Evaluating Maize Residue Cover Using Machine Learning and Remote Sensing in the Meadow Soil Region of Northeast China
<p>(<b>a</b>) Geographic location of Northeast China. (<b>b</b>) Location of the three plains in Northeast China. (<b>c</b>) Distribution of sample points and soil types.</p> "> Figure 2
<p>(<b>a</b>) The five-point sampling method. (<b>b</b>) Field sampling data. (<b>c</b>) Classification result.</p> "> Figure 3
<p>(<b>a</b>–<b>e</b>) Time windows in Northeast China from spring 2019 to spring 2023, respectively.</p> "> Figure 4
<p>Workflow diagram for the mapping of maize tillage practices.</p> "> Figure 5
<p>The correlations between the MRC and (<b>a</b>) NDTI; (<b>b</b>) STI.</p> "> Figure 6
<p>The learning curves that present both R<sup>2</sup> and RMSE for the three models: (<b>a</b>) RMSE for RR learning curve; (<b>b</b>) R<sup>2</sup> for RR learning curve; (<b>c</b>) RMSE for LASSO learning curve; (<b>d</b>) R<sup>2</sup> for LASSO learning curve; (<b>e</b>) RMSE for PLSR learning curve; (<b>f</b>) R<sup>2</sup> for PLSR learning curve.</p> "> Figure 7
<p>The relationships between the measured and predicted MRC: (<b>a</b>) RR; (<b>b</b>) LASSO; (<b>c</b>)PLSR.</p> "> Figure 8
<p>The spatial distribution of MRC across the study area: (<b>a</b>–<b>e</b>) for spring 2019 to spring 2023. Note: AS = Anshan; BC = Baicheng; BS = Baishan; BX = Benxi; CY = Chaoyang; CF = Chifeng; DL = Dalian; DQ = Daqing; DXAL = Daxinganling; DD = Dandong; FS = Fushun; FX = Fuxin; HEB = Haerbin; HG = Hegang; HH = Heihe; HLBE = Hulunbeier; HLD = Huludao; JX = Jixi; JL = Jilin; JMS = Jiamusi; JZ = Jinzhou; LYL = Liaoyang; LYJ = Liaoyuan; MDJ = Mudanjiang; PJ = Panjin; QTH = Qitaihe; QQHE = Qiqihaer; SYL = Shenyang; SYS = Shuangyashan; SP = Siping; SYJ = Songyuan; SH = Suihua; TLH = Tieling; TH = Tonghua; TLN = Tongliao; XA = Xingan; YB = Yanbian; YC = Yichun; YK = Yingkou; CC = Changchun.</p> "> Figure 9
<p>(<b>a</b>–<b>e</b>) Spatial distribution of tillage methods in Northeast China from spring 2019 to spring 2023, respectively. (<b>f</b>) Proportions of the different tillage methods used in Northeast China.</p> "> Figure 10
<p>Spatial distribution of tillage methods in the (<b>a</b>) Songnen Plain, (<b>b</b>) Sanjiang Plain, and (<b>c</b>) Liaohe Plain in spring 2023. (<b>d</b>) Area under the different tillage methods in the three plains.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Data Acquisition on the GEE Platform
2.3.1. Harmonized Sentinel-2 MSI Product
2.3.2. The MODIS Land Surface Temperature and Emissivity Product
2.3.3. The European Centre for Medium-Range Weather Forecasts (ECMWF) Climate Reanalysis Product
2.4. Methods
2.4.1. Tillage Indices
2.4.2. Machine Learning Methods
2.4.3. Accuracy Assessment
3. Results
3.1. The Relationship Between MRC and Seven TIs
3.2. Estimating the MRC via RR, PLSR, and LASSO
3.3. The Mapping of MRC
4. Discussion
4.1. Classification of Tillage Practices
4.2. Shortcomings and Prospects
5. Conclusions
- (1)
- Due to the influence of green vegetation on the spectral characteristics of crop residue and the significant differences in planting times in the study area, the Northeast China region was partitioned based on MODIS surface temperature image data and divided into different time windows based on planting time. Using a linear regression, combined with Sentinel-2 and ground-measured straw coverage data, the correlations between TIs and the measured MRC were determined using the MATLAB R2022b software. The analysis showed that the TIs and MRC had a significant correlation within quadratic equations. The STI, NDTI, and NDI7 had the most significant correlations with the MRC, with R2 values of 0.7973, 0.7967, and 0.7290, respectively, while the RMSE values were 5.119%, 5.126%, and 5.919%, respectively. Although the R2 values of NDI5, NDSVI, and SRNDI ranged from 0.5 to 0.7, the R2 value of MCRC was only 0.2262. Regression analyses of these spectral indices showed that the NDTI, STI, and NDI7 were the key indices for constructing the MRC estimation model.
