Generative Simplex Mapping: Non-Linear Endmember Extraction and Spectral Unmixing for Hyperspectral Imagery
<p>Illustration of the non-linear activation functions for a 2-component GSM. The simplex vertices are shown as green dots (<math display="inline"><semantics> <msub> <mi>μ</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>μ</mi> <mn>2</mn> </msub> </semantics></math>) and three RBF centers are shown in red (<math display="inline"><semantics> <msub> <mi>μ</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>μ</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>μ</mi> <mn>3</mn> </msub> </semantics></math>). With no RBF centers at the vertices, we guarantee no non-linear contributions occur for pure endmember spectra.</p> "> Figure 2
<p>Illustration of the GSM. The latent space consists of a grid of <span class="html-italic">K</span>-many points (green dots) distributed throughout a simplex with <math display="inline"><semantics> <msub> <mi>N</mi> <mi>v</mi> </msub> </semantics></math> vertices. Barycentric coordinates of each node in the simplex correspond to the relative abundance of <math display="inline"><semantics> <msub> <mi>N</mi> <mi>v</mi> </msub> </semantics></math>-many unique sources. Here, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> has been chosen for illustrative purposes. Nodes are mapped into the data space via the map <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi mathvariant="bold">z</mi> <mo>)</mo> </mrow> </semantics></math> utilizing <span class="html-italic">M</span>-many radially symmetric basis functions (red). Spectral variability is estimated via the precision parameter, <math display="inline"><semantics> <mi>β</mi> </semantics></math>, shown here in the data space as a light blue band around the spectrum given by <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi mathvariant="bold">z</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>Synthetic data set formed from USGS spectra. (<b>a</b>) Spectra from the USGS spectral database used as the ground truth endmembers. These spectra were selected following the example in ref. [<a href="#B13-remotesensing-16-04316" class="html-bibr">13</a>]. (<b>b</b>) The abundance distribution sampled for in the data set. Samples were generated from a Dirichlet distribution with <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>α</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>α</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Real HSI data set. (<b>a</b>) The UAV used to collect hyperspectral images. (<b>b</b>) The Resonon Pika XC2 hyperspectral imager used to acquire HSI. (<b>c</b>) A sample hyperspectral data cube. Spectra are plotted for each pixel at their geographic position. The log10-reflectance is colored along the z axis, and a pseudocolor image is shown on top of the data cube. The signature of the rhodamine dye plume is clearly identifiable in the water.</p> "> Figure 5
<p>Explained variance of PCA components for the real HSI data set. A red horizontal line is superimposed on the graph, marking an explained variance of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>%</mo> </mrow> </semantics></math>. All components past the fourth explain less than <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>%</mo> </mrow> </semantics></math> of the observed variance.</p> "> Figure 6
<p>Comparison of GSM against NMF on simulated linear mixing data set using USGS spectra. (<b>a</b>) The mean spectral angle computed between extracted endmembers and original endmembers. (<b>b</b>) The mean RMSE computed between extracted endmembers and original endmembers. (<b>c</b>) The mean abundance RMSE computed between original abundance data for each endmember and extracted abundances. (<b>d</b>) The reconstruction RMSE, which evaluates the quality of fit. All models realized similar values, reflecting convergence of the models to the level of random noise introduced into the data.</p> "> Figure 7
