Annual Cropping Intensity Dynamics in China from 2001 to 2023
"> Figure 1
<p>MODIS tiles (represented by dashed-line polygons) spanning horizontal zones 23 to 29 and vertical zones three to seven. Cropland distribution at a 250 m resolution. The 10 m land cover map products were employed to determine the percentage of croplands.</p> "> Figure 2
<p>Illustration of time-series NDVI data in 2023 for single crop (<b>a</b>) and double crop (<b>b</b>). Peak width at half-prominence is highlighted in red.</p> "> Figure 3
<p>Data and workflow for cropping intensity mapping.</p> "> Figure 4
<p>Comparison of F1 scores across different peak detection methods, examining the impact of various Savitzky–Golay (SG) smoothing combinations, SG window sizes, and peak width parameters.</p> "> Figure 5
<p>MODIS-derived map of single and multiple cropping patterns for the year 2023. The subplots show the details of the cropping intensity within major agricultural regions in China and their locations are indicated by red dots: (<b>a</b>) Northeast China Plain, (<b>b</b>) Qinghai-Tibet Plateau, (<b>c</b>) North China Plain, (<b>d</b>) Yangtze Plain, and (<b>e</b>) Southern China. Only the 2023 map is presented here for simplicity.</p> "> Figure 6
<p>The percentages of multiple crops within all cropland from the year 2001 to 2023.</p> "> Figure 7
<p>Slope coefficient (change rate) of cropping intensity trend model (2001–2023). Note only 3 km windows showing significant (<span class="html-italic">p</span> < 0.05) upward/downward trends based on the Mann–Kendall test were used for trend model development.</p> "> Figure 8
<p>NDVI time series from 2001 to 2023 for two selected 3 km analytical windows: (<b>a</b>) areas transitioning from multiple to single cropping practices, and (<b>b</b>) areas transitioning from single to multiple cropping practices. NDVI values were averaged for all cropland pixels within each 3 km window for every MODIS composite.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Data Preprocessing
2.2. Data Smoothing
2.3. Peak Detection
2.4. Trend Analysis of Cropping Patterns
2.5. Mapping Implementation and Computational Design
3. Results
3.1. Impacts of Data Smoothing and Peak Detection Parameters
3.2. Annual Cropping Pattern Maps and Accuracy Assessment
3.3. Trend Analysis of Cropping Intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beets, W.C. Multiple Cropping and Tropical Farming Systems; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Xu, J.; Gao, J.; de Holanda, H.V.; Rodríguez, L.F.; Caixeta-Filho, J.V.; Zhong, R.; Jiang, H.; Li, H.; Du, Z.; Wang, X.; et al. Double cropping and cropland expansion boost grain production in Brazil. Nat. Food 2021, 2, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Beillouin, D.; Ben-Ari, T.; Makowski, D. Evidence map of crop diversification strategies at the global scale. Environ. Res. Lett. 2019, 14, 123001. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 2020, 64, 102131. [Google Scholar] [CrossRef] [PubMed]
- Gaba, S.; Lescourret, F.; Boudsocq, S.; Enjalbert, J.; Hinsinger, P.; Journet, E.P.; Navas, M.L.; Wery, J.; Louarn, G.; Malézieux, E.; et al. Multiple cropping systems as drivers for providing multiple ecosystem services: From concepts to design. Agron. Sustain. Dev. 2015, 35, 607–623. [Google Scholar] [CrossRef]
- Ranck, E.J.; Holden, L.A.; Dillon, J.A.; Rotz, C.A.; Soder, K.J. Economic and environmental effects of double cropping winter annuals and corn using the Integrated Farm System Model. J. Dairy Sci. 2020, 103, 3804–3815. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Liu, G. Spatiotemporal differences and influencing factors of multiple cropping index in China during 1998–2012. J. Geogr. Sci. 2015, 25, 1283–1297. [Google Scholar] [CrossRef]