- (2)
- Using three machine learning algorithms (PLSR, RR, and LASSO), the TIs and the measured MRC were used to construct MRC estimation models for meadow soils in Northeast China. The model comparison indicated that PLSR could effectively improve the model accuracy, with an R2 value of 0.8582 and an RMSE of only 4.93%. Compared with RR (R2 = 0.7877, RMSE = 6.99%) and LASSO (R2 = 0.7926, RMSE = 6.88%), the PLSR model had a higher accuracy in the MRC prediction. The RR and LASSO models were prone to overfitting with small sample sizes, while PLSR could reduce model complexity through dimensionality reduction, effectively alleviating overfitting.
- (3)
- On the basis of the PLSR model estimation results, the experiment further divided the study area’s tillage practices into CT, RT, and NT. The data showed that the proportion of conservation tillage in 2019 and 2023 was lower than in the other three years (12.9% and 18.4% for RT, 10.2% and 6.9% for NT). From 2020 to 2022, the NT percentages in the study area were 27.5%, 19.6%, and 15.5%; the RT percentages were 15.7%, 12.0%, and 30.0%; and the CT percentages were 56.8%, 68.4%, and 54.5%, respectively. In terms of the factors affecting the spatial and temporal distribution of farming practices, it was found that low temperatures in 2021 and 2023 may have led to increased demand for straw fuel in rural areas, subsequently affecting the implementation of conservation tillage in those years.
- (4)
- Due to the important contribution of the three major plains in Northeast China to China’s grain production, the spatial distribution of tillage practices in the three plains in 2023 was mapped and a statistical analysis was conducted using the Spatial Analyst module of ArcGIS 10.8. The statistical data showed that among the maize croplands in the Songnen Plain with subsurface meadow soils, 1265 km2 practiced NT, 3791 km2 practiced RT, and 20,268 km2 were under CT. In the Sanjiang Plain, 559 km2 practiced NT, 1907 km2 practiced RT, and 4290 km2 were under CT. In the Liaohe Plain, 585 km2 practiced NT, 1336 km2 practiced RT, and 4775 km2 were under CT. This indicated that the Songnen Plain, with its high degree of aridity, had the largest area under conservation tillage, whereas the Sanjiang Plain had the highest proportion of conservation tillage due to its farm management practices.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Y.; McLaughlin, N.; Zhang, X.; Xu, M.; Liang, A. Effect of Tillage and Crop Residue on Soil Temperature Following Planting for a Black Soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [PubMed]
- FAO. World Food Forum: Exploring Options for Future Soil and Plant Nutrition; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Sharma, A.R.; Kharol, S.K.; Badarinath, K.V.S.; Singh, D. Impact of Agriculture Crop Residue Burning on Atmospheric Aerosol Loading—A Study over Punjab State, India. Ann. Geophys. 2010, 28, 367–379. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Carbon Sequestration in Soils. Science 1999, 284, 2095. [Google Scholar] [CrossRef]
- USDA. Tillage Intensity and Conservation Cropping in the United States; United States Department of Agriculture: Washington, WA, USA, 2018.
