Spatial and Temporal Characterization of Near Space Temperature and Humidity and Their Driving Influences
<p>TIMED/SABER temperature data.</p> "> Figure 2
<p>Aura/MLS temperature data.</p> "> Figure 3
<p>Time series of solar, ENSO, and QBO activity data from January 2005 to December 2022. (<b>a</b>) Time series of solar activity data from January 2005 to December 2022; (<b>b</b>) Time series of ENSO-MEI data from January 2005 to December 2022; (<b>c</b>) Time series of QBO data from January 2005 to December 2022.</p> "> Figure 3 Cont.
<p>Time series of solar, ENSO, and QBO activity data from January 2005 to December 2022. (<b>a</b>) Time series of solar activity data from January 2005 to December 2022; (<b>b</b>) Time series of ENSO-MEI data from January 2005 to December 2022; (<b>c</b>) Time series of QBO data from January 2005 to December 2022.</p> "> Figure 4
<p>Monthly data for temperature and water vapor concentration. (<b>a</b>) Monthly data of temperature data in the mid-latitude region of the Northern Hemisphere from 2005 to 2022; (<b>b</b>) Monthly data of water vapor data in the mid-latitude region of the Northern Hemisphere from 2005 to 2022.</p> "> Figure 5
<p>Range of temperature and humidity profile extrema. (<b>a</b>) Range of temperature profile extrema; (<b>b</b>) Range of humidity profile extrema.</p> "> Figure 6
<p>Temperature and water vapor response to solar activity at 180°E. (<b>a</b>) temperature response to solar activity at 180°E; (<b>b</b>) water vapor response to solar activity at 180°E.</p> "> Figure 7
<p>Temperature and water vapor response to ENSO at 180°E. (<b>a</b>) temperature response to ENSO at 180°E; (<b>b</b>) water vapor response to ENSO at 180°E.</p> "> Figure 8
<p>Temperature and water vapor response to QBO at 180° E. (<b>a</b>) temperature response to the QBO; (<b>b</b>) water vapor response to the QBO.</p> "> Figure 9
<p>Box plot of coefficients at different altitudes. (<b>a</b>) Box plot of TMP-solar coefficients at different altitudes; (<b>b</b>) Box plot of TMP-ENSO coefficients at different altitudes; (<b>c</b>) Box plot of TMP-QBO coefficients at different altitudes; (<b>d</b>) Box plot of H<sub>2</sub>O-solar coefficients at different altitudes; (<b>e</b>) Box plot of H<sub>2</sub>O-ENSO coefficients at different altitudes; (<b>f</b>) Box plot of H<sub>2</sub>O-QBO coefficients at different altitudes.</p> "> Figure 10
<p>3D scatter plot of coefficients. (<b>a</b>) 3D scatter plot of temperature response coefficients to solar activity; (<b>b</b>) 3D scatter plot of temperature response coefficients to ENSO; (<b>c</b>) 3D scatter plot of temperature response coefficients to QBO; (<b>d</b>) 3D scatter plot of water vapor response coefficients to solar activity; (<b>e</b>) 3D scatter plot of water vapor response coefficients to ENSO; (<b>f</b>) 3D scatter plot of water vapor response coefficients to QBO.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.1.1. TIMED/SABER Satellite Data
2.1.2. AURA/MLS Satellite Data
2.1.3. Auxiliary Data
2.2. Research Methods
2.2.1. Satellite Data Integration
2.2.2. Multiple Linear Regression Analysis (MLR)
3. Results
3.1. Time Series Data for Temperature and Water Vapor Concentration
3.2. The Temperature and Water Vapor Profiles Show Variations in Altitude Characteristics
3.3. Monthly Mean Temperature and Water Vapor Responses to Solar, ENSO, and QBO Indices
3.3.1. Temperature and Humidity Response to Solar
3.3.2. Temperature and Humidity Response to ENSO
3.3.3. Temperature and Humidity Response to QBO
3.3.4. Characterization of Temperature and Humidity Response to Solar Activity, ENSO, and QBO at Altitude
4. Conclusions
- In the atmosphere, there is a region of high temperatures at altitudes of 40–60 km, with values ranging from 245 to 265 K, where the temperature exceeds 265 K at an altitude of 50 km. The temperature gradually decreases in 20–40 km and 60–100 km and exhibits periodic variations. Regarding water vapor, the vertical temporal variation pattern is similar to that of temperature and is primarily influenced by temperature changes. The water vapor concentration reaches high values (7–9 × 10⁻⁶ ppmv) in the height range of 40–70 km, with a peak at 50 km. From the profile range display, a significant temperature trough (225 K) can be observed at an altitude of 35 km, with a rapid increase in temperature between 35–50 km and a rapid decrease in temperature between 50 and 80 km. The water vapor concentration peaks at 30 km, with a significant decrease at 50 km and another peak at 80 km. Overall, the temperature and water vapor trends show a certain correspondence.