- Yan, H.; Xiao, X.; Huang, H.; Liu, J.; Chen, J.; Bai, X. Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data. Chin. Geogr. Sci. 2014, 24, 205–219. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Sun, L.; Cao, G.; Fischer, G.; Tramberend, S. An estimation of the extent of cropland abandonment in mountainous regions of China. Land Degrad. Dev. 2018, 29, 1327–1342. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Xin, L.; Tan, M. Farmland marginalization and its drivers in mountainous areas of China. Sci. Total Environ. 2020, 719, 135132. [Google Scholar] [CrossRef] [PubMed]
- Lunetta, R.S.; Shao, Y.; Ediriwickrema, J.; Lyon, J.G. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 81–88. [Google Scholar] [CrossRef]
- Ren, J.; Campbell, J.B.; Shao, Y. Estimation of sos and eos for midwestern us corn and soybean crops. Remote Sens. 2017, 9, 722. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S.; Ediriwickrema, J.; Iiames, J. Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data. Photogramm. Eng. Remote Sens. 2010, 76, 73–84. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Q.; Shen, M.; Chen, J.; Wu, J. A methodology for multiple cropping index extraction based on NDVI time-series. J. Nat. Resour. 2008, 23, 534–554. [Google Scholar]
- Qiu, B.; Hu, X.; Chen, C.; Tang, Z.; Yang, P.; Zhu, X.; Yan, C.; Jian, Z. Maps of cropping patterns in China during 2015–2021. Sci. Data 2022, 9, 479. [Google Scholar] [CrossRef]
- Yan, H.; Liu, F.; Qin, Y.; Doughty, R.; Xiao, X. Tracking the spatio-temporal change of cropping intensity in China during 2000–2015. Environ. Res. Lett. 2019, 14, 035008. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Yu, L.; Hao, P.; Chen, B.; Xin, Q.; Fu, H.; Gong, P. Annual dynamic dataset of global cropping intensity from 2001 to 2019. Sci. Data 2021, 8, 283. [Google Scholar] [CrossRef]
- Ding, M.; Chen, Q.; Xin, L.; Li, L.; Li, X. Spatial and temporal variations of multiple cropping index in China based on SPOT-NDVI during 1999–2013. Acta Geogr. Sin. 2015, 70, 1080–1090. [Google Scholar]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of 2021 IEEE International Geoscience and Remote sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Cui, Y.; Liu, R.; Li, Z.; Zhang, C.; Song, X.; Yang, J.; Yu, L.; Chen, M.; Dong, J. Decoding the inconsistency of six cropland maps in China. Crop J. 2024, 12, 281–294. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. In Geospatial Information Handbook for Water Resources and Watershed Management; CRC Press: Boca Raton, FL, USA, 2022; Volume II, pp. 65–88. [Google Scholar]
- Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens. Environ. 2016, 174, 258–265. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Gao, F.; Morisette, J.T.; Wolfe, R.E.; Ederer, G.; Pedelty, J.; Masuoka, E.; Myneni, R.; Tan, B.; Nightingale, J. An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geosci. Remote Sens. Lett. 2008, 5, 60–64. [Google Scholar] [CrossRef]
- Liu, L.; Kang, S.; Xiong, X.; Qin, Y.; Wang, J.; Liu, Z.; Xiao, X. Cropping intensity map of China with 10 m spatial resolution from analyses of time-series Landsat-7/8 and Sentinel-2 images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103504. [Google Scholar] [CrossRef]
- Sakamoto, T.; Van Nguyen, N.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens. Environ. 2006, 100, 1–16. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, W.; Tao, B.; Ji, L.; Liang, L.; Ruane, A.C.; Fisher, J.B.; Liu, J.; Sama, M.; Li, Z.; et al. Characterizing spatiotemporal patterns of crop phenology across North America during 2000–2016 using satellite imagery and agricultural survey data. ISPRS J. Photogramm. Remote Sens. 2020, 170, 156–173. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Chen, Z.; Xu, C.; Ji, L.; Feng, J.; Li, F.; Zhou, X.; Fang, F. Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Glob. Ecol. Conserv. 2020, 22, e00895. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, B.; Zeng, H.; He, G.; Liu, C.; Tao, S.; Zhang, Q.; Nabil, M.; Tian, F.; Bofana, J.; et al. GCI30: A global dataset of 30-m cropping intensity using multisource remote sensing imagery. Earth Syst. Sci. Data 2021, 13, 4799–4817. [Google Scholar] [CrossRef]
