Cognitive Radar Waveform Selection for Low-Altitude Maneuvering-Target Tracking: A Robust Information-Aided Fusion Method
"> Figure 1
<p>Low-altitude maneuvering-target tracking process of a radar system.</p> "> Figure 2
<p>The selection results of different parameter ranges and intervals.</p> "> Figure 3
<p>RMSEs from the selection of different waveform libraries.</p> "> Figure 4
<p>Tracking result using the IMCS–MHT–RBPF algorithm.</p> "> Figure 5
<p>RMSE for the IMCS–MHT–RBPF algorithm.</p> "> Figure 6
<p>RMSEs of each target state component for the IMCS–MHT–RBPF algorithm.</p> "> Figure 7
<p>Patterns of selected waveform parameters (Gaussian pulse length and sweep frequency).</p> "> Figure 8
<p>Index of the selected criterion at each time instant. (1: Max-Q; 2: Min-MSE; 3: Max-MI; 4: Min-Gate).</p> "> Figure 9
<p>RMSE of different clutter-processing methods for state estimation.</p> "> Figure 10
<p>Tracking results using different waveform selection criteria.</p> "> Figure 11
<p>RMSE of different waveform selection criteria.</p> "> Figure 12
<p>Patterns of selected pulse lengths using different waveform selection criteria.</p> "> Figure 13
<p>Patterns of selected sweep frequencies using different waveform selection criteria.</p> ">
Abstract
:1. Introduction
2. System Overview
3. Low-Altitude Maneuvering-Target Tracking in Clutter
Algorithm 1 MHT–RBPF algorithm |
Input: The state estimation and the covariance ,, posterior probability at time k-1. Output: The state estimation and the covariance ,, posterior probability at time k.
|
- (1)
- PF prediction for the nonlinear state
- (2)
- KF prediction for the linear state
- (3)
- Acquisition of observation data
- (4)
- Hypothesis generation
- (5)
- Normalizing importance weights
- (6)
- PF measurement updating
- (7)
- Kalman state updating
- (8)
- Updating the array size
- (9)
- Calculating the association probability and updating hypothesis weights
- (10)
- Hypotheses pruning
- (11)
- Hypotheses fusion
4. Adaptive Waveform Selection Mechanism and Discussion
4.1. Interacting Multiple-Criterion Selection Method
- (1)
- Initializing the weights
- (2)
- Predict model probability
- (3)
- Measurement of target
- (4)
- Calculating the likelihood probability
- (5)
- Updating weights
- (6)
- Selecting the optimal criterion
- (7)
- Update the effective probability
4.2. Waveform Selection Criteria
4.2.1. Max-Q Criterion
4.2.2. Minimum Mean Square Error Criterion
4.2.3. Maximum Mutual Information Criterion
4.2.4. Minimum Validation Gate Volume Criterion
Algorithm 2 Interacting multiple-criterion selection method |
Input: The effective probability of criterion i at time instant k, transition probability matrix . Input: Selected waveform parameters, .
|
5. Simulations and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Cheng, T.; He, Z.; Li, X. Joint Waveform Control and Resource Optimization for Maneuvering Targets Tracking in Netted Colocated MIMO Radar Systems. IEEE Syst. J. 2022, 16, 3960–3971. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Doğançay, K. Signal Processing for Multistatic Radar Systems: Adaptive Waveform Selection, Optimal Geometries and Pseudolinear Tracking Algorithms; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Kershaw, D.J.; Evans, R.J. Optimal waveform selection for tracking systems. IEEE Trans. Inf. Theory 1994, 40, 1536–1550. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Dogancay, K.; Davis, L.M. Adaptive waveform selection for multistatic target tracking. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 688–701. [Google Scholar] [CrossRef]
- Yang, Y.; Blum, R.S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 330–343. [Google Scholar] [CrossRef]
- Herbert, S.; Hopgood, J.R.; Mulgrew, B. MMSE Adaptive Waveform Design for Active Sensing with Applications to MIMO Radar. IEEE Trans. Signal Process. 2018, 66, 1361–1373. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, G.; Xu, J.; Yang, Z.; Zhang, Y. Adaptive OFDM Integrated Radar and Communications Waveform Design Based on Information Theory. IEEE Commun. Lett. 2017, 21, 2174–2177. [Google Scholar] [CrossRef]