- The responses of atmospheric temperature and water vapor to solar activity and ENSO exhibit significant regional differences at different altitudes and latitudes. Solar activity induces a cooling effect on temperature in the lower stratosphere at altitudes of 30–40 km, particularly in the high latitudes (80°S–80°N), while in the middle layer above 50 km, it results in warming. Water vapor in the range of 20–30 km from 52°S to 20°N exhibits a strong response to solar activity, with the Southern Hemisphere being more sensitive. ENSO leads to a temperature decrease in the equatorial stratosphere (30–40 km) of approximately −1.5 K/MEI, while in the high-latitude regions, the temperature increases by about 3 K/MEI. Water vapor exhibits a strong negative response to ENSO in the 20–30 km range, with a notable north/south asymmetry. QBO activity affects temperature and water vapor in distinct ways in the low-latitude stratosphere, with temperature responses varying by altitude. In contrast, water vapor displays contrasting trends at 30–40 km and 20–25 km.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.Q. Near-Space Wide-Swath Radar Imaging With Multiaperture Antenna. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 461–464. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wei, F.; Peng, S.W.; Feng, P.Y.; Leng, S. Study on Solar FUV Radiation Characteristics in Near Space. Spectrosc. Spectr. Anal. 2023, 43, 374–382. [Google Scholar] [CrossRef]
- Wang, W.Q.; Cai, J.Y.; Peng, Q.C. Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis. Remote Sens. 2010, 2, 717–739. [Google Scholar] [CrossRef]
- Cheng, X.; Xiao, C.Y.; Hu, X.; Yang, J.F. Evaluation of atmospheric empirical model based on TIMED/SABER satellite temperature data. Sci. Sin.-Phys. Mech. Astron. 2018, 48, 104701. [Google Scholar] [CrossRef]
- Raschke, E.; Vonderha, T.; Bandeen, W.R.; Pasternak, M. Annual radiation balance of earth-atmosphere system during 1969–1970 from nimbus-3 measurements. J. Atmos. Sci. 1973, 30, 341–364. [Google Scholar] [CrossRef]
- Burrage, M.D.; Hagan, M.E.; Skinner, W.R.; Wu, D.L.; Hays, P.B. Long-term variability in the solar diurnal tide observed by hrdi and simulated by the gswm. Geophys. Res. Lett. 1995, 22, 2641–2644. [Google Scholar] [CrossRef]
- Khattatov, B.V.; Geller, M.A.; Yubin, V.A.; Hays, P.B. Diurnal migrating tide as seen by the high-resolution Doppler imager/UARS.2. Monthly mean global zonal and vertical velocities, pressure, temperature, and inferred dissipation. J. Geophys. Res.-Atmos. 1997, 102, 4423–4435. [Google Scholar] [CrossRef]
- Huang, F.T.; Reber, C.A. Nonmigrating semidiurnal and diurnal tides at 95 km based on wind measurements from the High Resolution Doppler Imager on UARS. J. Geophys. Res.-Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Zhao, X.R.; Sheng, Z.; Shi, H.Q.; Weng, L.B.; Liao, Q.X. Long-Term Trends and Solar Responses of the Mesopause Temperatures Observed by SABER During the 2002-2019 Period. J. Geophys. Res.-Atmos. 2020, 125, e2020JD032418. [Google Scholar] [CrossRef]
- Li, T.; Yue, J.; Russell, J.M.; Zhang, X. Long-term trend and solar cycle in the middle atmosphere temperature revealed from merged HALOE and SABER datasets. J. Atmos. Sol. -Terr. Phys. 2021, 212, 105506. [Google Scholar] [CrossRef]