- Lu, M.; Wu, W.; You, L.; See, L.; Fritz, S.; Yu, Q.; Wei, Y.; Chen, D.; Yang, P.; Xue, B. A cultivated planet in 2010–Part 1: The global synergy cropland map. Earth Syst. Sci. Data 2020, 12, 1913–1928. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Z.; Yang, J.; Zhang, L. Analysis for spatial-temporal changes of grain production and farmland resource: Evidence from Hubei Province, central China. J. Clean. Prod. 2019, 207, 474–482. [Google Scholar] [CrossRef]
- Hou, W.; Geng, T.; Chen, Q.; Chen, C. Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades. Chin. J. Appl. Ecol. 2015, 26, 249–259. [Google Scholar]
- Jiang, M.; Li, X.; Xin, L.; Tan, M. The impact of paddy rice multiple cropping index changes in Southern China on national grain production capacity and its policy implication. Acta Geogr. Sin. 2019, 74, 32–43. [Google Scholar]
- Qian, C.; Shao, L.; Hou, X.; Zhang, B.; Chen, W.; Xia, X. Detection and attribution of vegetation greening trend across distinct local landscapes under China’s Grain to Green Program: A case study in Shaanxi Province. Catena 2019, 183, 1041. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Fu, S.; Yang, D. Decoupling of land use intensity and ecological environment in Gansu province, China. Sustainability 2020, 12, 2779. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Sub-pixel mapping of tree canopy, impervious surfaces, and cropland in the Laurentian Great Lakes Basin using MODIS time-series data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 336–347. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities. J. Remote Sens. 2021, 1, 96–109. [Google Scholar] [CrossRef]
- Shao, Y.; Ren, J.; Campbell, J.B. Multitemporal Remote Sensing Data Analysis for Agricultural Application. Compr. Remote Sens. 2018, 9, 29–38. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3935. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, S.; Chen, B.; Weng, Q.; Bai, Y.; Yang, J.; Yu, L.; Xu, B. A 30 m annual cropland dataset of China from 1986 to 2021. Earth Syst. Sci. Data 2024, 16, 2297–2316. [Google Scholar] [CrossRef]
Reference | ||||||
---|---|---|---|---|---|---|
2001 | 2011 | 2021 | ||||
SC | MC | SC | MC | SC | MC | |
SC | 210 | 13 | 230 | 11 | 216 | 13 |
MC | 23 | 104 | 17 | 92 | 20 | 101 |
OA (F1) | 89.7 (0.921) | 92.0 (0.943) | 90.6 (0.929) | |||
SC | UA: 94.2 | PA: 90.1 | UA: 95.4 | PA: 93.1 | UA: 94.3 | PA: 91.5 |
MC | UA: 81.9 | PA: 88.9 | UA: 84.4 | PA: 89.3 | UA: 83.5 | PA: 88.6 |
Existing Products and Studies | Study Period | Spatial Resolution | Single Cropping Area (%) (2016–2018) | Multiple Cropping Area (%) (2016–2018) | MCI of China |
---|---|---|---|---|---|
GCI30 [29] | 2016–2018 | 30 m | 74.9 | 25.1 | 1.25 |
GCI250 [17] | 2001–2019 | 250 m | 82.8 | 17.2 | 1.17 |
Our study | 2001–2023 | 250 m | 67.6 | 32.4 | 1.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Shao, Y.; Wang, Y. Annual Cropping Intensity Dynamics in China from 2001 to 2023. Remote Sens. 2024, 16, 4801. https://doi.org/10.3390/rs16244801
Ren J, Shao Y, Wang Y. Annual Cropping Intensity Dynamics in China from 2001 to 2023. Remote Sensing. 2024; 16(24):4801. https://doi.org/10.3390/rs16244801
Chicago/Turabian StyleRen, Jie, Yang Shao, and Yufei Wang. 2024. "Annual Cropping Intensity Dynamics in China from 2001 to 2023" Remote Sensing 16, no. 24: 4801. https://doi.org/10.3390/rs16244801
APA StyleRen, J., Shao, Y., & Wang, Y. (2024). Annual Cropping Intensity Dynamics in China from 2001 to 2023. Remote Sensing, 16(24), 4801. https://doi.org/10.3390/rs16244801