<p>Endmembers extracted by the GSM for the simulated linear mixing data set with SNR <math display="inline"><semantics> <mrow> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>. The dashed lines correspond to original endmember spectra from the USGS spectral database. Solid lines superimposed on the plot indicate the extracted endmember spectra. Colored bands are included around each spectrum corresponding to the spectral variability estimated by the GSM precision parameter <math display="inline"><semantics> <mi>β</mi> </semantics></math> where the band width is <math display="inline"><semantics> <mrow> <mn>2</mn> <msqrt> <msup> <mi>β</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </msqrt> </mrow> </semantics></math> corresponding to 2 standard deviations.</p> "> Figure 8
<p>GSM applied to water spectra from real HSI data set: (<b>a</b>) Spectra generated by the trained GSM for samples with maximum abundance for each endmember. Based on these spectral profiles, endmembers are identified with water, near-shore vegetation, and rhodamine dye. (<b>b</b>) An HSI segmented according to the relative abundance of each endmember. Each water pixel is colored by smoothing interpolating between red, green, and blue colors using the relative abundance estimated for rhodamine, vegetation, and water spectra. The rhodamine plume is clearly identifiable in the western portion of the HSI.</p> "> Figure 9
<p>Endmember abundance distributions: (<b>a</b>) The spatial distribution of abundance for the water class. This source dominates in the center of the pond and decreases towards the shore where vegetation begins to dominate the reflectance signal. The water endmember abundance is also observed to decrease near the edge of the rhodamine plume reflecting dye mixing and diffusion. (<b>b</b>) The spatial distribution of vegetation. This endmember includes filamentous blue-green algae observed to accumulate in shallow waters near the shore. (<b>c</b>) The rhodamine dye plume extent segmented from the HSI. The total areas for near-shore vegetation and rhodamine are estimated to be 378.6 m<sup>2</sup> and 255.7 m<sup>2</sup>, respectively.</p> "> Figure 10
<p>Rhodamine plume evolution: Using the trained GSM we can track the dispersion of the rhodamine dye plume between successive drone flights. (<b>a</b>) The initial plume distribution after release. Here, the dye subsumes an area of <math display="inline"><semantics> <mrow> <mn>255.7</mn> </mrow> </semantics></math><math display="inline"><semantics> <msup> <mi mathvariant="normal">m</mi> <mn>2</mn> </msup> </semantics></math>. (<b>b</b>) The same plume imaged 15 min later now extends across an area of <math display="inline"><semantics> <mrow> <mn>571.8</mn> </mrow> </semantics></math><math display="inline"><semantics> <msup> <mi mathvariant="normal">m</mi> <mn>2</mn> </msup> </semantics></math>.</p> ">
Abstract
:1. Introduction
- The GSM can model linear and non-linear spectral mixing;
- The GSM does not assume the presence of pure pixels in the data set;
- The probabilistic formulation of the GSM accounts for spectral variability;
- The simplex used for the latent space structure of the GSM is directly interpretable and forces abundances to satisfy both the abundance sum-to-one and abundance non-negativity constraints;
- The fitting procedure introduced for the GSM maintains non-negativity of endmember spectra.
2. Generative Simplex Mapping
3. Experiments
3.1. Linear Mixing: Comparison to NMF
3.2. Non-Linear Mixing: Water Contaminant Identification
4. Results
4.1. Linear Mixing
4.2. Non-Linear Mixing: Rhodamine Dye Plume
5. Discussion
6. Conclusions
7. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PRISMA | Hyperspectral Precuror of the Application Mission |
EnMAP | Environmental Mapping and Analysis Program |
PACE | Plankton, Aerosol, Cloud, ocean Ecosystem |
CHIME | Copernicus Hyperspectral Imaging Mission for the Environment |