- Sun, J.; Wang, C.; Shi, Q.; Ren, W.; Yao, Z.; Yuan, N. Intelligent optimization methods of phase-modulation waveform. J. Syst. Eng. Electron. 2022, 33, 916–923. [Google Scholar] [CrossRef]
- Hu, J.; Wei, Z.; Li, Y.; Li, H.; Wu, J. Designing unimodular waveform (s) for MIMO radar by deep learning method. IEEE Trans. Aerosp. Electron. Syst. 2020, 57, 1184–1196. [Google Scholar] [CrossRef]
- Thornton, C.E.; Kozy, M.A.; Buehrer, R.M.; Martone, A.F.; Sherbondy, K.D. Deep Reinforcement Learning Control for Radar Detection and Tracking in Congested Spectral Environments. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1335–1349. [Google Scholar] [CrossRef]
- Thornton, C.E.; Buehrer, R.M.; Dhillon, H.S.; Martone, A.F. Universal Learning Waveform Selection Strategies for Adaptive Target Tracking. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5798–5814. [Google Scholar] [CrossRef]
- Patrick, U.; Rao, S.K.; Jagan, B.O.L.; Rai, H.M.; Agarwal, S.; Pak, W. Radar-Based Target Tracking Using Deep Learning Approaches with Unscented Kalman Filter. Appl. Sci. 2024, 14, 8332. [Google Scholar] [CrossRef]
- Thornton, C.E.; Buehrer, R.M.; Martone, A.F. Constrained Contextual Bandit Learning for Adaptive Radar Waveform Selection. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 1133–1148. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; Salous, S.; Zhou, J.; Yan, J. Joint Transmit Resource Management and Waveform Selection Strategy for Target Tracking in Distributed Phased Array Radar Network. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2762–2778. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, W.; Zou, K. Airborne Radar Anti-Jamming Waveform Design Based on Deep Reinforcement Learning. Sensors 2022, 22, 8689. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zhu, M.; Pan, Z.; Li, Y.; Li, Y. Memory-based deep reinforcement learning for cognitive radar target tracking waveform resource management. IET Radar Sonar Navig. 2023, 17, 1822–1836. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ito, K.; Xiong, K. Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 2000, 45, 910–927. [Google Scholar] [CrossRef]
- Zhu, B.; Chang, L.; Xu, J.; Zha, F.; Li, J. Huber-based adaptive unscented Kalman filter with non-Gaussian measurement noise. Circuits Syst. Signal Process. 2018, 37, 3842–3861. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Y.; Wang, H.; Li, X. Dynamic waveform selection for manoeuvering target tracking in clutter. IET Radar Sonar Navig. 2013, 7, 815–825. [Google Scholar] [CrossRef]
- Sira, S.P.; Li, Y.; Papandreou-Suppappola, A.; Morrell, D.; Cochran, D.; Rangaswamy, M. Waveform-agile sensing for tracking. IEEE Signal Process. Mag. 2009, 26, 53–64. [Google Scholar] [CrossRef]
- Li, Y.; Bian, C. Object Tracking in Satellite Videos: A Spatial-Temporal Regularized Correlation Filter Tracking Method with Interacting Multiple Model. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6511105. [Google Scholar] [CrossRef]
- Qi, S.; Yao, P. Persistent Tracking of Maneuvering Target Using IMM Filter and DMPC by Initialization-Guided Game Approach. IEEE Syst. J. 2019, 13, 4442–4453. [Google Scholar] [CrossRef]
- Schon, T.; Gustafsson, F.; Nordlund, P.J. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Trans. Signal Process. 2005, 53, 2279–2289. [Google Scholar] [CrossRef]
- Vitetta, G.M.; Sirignano, E.; Viesti, P.D.; Montorsi, F.; Sola, M. Marginalized Particle Filtering and Related Filtering Techniques as Message Passing. IEEE Trans. Signal Process. 2019, 67, 1522–1536. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Daum, F.; Huang, J. The probabilistic data association filter. IEEE Control Syst. Mag. 2009, 29, 82–100. [Google Scholar]
- Zeng, T.; Zheng, L.; Li, Y.; Chen, X.; Long, T. Offline performance prediction of PDAF with Bayesian detection for tracking in clutter. IEEE Trans. Signal Process. 2012, 61, 770–781. [Google Scholar] [CrossRef]
- Huang, J.; Xie, J.; Zhang, H.; Li, Z.; Qi, C. A Novel Tracking Algorithm Based on Waveform Selection for Maneuvering Targets in Clutter. Circuits Syst. Signal Process. 2024, 43, 3160–3179. [Google Scholar] [CrossRef]
- Hong, S.M.; Evans, R.; Shin, H.S. Optimization of waveform and detection threshold for range and range-rate tracking in clutter. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 17–33. [Google Scholar] [CrossRef]