- Moebius-Clune, B.N.; Van Es, H.M.; Idowu, O.J.; Schindelbeck, R.R.; Moebius-Clune, D.J.; Wolfe, D.W.; Abawi, G.S.; Thies, J.E.; Gugino, B.K.; Lucey, R. Long-Term Effects of Harvesting Maize Stover and Tillage on Soil Quality. Soil Sci. Soc. Am. J. 2008, 72, 960–969. [Google Scholar] [CrossRef]
- Chimsah, F.A.; Cai, L.; Wu, J.; Zhang, R. Outcomes of Long-Term Conservation Tillage Research in Northern China. Sustainability 2020, 12, 1062. [Google Scholar] [CrossRef]
- Karlen, D.L.; Wollenhaupt, N.C.; Erbach, D.C.; Berry, E.C.; Swan, J.B.; Eash, N.S.; Jordahl, J.L. Long-Term Tillage Effects on Soil Quality. Soil Tillage Res. 1994, 32, 313–327. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of Soil Organic Carbon on Soil Water Retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Delgado, J.A. Crop Residue Is a Key for Sustaining Maximum Food Production and for Conservation of Our Biosphere. J. Soil Water Conserv. 2010, 65, 111A–116A. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current Status of Adoption of No-till Farming in the World and Some of Its Main Benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Jia, S.; Liang, A.; Zhang, X.; Yang, X.; Wei, S.; Sun, B.; Huang, D.; Zhou, G. The Potential Mechanism of Long-Term Conservation Tillage Effects on Maize Yield in the Black Soil of Northeast China. Soil Tillage Res. 2015, 154, 84–90. [Google Scholar] [CrossRef]
- Najafi, P.; Navid, H.; Feizizadeh, B.; Eskandari, I. Remote Sensing for Crop Residue Cover Recognition: A Review. Agric. Eng. Int. CIGR J. 2018, 20, 63–69. [Google Scholar]
- Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-Artizzu, X.P.; Ribeiro, A. Automatic Segmentation of Relevant Textures in Agricultural Images. Comput. Electron. Agric. 2011, 75, 75–83. [Google Scholar] [CrossRef]
- White, M.A.; Asner, G.P.; Nemani, R.R.; Privette, J.L.; Running, S.W. Measuring Fractional Cover and Leaf Area Index in Arid Ecosystems: Digital Camera, Radiation Transmittance, and Laser Altimetry Methods. Remote Sens. Environ. 2000, 74, 45–57. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Hunt, E.R.; McMurtrey, J.E. Assessing Crop Residue Cover Using Shortwave Infrared Reflectance. Remote Sens. Environ. 2004, 90, 126–134. [Google Scholar] [CrossRef]
- Jin, X.; Ma, J.; Wen, Z.; Song, K. Estimation of Maize Residue Cover Using Landsat-8 OLI Image Spectral Information and Textural Features. Remote Sens. 2015, 7, 14559–14575. [Google Scholar] [CrossRef]
- McNairn, H.; Protz, R. Mapping Corn Residue Cover on Agricultural Fields in Oxford County, Ontario, Using Thematic Mapper. Can. J. Remote Sens. 1993, 19, 152–159. [Google Scholar] [CrossRef]
- van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Xiang, X.; Du, J.; Jacinthe, P.A.; Zhao, B.; Zhou, H.; Liu, H.; Song, K. Integration of Tillage Indices and Textural Features of Sentinel-2A Multispectral Images for Maize Residue Cover Estimation. Soil Tillage Res. 2022, 221, 105405. [Google Scholar] [CrossRef]
- Bannari, A.; Pacheco, A.; Staenz, K.; McNairn, H.; Omari, K. Estimating and Mapping Crop Residues Cover on Agricultural Lands Using Hyperspectral and IKONOS Data. Remote. Sens. Environ. 2006, 104, 447–459. [Google Scholar] [CrossRef]