- Liu, M.H.; Xu, J.Y.; Yue, J.; Jiang, G.Y. Global structure and seasonal variations of the migrating 6-h tide observed by SABER/TIMED. Sci. China-Earth Sci. 2015, 58, 1216–1227. [Google Scholar] [CrossRef]
- Gan, Q.; Du, J.; Fomichev, V.I.; Ward, W.E.; Beagley, S.R.; Zhang, S.D.; Yue, J. Temperature responses to the 11year solar cycle in the mesosphere from the 31year (1979-2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14year (2002-2015) TIMED/SABER observations. J. Geophys. Res.-Space Phys. 2017, 122, 4801–4818. [Google Scholar] [CrossRef]
- Xu, J.Y.; Liu, H.L.; Yuan, W.; Smith, A.K.; Roble, R.G.; Mertens, C.J.; Russell, J.M.; Mlynczak, M.G. Mesopause structure from thermosphere, ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations. J. Geophys. Res.-Atmos. 2007, 112. [Google Scholar] [CrossRef]
- John, S.R.; Kumar, K.K. TIMED/SABER observations of global cold point mesopause variability at diurnal and planetary wave scales. J. Geophys. Res.-Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Tang, C.L.; Liu, D.; Wei, H.L.; Wang, Y.J.; Dai, C.M.; Wu, P.F.; Zhu, W.Y.; Rao, R.Z. The response of the temperature of cold-point mesopause to solar activity based on SABER data set. J. Geophys. Res.-Space Phys. 2016, 121, 7245–7255. [Google Scholar] [CrossRef]
- Erlykin, A.D.; Sloan, T.; Wolfendale, A.W. Solar activity and the mean global temperature. Environ. Res. Lett. 2009, 4, 014006. [Google Scholar] [CrossRef]
- Pan, Y.H.; Oort, A.H. Global climate variations connected with sea-surface temperature anomalies in the eastern equatorial pacific-ocean for the 1958-73 period. Mon. Weather. Rev. 1983, 111, 1244–1258. [Google Scholar] [CrossRef]
- Alexander, M.A. Midlatitude atmosphere ocean interaction during el nino.1. the north pacific-ocean. J. Clim. 1992, 5, 944–958. [Google Scholar] [CrossRef]
- Lau, N.C.; Nath, M.J. The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Clim. 1996, 9, 2036–2057. [Google Scholar] [CrossRef]
- Alexander, M.A.; Bladé, I.; Newman, M.; Lanzante, J.R.; Lau, N.C.; Scott, J.D. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Clim. 2002, 15, 2205–2231. [Google Scholar] [CrossRef]
- Cherchi, A.; Masina, S.; Navarra, A. Tropical Pacific-North Pacific teleconnection in a coupled GCM: Remote and local effects. Int. J. Climatol. 2012, 32, 1640–1653. [Google Scholar] [CrossRef]
- Zhi, H.X.; Pan, M.T.; Song, B.; Wang, J.Y. Investigating air-sea interactions in the North Pacific on interannual timescales during boreal winter. Atmos. Res. 2022, 269, 106043. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Weather. Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Holton, J.R.; Tan, H.C. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 MB. J. Atmos. Sci. 1980, 37, 2200–2208. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hartmann, D.L. Effects of the El Nino-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J. Geophys. Res.-Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Watson, P.A.G.; Gray, L.J. How Does the Quasi-Biennial Oscillation Affect the Stratospheric Polar Vortex? J. Atmos. Sci. 2014, 71, 391–409. [Google Scholar] [CrossRef]
- Marshall, A.G.; Scaife, A.A. Impact of the QBO on surface winter climate. J. Geophys. Res.-Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Bizuneh, C.L.; Raju, U.J.P.; Nigussie, M.; Santos, C.A.G. Long-term temperature and ozone response to natural drivers in the mesospheric region using 16 years (2005-2020) of TIMED/SABER observation data at 5–15° N. Adv. Space Res. 2022, 70, 2095–2111. [Google Scholar] [CrossRef]