NIR | Near Infrared |
SWIR | Short-wave Infrared |
UAV | Unmanned Aerial Vehicle |
HSI | Hyperspectral Image |
NDVI | Normalized Difference Vegetation Index |
VCA | Vertex Component Analysis |
PPI | Pixel Purity Index |
LMM | Linear Mixing Model |
NMF | Non-negative Matrix Factorization |
SOM | Self-Organizing Map |
GTM | Generative Topographic Mapping |
EM | Expectation-Maximization |
GSM | Generative Simplex Mapping |
RBF | Radial Basis Function |
RMSE | Root Mean Square Error |
PCA | Principal Component Analysis |
PMF | Positive Matrix Factorization |
References
- Loizzo, R.; Guarini, R.; Longo, F.; Scopa, T.; Formaro, R.; Facchinetti, C.; Varacalli, G. Prisma: The Italian Hyperspectral Mission. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 175–178. [Google Scholar] [CrossRef]
- Storch, T.; Honold, H.P.; Chabrillat, S.; Habermeyer, M.; Tucker, P.; Brell, M.; Ohndorf, A.; Wirth, K.; Betz, M.; Kuchler, M.; et al. The Enmap Imaging Spectroscopy Mission Towards Operations. Remote Sens. Environ. 2023, 294, 113632. [Google Scholar] [CrossRef]
- Gorman, E.; Kubalak, D.A.; Deepak, P.; Dress, A.; Mott, D.B.; Meister, G.; Werdell, J. The NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission: An emerging era of global, hyperspectral Earth system remote sensing. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXIII, Strasbourg, France, 9–12 September 2019; pp. 78–84. [Google Scholar] [CrossRef]
- Rast, M.; Nieke, J.; Adams, J.; Isola, C.; Gascon, F. Copernicus Hyperspectral Imaging Mission for the Environment (Chime). In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 157–159. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral Imaging: A Review on Uav-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sensing 2017, 9, 1110. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.; Kalacska, M.; Inamdar, D.; Soffer, R.; Lucanus, O.; Gorman, J.; Naprstek, T.; Schaaf, E.; Ifimov, G.; Elmer, K.; et al. Implementation of a Uav-Hyperspectral Pushbroom Imager for Ecological Monitoring. Drones 2019, 3, 12. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; Pauw, E.D. Hyperspectral Vegetation Indices and Their Relationships With Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G.; Huete, A. Hyperspectral Indices and Image Classifications for Agriculture and Vegetation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- van Leeuwen, W.J.; Orr, B.J.; Marsh, S.E.; Herrmann, S.M. Multi-Sensor Ndvi Data Continuity: Uncertainties and Implications for Vegetation Monitoring Applications. Remote Sens. Environ. 2006, 100, 67–81. [Google Scholar] [CrossRef]
- Aurin, D.; Mannino, A.; Lary, D.J. Remote Sensing of Cdom, Cdom Spectral Slope, and Dissolved Organic Carbon in the Global Ocean. Appl. Sci. 2018, 8, 2687. [Google Scholar] [CrossRef] [PubMed]
- Lary, D.J.; Schaefer, D.; Waczak, J.; Aker, A.; Barbosa, A.; Wijeratne, L.O.H.; Talebi, S.; Fernando, B.; Sadler, J.; Lary, T.; et al. Autonomous Learning of New Environments With a Robotic Team Employing Hyper-Spectral Remote Sensing, Comprehensive In-Situ Sensing and Machine Learning. Sensors 2021, 21, 2240. [Google Scholar] [CrossRef]
- Waczak, J.; Aker, A.; Wijeratne, L.O.H.; Talebi, S.; Fernando, A.; Dewage, P.M.H.; Iqbal, M.; Lary, M.; Schaefer, D.; Lary, D.J. Characterizing Water Composition With an Autonomous Robotic Team Employing Comprehensive in Situ Sensing, Hyperspectral Imaging, Machine Learning, and Conformal Prediction. Remote Sens. 2024, 16, 996. [Google Scholar] [CrossRef]
- Nascimento, J.; Dias, J. Vertex Component Analysis: A Fast Algorithm To Unmix Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data. In Proceedings of the Summaries of the 15th Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–26 January 1995; Volume 1. [Google Scholar]