- Zheng, B.; Campbell, J.B.; Serbin, G.; Galbraith, J.M. Remote Sensing of Crop Residue and Tillage Practices: Present Capabilities and Future Prospects. Soil Tillage Res. 2014, 138, 26–34. [Google Scholar] [CrossRef]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the Growth and Development of Maize and Rice: A Review. Glob. Change Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, H.; Wang, Z.; Xie, Q.; Wang, Y.; Liu, L.; Hall, C.C. A Comparison of Estimating Crop Residue Cover from Sentinel-2 Data Using Empirical Regressions and Machine Learning Methods. Remote Sens. 2020, 12, 1470. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Q.; Wang, Y.; Liu, X.; Liu, X. Evaluation of MLSR and PLSR for Estimating Soil Element Contents Using Visible/near-Infrared Spectroscopy in Apple Orchards on the Jiaodong Peninsula. CATENA 2016, 137, 340–349. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms—A Review. IJSR 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m Crop Type Maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, C.; Zhang, J.; Sun, Y.; Xu, X.; Zhu, N.; Cai, Y.; Xu, D.; Wang, X.; Xin, X.; et al. Response of Soil Microbial Biomass C, N, and P and Microbial Quotient to Agriculture and Agricultural Abandonment in a Meadow Steppe of Northeast China. Soil Tillage Res. 2022, 223, 105475. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, X.; Liu, D.; Sun, Y.; Li, M.; Han, S. Effect of Different Biochar Additions on the Change of Carbon Nitrogen Content and Bacterial Community in Meadow Soils. Environ. Pollut. Bioavailab. 2023, 35, 2268272. [Google Scholar] [CrossRef]
- Hao, J.; Lin, Y.; Ren, G.; Yang, G.; Han, X.; Wang, X.; Ren, C.; Feng, Y. Comprehensive Benefit Evaluation of Conservation Tillage Based on BP Neural Network in the Loess Plateau. Soil Tillage Res. 2021, 205, 104784. [Google Scholar] [CrossRef]
- Lv, L.; Gao, Z.; Liao, K.; Zhu, Q.; Zhu, J. Impact of Conservation Tillage on the Distribution of Soil Nutrients with Depth. Soil Tillage Res. 2023, 225, 105527. [Google Scholar] [CrossRef]
- Wang, H.; Yang, S.; Wang, Y.; Gu, Z.; Xiong, S.; Huang, X.; Sun, M.; Zhang, S.; Guo, L.; Cui, J.; et al. Rates and Causes of Black Soil Erosion in Northeast China. CATENA 2022, 214, 106250. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, M.; Zhan, S.; Tan, W. Strength Distribution of Cemented Waste Rock Backfill: A Similarity Simulation Experiment. Front. Earth Sci. 2024, 11, 1328421. [Google Scholar] [CrossRef]
- Juncai, H.; Yaohua, H.; Lixia, H.; Kangquan, G.; Satake, T. Classification of Ripening Stages of Bananas Based on Support Vector Machine. Int. J. Agric. Biol. Eng. 2015, 8, 99–103. [Google Scholar] [CrossRef]
- Ma, H.; Jing, Y.; Huang, W.; Shi, Y.; Dong, Y.; Zhang, J.; Liu, L. Integrating Early Growth Information to Monitor Winter Wheat Powdery Mildew Using Multi-Temporal Landsat-8 Imagery. Sensors 2018, 18, 3290. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. Sensors 2018, 18, 868. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, Y.; Batunacun. An Automatic Approach for Land-Change Detection and Land Updates Based on Integrated NDVI Timing Analysis and the CVAPS Method with GEE Support. ISPRS J. Photogramm. Remote Sens. 2018, 146, 347–359. [Google Scholar] [CrossRef]
- Li, H.; Wan, W.; Fang, Y.; Zhu, S.; Chen, X.; Liu, B.; Hong, Y. A Google Earth Engine-Enabled Software for Efficiently Generating High-Quality User-Ready Landsat Mosaic Images. Environ. Model. Softw. 2019, 112, 16–22. [Google Scholar] [CrossRef]
- Li, Z.; Demir, I. U-Net-Based Semantic Classification for Flood Extent Extraction Using SAR Imagery and GEE Platform: A Case Study for 2019 Central US Flooding. Sci. Total Environ. 2023, 869, 161757. [Google Scholar] [CrossRef]
- Liang, J.; Jin, F.; Zhang, X.; Wu, H. WS4GEE: Enhancing Geospatial Web Services and Geoprocessing Workflows by Integrating the Google Earth Engine. Environ. Model. Softw. 2023, 161, 105636. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Liang, J.; Xie, Y.; Sha, Z.; Zhou, A. Modeling Urban Growth Sustainability in the Cloud by Augmenting Google Earth Engine (GEE). Comput. Environ. Urban Syst. 2020, 84, 101542. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Caballero, I.; Fernández, R.; Escalante, O.M.; Mamán, L.; Navarro, G. New Capabilities of Sentinel-2A/B Satellites Combined with in Situ Data for Monitoring Small Harmful Algal Blooms in Complex Coastal Waters. Sci. Rep. 2020, 10, 8743. [Google Scholar] [CrossRef] [PubMed]