- Huang, F.T.; Mayr, H.G.; Russell, J.M.; Mlynczak, M.G. Ozone and temperature decadal responses to solar variability in the stratosphere and lower mesosphere, based on measurements from SABER on TIMED. Ann. Geophys. 2016, 34, 801–813. [Google Scholar] [CrossRef]
- Lu, W.; Zhao, X.H.; Feng, X.S.; Xiang, N.B.; Du, Z.L.; Zhang, W.T. Temporal and spatial response of Holocene temperature to solar activity. Quat. Int. 2022, 613, 39–45. [Google Scholar] [CrossRef]
- Guharay, A.; Nath, D.; Pant, P.; Pande, B.; Russell, J.M.; Pandey, K. Middle atmospheric thermal structure obtained from Rayleigh lidar and TIMED/SABER observations: A comparative study. J. Geophys. Res.-Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Mertens, C.J.; Mlynczak, M.G.; López-Puertas, M.; Wintersteiner, P.P.; Picard, R.H.; Winick, J.R.; Gordley, L.L.; Russell, J.M. Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm Earth limb emission under non-LTE conditions. Geophys. Res. Lett. 2001, 28, 1391–1394. [Google Scholar] [CrossRef]
- Kutepov, A.A.; Feofilov, A.G.; Marshall, B.T.; Gordley, L.L.; Pesnell, W.D.; Goldberg, R.A.; Russell, J.M. SABER temperature observations in the summer polar mesosphere and lower thermosphere: Importance of accounting for the CO2v2 quanta V-V exchange. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Gan, Q.; Du, J.; Ward, W.E.; Beagley, S.R.; Fomichev, V.I.; Zhang, S.D. Climatology of the diurnal tides from eCMAM30 (1979 to 2010) and its comparison with SABER. Earth Planets Space 2014, 66, 103. [Google Scholar] [CrossRef]
- Schwartz, M.J.; Lambert, A.; Manney, G.L.; Read, W.G.; Livesey, N.J.; Froidevaux, L.; Ao, C.O.; Bernath, P.F.; Boone, C.D.; Cofield, R.E.; et al. Validation of the aura microwave limb sounder temperature and geopotential height measurements. J. Geophys. Res.-Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Waters, J.W.; Froidevaux, L.; Harwood, R.S.; Jarnot, R.F.; Pickett, H.M.; Read, W.G.; Siegel, P.H.; Cofield, R.E.; Filipiak, M.J.; Flower, D.A.; et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1075–1092. [Google Scholar] [CrossRef]
- Remsberg, E.E. Trends and solar cycle effects in temperature versus altitude from the Halogen Occultation Experiment for the mesosphere and upper stratosphere. J. Geophys. Res.-Atmos. 2009, 114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Ma, J.; Li, M.; Xu, H.; Wan, C.; Li, Z. Spatial and Temporal Characterization of Near Space Temperature and Humidity and Their Driving Influences. Remote Sens. 2024, 16, 4307. https://doi.org/10.3390/rs16224307
Luo W, Ma J, Li M, Xu H, Wan C, Li Z. Spatial and Temporal Characterization of Near Space Temperature and Humidity and Their Driving Influences. Remote Sensing. 2024; 16(22):4307. https://doi.org/10.3390/rs16224307
Chicago/Turabian StyleLuo, Wenhui, Jinji Ma, Miao Li, Haifeng Xu, Cheng Wan, and Zhengqiang Li. 2024. "Spatial and Temporal Characterization of Near Space Temperature and Humidity and Their Driving Influences" Remote Sensing 16, no. 22: 4307. https://doi.org/10.3390/rs16224307
APA StyleLuo, W., Ma, J., Li, M., Xu, H., Wan, C., & Li, Z. (2024). Spatial and Temporal Characterization of Near Space Temperature and Humidity and Their Driving Influences. Remote Sensing, 16(22), 4307. https://doi.org/10.3390/rs16224307