- Winter, M.E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proceedings of the SPIE Proceedings, San Diego, CA, USA, 22–25 February 1999. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J. Spectral Unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Heinz, D.; Chang, C.I.; Althouse, M. Fully constrained least-squares based linear unmixing [hyperspectral image classification]. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; Volume 2, pp. 1401–1403. [Google Scholar] [CrossRef]
- Li, R.; Pan, B.; Xu, X.; Li, T.; Shi, Z. Toward convergence: A gradient-based multiobjective method with greedy hash for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Learning the Parts of Objects By Non-Negative Matrix Factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.R.; Li, H.C.; Wang, R.; Du, Q.; Jia, X.; Plaza, A. Hyperspectral Unmixing Based on Nonnegative Matrix Factorization: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4414–4436. [Google Scholar] [CrossRef]
- Lee, D.; Seung, H.S. Algorithms for Non-negative Matrix Factorization. In Advances in Neural Information Processing Systems; Leen, T., Dietterich, T., Tresp, V., Eds.; MIT Press: Cambridge, MA, USA, 2000; Volume 13. [Google Scholar]
- Heylen, R.; Parente, M.; Gader, P. A Review of Nonlinear Hyperspectral Unmixing Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1844–1868. [Google Scholar] [CrossRef]
- Nima, C.; Frette, Ø.; Hamre, B.; Stamnes, J.J.; Chen, Y.C.; Sørensen, K.; Norli, M.; Lu, D.; Xing, Q.; Muyimbwa, D.; et al. Cdom Absorption Properties of Natural Water Bodies Along Extreme Environmental Gradients. Water 2019, 11, 1988. [Google Scholar] [CrossRef]
- Gilerson, A.; Zhou, J.; Hlaing, S.; Ioannou, I.; Schalles, J.; Gross, B.; Moshary, F.; Ahmed, S. Fluorescence Component in the Reflectance Spectra From Coastal Waters. Dependence on Water Composition. Opt. Express 2007, 15, 15702. [Google Scholar] [CrossRef]
- Witte, W.G.; Whitlock, C.H.; Harriss, R.C.; Usry, J.W.; Poole, L.R.; Houghton, W.M.; Morris, W.D.; Gurganus, E.A. Influence of Dissolved Organic Materials on Turbid Water Optical Properties and Remote-sensing Reflectance. J. Geophys. Res. Ocean. 1982, 87, 441–446. [Google Scholar] [CrossRef]
- Su, Y.; Marinoni, A.; Li, J.; Plaza, A.; Gamba, P. Nonnegative sparse autoencoder for robust endmember extraction from remotely sensed hyperspectral images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar] [CrossRef]
- Su, Y.; Li, J.; Plaza, A.; Marinoni, A.; Gamba, P.; Chakravortty, S. Daen: Deep Autoencoder Networks for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4309–4321. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M. Deep Generative Endmember Modeling: An Application To Unsupervised Spectral Unmixing. IEEE Trans. Comput. Imaging 2020, 6, 374–384. [Google Scholar] [CrossRef]
- Palsson, B.; Ulfarsson, M.O.; Sveinsson, J.R. Convolutional Autoencoder for Spectral-Spatial Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 535–549. [Google Scholar] [CrossRef]
- Kohonen, T. The Self-Organizing Map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Cantero, M.C.; Perez, R.M.; Martinez, P.J.; Aguilar, P.L.; Plaza, J.; Plaza, A. Analysis of the behavior of a neural network model in the identification and quantification of hyperspectral signatures applied to the determination of water quality. In Proceedings of the SPIE Proceedings, San Diego, CA, USA, 14–19 February 2004; pp. 174–185. [Google Scholar] [CrossRef]
- Duran, O.; Petrou, M. A Time-Efficient Method for Anomaly Detection in Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3894–3904. [Google Scholar] [CrossRef]
- Ceylan, O.; Taskin, G. Feature Selection Using Self Organizing Map Oriented Evolutionary Approach. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar] [CrossRef]
- Riese, F.M.; Keller, S.; Hinz, S. Supervised and Semi-Supervised Self-Organizing Maps for Regression and Classification Focusing on Hyperspectral Data. Remote Sens. 2019, 12, 7. [Google Scholar] [CrossRef]