- Pahlevan, N.; Chittimalli, S.K.; Balasubramanian, S.V.; Vellucci, V. Sentinel-2/Landsat-8 Product Consistency and Implications for Monitoring Aquatic Systems. Remote Sens. Environ. 2019, 220, 19–29. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Hunt, E.R., Jr.; Doraiswamy III, P.C.; McMurtrey, J.E. Remote Sensing the Spatial Distribution of Crop Residues. Agron. J. 2005, 97, 864–871. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, B.; Henderson, M.; Shen, X.; Su, Y.; Zhou, W. Changing Spring Phenology of Northeast China Forests during Rapid Warming and Short-Term Slowdown Periods. Forests 2022, 13, 2173. [Google Scholar] [CrossRef]
- Parkinson, C.L. Aqua: An Earth-Observing Satellite Mission to Examine Water and Other Climate Variables. IEEE Trans. Geosci. Remote Sens. 2003, 41, 173–183. [Google Scholar] [CrossRef]
- Sianturi, R.S.; Perdana, A.P.; Ramdani, F. Monitoring Land Surface Temperature Trends in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2024, 1353, 012036. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, X.; Wang, Y.; Men, Z.; Liu, H. Regional Soil Organic Matter Mapping Models Based on the Optimal Time Window, Feature Selection Algorithm and Google Earth Engine. Soil Tillage Res. 2022, 219, 105325. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Pelosi, A.; Terribile, F.; D’Urso, G.; Chirico, G.B. Comparison of ERA5-Land and UERRA MESCAN-SURFEX Reanalysis Data with Spatially Interpolated Weather Observations for the Regional Assessment of Reference Evapotranspiration. Water 2020, 12, 1669. [Google Scholar] [CrossRef]
- Serbin, G.; Daughtry, C.S.T.; Hunt, E.R., Jr.; Brown, D.J.; McCarty, G.W. Effect of Soil Spectral Properties on Remote Sensing of Crop Residue Cover. Soil Sci. Soc. Am. J. 2009, 73, 1545–1558. [Google Scholar] [CrossRef]
- Qi, J.; Marsett, R.; Heilman, P.; Bieden-bender, S.; Moran, S.; Goodrich, D.; Weltz, M. RANGES Improves Satellite-Based Information and Land Cover Assessments in Southwest United States. Eos Trans. Am. Geophys. Union 2002, 83, 601–606. [Google Scholar] [CrossRef]
- Sullivan, D.G.; Truman, C.C.; Schomberg, H.H.; Endale, D.M.; Strickland, T.C. Evaluating Techniques for Determining Tillage Regime in the Southeastern Coastal Plain and Piedmont. Agron. J. 2006, 98, 1236–1246. [Google Scholar] [CrossRef]
- Choi, S.H.; Jung, H.-Y.; Kim, H. Ridge Fuzzy Regression Model. Int. J. Fuzzy Syst. 2019, 21, 2077–2090. [Google Scholar] [CrossRef]
- Ranstam, J.; Cook, J.A. LASSO Regression. Br. J. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- Kim, Y.; Hao, J.; Mallavarapu, T.; Park, J.; Kang, M. Hi-LASSO: High-Dimensional LASSO. IEEE Access 2019, 7, 44562–44573. [Google Scholar] [CrossRef]
- Salmeron-Gomez, R.; Garcia-Garcia, C.B.; Garcia-Perez, J. A Redefined Variance Inflation Factor: Overcoming the Limitations of the Variance Inflation Factor. Comput. Econ. 2024, 1–27. [Google Scholar] [CrossRef]
- Daughtry, C.S.T. Discriminating Crop Residues from Soil by Shortwave Infrared Reflectance. Agron. J. 2001, 93, 125–131. [Google Scholar] [CrossRef]
- Dong, Y.; Xuan, F.; Huang, X.; Li, Z.; Su, W.; Huang, J.; Li, X.; Tao, W.; Liu, H.; Chen, J. A 30-m Annual Corn Residue Coverage Dataset from 2013 to 2021 in Northeast China. Sci. Data 2024, 11, 216. [Google Scholar] [CrossRef]
- CTIC. National Survey of Conservation Tillage Practices. In Proceedings of the Conservation Technology Information Center, West Lafayette, IN, USA, 21–24 April 2020; Available online: http://www.ctic.org/ (accessed on 16 January 2024).