- Sira, S.P.; Papandreou-Suppappola, A.; Morrell, D. Dynamic Configuration of Time-Varying Waveforms for Agile Sensing and Tracking in Clutter. IEEE Trans. Signal Process. 2007, 55, 3207–3217. [Google Scholar] [CrossRef]
- Coraluppi, S.P.; Carthel, C.A. Multiple-hypothesis tracking for targets producing multiple measurements. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1485–1498. [Google Scholar] [CrossRef]
- Zhu, P.; Liang, J.; Luo, Z.; Shen, X. Cognitive Radar Target Tracking Using Intelligent Waveforms Based on Reinforcement Learning. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5107315. [Google Scholar] [CrossRef]
- Mbouombouo Mboungam, A.H.; Zhi, Y.; Fonzeu Monguen, C.K. Clutter Map Constant False Alarm Rate Mixed with the Gabor Transform for Target Detection via Monte Carlo Simulation. Appl. Sci. 2024, 14, 2967. [Google Scholar] [CrossRef]
- Liu, B.; Tharmarasa, R.; Jassemi, R.; Brown, D.; Kirubarajan, T. Extended Target Tracking with Multipath Detections, Terrain-Constrained Motion Model and Clutter. IEEE Trans. Intell. Transp. Syst. 2021, 22, 7056–7072. [Google Scholar] [CrossRef]
- Tian, X.; Liu, J.; Mallick, M.; Wang, J.; Ji, X.; Su, L.; Si, J. A Novel AD-PDA-BACF Algorithm for Real-Time Moving Target Shadow Tracking Using ViSAR Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5208117. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.R. Multitarget-Multisensor Tracking: Principles and Techniques; YBS Publishing: Storrs, CT, USA, 1995. [Google Scholar]
- Feng, X.; Sun, P.; Liang, M.; Wang, X.; Zhao, Z.; Zhou, Z. Radar Waveform Selection for Maneuvering Target Tracking in Clutter with PDA-RBPF and Max-Q-Based Criterion. Remote Sens. 2024, 16, 1925. [Google Scholar] [CrossRef]
- Roman, J.; Garnham, J.; Antonik, P. Information Theoretic Criterion for Waveform Selection. In Proceedings of the Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, MA, USA, 12–14 July 2006; pp. 444–448. [Google Scholar] [CrossRef]
- Lee, G.; Kwon, J.; Kwak, N.; Yang, E. Robust measurement validation for radar target tracking using prior information. IET Radar Sonar Navig. 2019, 13, 1842–1849. [Google Scholar] [CrossRef]
- Hurtado, M.; Zhao, T.; Nehorai, A. Adaptive Polarized Waveform Design for Target Tracking Based on Sequential Bayesian Inference. IEEE Trans. Signal Process. 2008, 56, 1120–1133. [Google Scholar] [CrossRef]
State | ||||||
---|---|---|---|---|---|---|
ARMSE | 2.0119 | 1.5316 | 1.0454 | 0.2104 | 0.2260 | 0.3018 |
Algorithm | (m) | (m/s) | Time (s) | Memory (MB) |
---|---|---|---|---|
MHT | 1.4348 | 0.2064 | 23.4476 | 2132 |
PDA | 1.6870 | 0.2346 | 6.3912 | 1845 |
ARMSE | ||||||
---|---|---|---|---|---|---|
Fixed | 7.9723 | 3.9581 | 3.9690 | 0.2355 | 0.2497 | 0.3550 |
Max-Q | 1.9798 | 1.2764 | 1.3756 | 0.2257 | 0.2472 | 0.2918 |
Min-MSE | 1.9687 | 1.3118 | 1.4319 | 0.2099 | 0.2525 | 0.3151 |
Max-MI | 2.0206 | 1.5622 | 1.6894 | 0.2587 | 0.2666 | 0.3217 |
Min-Gate | 2.6441 | 1.3695 | 1.4669 | 0.2264 | 0.2501 | 0.2925 |
IMCS | 1.8815 | 1.2580 | 1.3835 | 0.2334 | 0.2587 | 0.2937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Sun, P.; Zhang, L.; Jia, G.; Wang, J.; Zhou, Z. Cognitive Radar Waveform Selection for Low-Altitude Maneuvering-Target Tracking: A Robust Information-Aided Fusion Method. Remote Sens. 2024, 16, 3951. https://doi.org/10.3390/rs16213951
Feng X, Sun P, Zhang L, Jia G, Wang J, Zhou Z. Cognitive Radar Waveform Selection for Low-Altitude Maneuvering-Target Tracking: A Robust Information-Aided Fusion Method. Remote Sensing. 2024; 16(21):3951. https://doi.org/10.3390/rs16213951
Chicago/Turabian StyleFeng, Xiang, Ping Sun, Lu Zhang, Guangle Jia, Jun Wang, and Zhiquan Zhou. 2024. "Cognitive Radar Waveform Selection for Low-Altitude Maneuvering-Target Tracking: A Robust Information-Aided Fusion Method" Remote Sensing 16, no. 21: 3951. https://doi.org/10.3390/rs16213951
APA StyleFeng, X., Sun, P., Zhang, L., Jia, G., Wang, J., & Zhou, Z. (2024). Cognitive Radar Waveform Selection for Low-Altitude Maneuvering-Target Tracking: A Robust Information-Aided Fusion Method. Remote Sensing, 16(21), 3951. https://doi.org/10.3390/rs16213951