- Richardson, A.; Risien, C.; Shillington, F. Using Self-Organizing Maps To Identify Patterns in Satellite Imagery. Prog. Oceanogr. 2003, 59, 223–239. [Google Scholar] [CrossRef]
- Bishop, C.M.; Svensén, M.; Williams, C.K.I. Gtm: The Generative Topographic Mapping. Neural Comput. 1998, 10, 215–234. [Google Scholar] [CrossRef]
- Waczak, J.; Aker, A.; Wijeratne, L.O.H.; Talebi, S.; Fernando, A.; Dewage, P.M.H.; Iqbal, M.; Lary, M.; Schaefer, D.; Balagopal, G.; et al. Unsupervised Characterization of Water Composition With Uav-Based Hyperspectral Imaging and Generative Topographic Mapping. Remote Sens. 2024, 16, 2430. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany, 2006; pp. 435–455. [Google Scholar]
- Waczak, J. GenerativeTopographicMapping.jl; Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Bezanson, J.; Karpinski, S.; Shah, V.B.; Edelman, A. Julia: A Fast Dynamic Language for Technical Computing. arXiv 2012, arXiv:1209.5145. [Google Scholar] [CrossRef]
- Blaom, A.D.; Kiraly, F.; Lienart, T.; Simillides, Y.; Arenas, D.; Vollmer, S.J. Mlj: A Julia Package for Composable Machine Learning. arXiv 2020, arXiv:2007.12285. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; Technical Report; US Geological Survey: Reston, VA, USA, 2017. [CrossRef]
- Kong, D.; Ding, C.; Huang, H. Robust nonnegative matrix factorization using L21-norm. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, UK, 24–28 October 2011. [Google Scholar] [CrossRef]
- Muller, R.; Lehner, M.; Muller, R.; Reinartz, P.; Schroeder, M.; Vollmer, B. A program for direct georeferencing of airborne and spaceborne line scanner images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 148–153. [Google Scholar]
- Ruddick, K.G.; Voss, K.; Banks, A.C.; Boss, E.; Castagna, A.; Frouin, R.; Hieronymi, M.; Jamet, C.; Johnson, B.C.; Kuusk, J.; et al. A Review of Protocols for Fiducial Reference Measurements of Downwelling Irradiance for the Validation of Satellite Remote Sensing Data Over Water. Remote Sens. 2019, 11, 1742. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Bishop, C.M.; Svensén, M.; Williams, C.K. Developments of the Generative Topographic Mapping. Neurocomputing 1998, 21, 203–224. [Google Scholar] [CrossRef]
- Balas, E. The prize collecting traveling salesman problem and its applications. In The Traveling Salesman Problem and Its Variations; Springer: Berlin/Heidelberg, Germany, 2007; pp. 663–695. [Google Scholar]
- Suryan, V.; Tokekar, P. Learning a Spatial Field in Minimum Time With a Team of Robots. IEEE Trans. Robot. 2020, 36, 1562–1576. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non-negative Factor Model With Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Ulbrich, I.M.; Canagaratna, M.R.; Zhang, Q.; Worsnop, D.R.; Jimenez, J.L. Interpretation of Organic Components From Positive Matrix Factorization of Aerosol Mass Spectrometric Data. Atmos. Chem. Phys. 2009, 9, 2891–2918. [Google Scholar] [CrossRef]
BIC | AIC | Reconstruction RMSE | |||
---|---|---|---|---|---|
3 | |||||
3 | |||||
3 | |||||
3 | |||||
4 | |||||
4 | |||||
4 | |||||
4 | |||||
4 | |||||
3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waczak, J.; Lary, D.J. Generative Simplex Mapping: Non-Linear Endmember Extraction and Spectral Unmixing for Hyperspectral Imagery. Remote Sens. 2024, 16, 4316. https://doi.org/10.3390/rs16224316
Waczak J, Lary DJ. Generative Simplex Mapping: Non-Linear Endmember Extraction and Spectral Unmixing for Hyperspectral Imagery. Remote Sensing. 2024; 16(22):4316. https://doi.org/10.3390/rs16224316
Chicago/Turabian StyleWaczak, John, and David J. Lary. 2024. "Generative Simplex Mapping: Non-Linear Endmember Extraction and Spectral Unmixing for Hyperspectral Imagery" Remote Sensing 16, no. 22: 4316. https://doi.org/10.3390/rs16224316
APA StyleWaczak, J., & Lary, D. J. (2024). Generative Simplex Mapping: Non-Linear Endmember Extraction and Spectral Unmixing for Hyperspectral Imagery. Remote Sensing, 16(22), 4316. https://doi.org/10.3390/rs16224316