- Daughtry, C.S.T.; Doraiswamy, P.C.; Hunt, E.R.; Stern, A.J.; McMurtrey, J.E.; Prueger, J.H. Remote Sensing of Crop Residue Cover and Soil Tillage Intensity. Soil Tillage Res. 2006, 91, 101–108. [Google Scholar] [CrossRef]
- Rubio-Ribeaux, D.; Mata da Costa, R.A.; Montero Rodríguez, D.; Marques, N.S.A.d.A.; Silva, G.M.; da Silva, S.S. Biosurfactant Production by Solid-State Fermentation in Biorefineries. In Biosurfactants and Sustainability; John, Wiley & Sons Ltd.: Hoboken, NJ, USA, 2023; pp. 95–115. ISBN 978-1-119-85439-5. [Google Scholar]
- Huang, R.; Huang, J.; Zhang, C.; Zhuo, W.; Zhu, D. Drought Monitoring Over the Northeast China Using GRACE Satellite Data from 2002 to 2016. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–5. [Google Scholar]
- Sereenonchai, S.; Arunrat, N. Farmers’ Perceptions, Insight Behavior and Communication Strategies for Rice Straw and Stubble Management in Thailand. Agronomy 2022, 12, 200. [Google Scholar] [CrossRef]
- Ji, L.; Wu, Y.; Ma, J.; Song, C.; Zhu, Z.; Zhao, A. Spatio-Temporal Variations and Drought of Spring Maize in Northeast China between 2002 and 2020. Environ. Sci. Pollut. Res. 2022, 30, 33040–33060. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Li, X.; Dang, D.; Dou, H.; Xuan, X.; Liu, S.; Li, M.; Gong, J. A New Method for Grassland Degradation Monitoring by Vegetation Species Composition Using Hyperspectral Remote Sensing. Ecol. Indic. 2020, 114, 106310. [Google Scholar] [CrossRef]
- Yue, J.; Tian, Q.; Dong, X.; Xu, N. Using Broadband Crop Residue Angle Index to Estimate the Fractional Cover of Vegetation, Crop Residue, and Bare Soil in Cropland Systems. Remote Sens. Environ. 2020, 237, 111538. [Google Scholar] [CrossRef]
- Diek, S.; Chabrillat, S.; Nocita, M.; Schaepman, M.E.; de Jong, R. Minimizing Soil Moisture Variations in Multi-Temporal Airborne Imaging Spectrometer Data for Digital Soil Mapping. Geoderma 2019, 337, 607–621. [Google Scholar] [CrossRef]
- Ji, W.; Adamchuk, V.I.; Chen, S.; Mat Su, A.S.; Ismail, A.; Gan, Q.; Shi, Z.; Biswas, A. Simultaneous Measurement of Multiple Soil Properties through Proximal Sensor Data Fusion: A Case Study. Geoderma 2019, 341, 111–128. [Google Scholar] [CrossRef]
- Huynh, H.T.; Hufnagel, J.; Wurbs, A.; Bellingrath-Kimura, S.D. Influences of soil tillage, irrigation and crop rotation on maize biomass yield in a 9-year field study in Müncheberg, Germany. Field Crops Res. 2019, 241, 107565. [Google Scholar] [CrossRef]
Tillage Index | Abbreviation | Calculation Formula | Reference |
---|---|---|---|
Normalized difference tillage index | NDTI | [19] | |
Simple tillage index | STI | [19] | |
Normalize difference index 7 | NDI7 | [18] | |
Normalized difference index 5 | NDI5 | [18] | |
