.067 | 0.062 | 0.75 | |
0.10 | DA | 0.15 | 0.025 | 0.54 |
OL | 0.15 | 0.020 | 0.66 | |
0.4–0.7 | DA | 0.16 | 0.021 | 0.53 |
OL | 0.16 | 0.016 | 0.68 | |
0.7–1.0 | DA | 0.16 | 0.021 | 0.44 |
OL | 0.17 | 0.016 | 0.61 | |
1.05–1.35 | DA | 0.19 | 0.018 | 0.34 |
OL | 0.19 | 0.014 | 0.55 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawada, Y. Quantifying Drought Propagation from Soil Moisture to Vegetation Dynamics Using a Newly Developed Ecohydrological Land Reanalysis. Remote Sens. 2018, 10, 1197. https://doi.org/10.3390/rs10081197
Sawada Y. Quantifying Drought Propagation from Soil Moisture to Vegetation Dynamics Using a Newly Developed Ecohydrological Land Reanalysis. Remote Sensing. 2018; 10(8):1197. https://doi.org/10.3390/rs10081197
Chicago/Turabian StyleSawada, Yohei. 2018. "Quantifying Drought Propagation from Soil Moisture to Vegetation Dynamics Using a Newly Developed Ecohydrological Land Reanalysis" Remote Sensing 10, no. 8: 1197. https://doi.org/10.3390/rs10081197
APA StyleSawada, Y. (2018). Quantifying Drought Propagation from Soil Moisture to Vegetation Dynamics Using a Newly Developed Ecohydrological Land Reanalysis. Remote Sensing, 10(8), 1197. https://doi.org/10.3390/rs10081197