Shortwave red normalized difference index | SRNDI | [54] | |
Normalized difference senescent vegetation index | NDSVI | [55] | |
Modified crop residue cover | MCRC | [56] |
Tillage Index | Regression Equation | r | R2 | RMSE (%) |
---|---|---|---|---|
NDTI | y = 58.7004x2 − 0.0475x + 0.0476 | 0.8926 | 0.7967 | 5.126 |
STI | y = 11.0687x2 − 21.9145x + 10.8894 | 0.8929 | 0.7973 | 5.119 |
NDI5 | y = 64.555x2 + 19.8155x + 1.5807 | 0.8257 | 0.6817 | 6.414 |
NDI7 | y = 18.5805x2 + 5.2588x + 0.4353 | 0.8538 | 0.6990 | 5.919 |
NDSVI | y = 49.8063x2 − 25.8111x + 3.4185 | 0.7144 | 0.5103 | 7.956 |
SRNDI | y = 19.3987x2 − 9.5733x + 1.2496 | 0.8343 | 0.6965 | 6.264 |
MCRC | y = 22.3075x2 − 16.2725x + 3.0302 | 0.4757 | 0.2262 | 10.001 |
Training Set | Testing Set | ||||
---|---|---|---|---|---|
Methods | Regression Equation | R2 | RMSE (%) | R2 | RMSE (%) |
RR | 0.7778 | 4.05 | 0.7877 | 6.99 | |
LASSO | 0.7694 | 3.93 | 0.7926 | 6.88 | |
PLSR | 0.8126 | 5.17 | 0.8582 | 4.93 |
Year | Province | Subsidy (RMB/Hectare) |
---|---|---|
2019 | Heilongjiang | 600 |
Jilin | 450 | |
2020 | Heilongjiang | 600 |
Jilin | 600 | |
2021 | Heilongjiang | 600 |
Jilin | 750 | |
2022 | Heilongjiang | 900 |
Jilin | 1500 | |
2023 | Heilongjiang | 480 |
Jilin | 1500 |
Year | Minimum Temperature (K) | Mean Temperature (K) |
---|---|---|
2019 | −23.58 | −13.03 |
2020 | −22.61 | −13.02 |
2021 | −26.49 | −15.52 |
2022 | −24.58 | −14.78 |
2023 | −30.06 | −15.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Du, J.; Yu, W.; Zhuo, K.; Shao, K.; Zhang, W.; Zhang, C.; Qin, J.; Han, Y.; Sui, B.; et al. Evaluating Maize Residue Cover Using Machine Learning and Remote Sensing in the Meadow Soil Region of Northeast China. Remote Sens. 2024, 16, 3953. https://doi.org/10.3390/rs16213953
Liang Z, Du J, Yu W, Zhuo K, Shao K, Zhang W, Zhang C, Qin J, Han Y, Sui B, et al. Evaluating Maize Residue Cover Using Machine Learning and Remote Sensing in the Meadow Soil Region of Northeast China. Remote Sensing. 2024; 16(21):3953. https://doi.org/10.3390/rs16213953
Chicago/Turabian StyleLiang, Zhengwei, Jia Du, Weilin Yu, Kaizeng Zhuo, Kewen Shao, Weijian Zhang, Cangming Zhang, Jie Qin, Yu Han, Bingrun Sui, and et al. 2024. "Evaluating Maize Residue Cover Using Machine Learning and Remote Sensing in the Meadow Soil Region of Northeast China" Remote Sensing 16, no. 21: 3953. https://doi.org/10.3390/rs16213953
APA StyleLiang, Z., Du, J., Yu, W., Zhuo, K., Shao, K., Zhang, W., Zhang, C., Qin, J., Han, Y., Sui, B., & Song, K. (2024). Evaluating Maize Residue Cover Using Machine Learning and Remote Sensing in the Meadow Soil Region of Northeast China. Remote Sensing, 16(21), 3953. https://doi.org/10.3390/rs16213953