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Abstract: Spatial and temporal information about cropping patterns of single and multiple crops is
important for monitoring crop production and land-use intensity. We used time-series MODIS NDVI
8-day composite data to develop annual cropping pattern products at a 250 m spatial resolution for
China, covering the period from 2001 to 2023. To address the potential impacts of varying parameters
in both data pre-processing and the peak detection algorithm on the accuracy of cropping pattern
mapping, we employed a grid-search method to fine-tune these parameters. This process focused
on optimizing the Savitzky–Golay smoothing window size and the peak width parameters using a
calibration dataset. The results highlighted that an optimal combination of a five to seven MODIS
composite window size in Savitzky–Golay smoothing and a peak width of four MODIS composites
achieved good overall mapping accuracy. Pixel-wise accuracy assessments were conducted for the
selected mapping years of 2001, 2011, and 2021. Overall accuracies were between 89.7% and 92.0%,
with F1 scores ranging from 0.921 to 0.943. Nationally, this study observed a fluctuating trend in
multiple cropping percentages, with a notable increase after 2013, suggesting shifts toward more
intensive agricultural practices in recent years. At a finer spatial scale, the combination of Mann–
Kendall and Sen’s slope analyses revealed that approximately 12.9% of 3 km analytical windows
exhibited significant changes in cropping intensity. We observed spatial clusters of increasing and
decreasing crop intensity trends across provinces such as Hebei, Shandong, Shaanxi, and Gansu. This
study underscores the importance of data smoothing and peak detection methods in analyzing high
temporal resolution remote sensing data. The generation of annual single/multiple cropping pattern
maps at a 250 m spatial resolution enhances our comprehension of agricultural dynamics through
time and across different regions.

Keywords: cropping intensity; time-series analysis; peak detection; MODIS

1. Introduction

Double or multiple cropping is a key method for increasing grain output [1,2] and it is
also a widely used management strategy for crop diversification [3], risk-spreading [4], and
coupled economic–environmental benefits [5,6]. In China, multiple cropping contributes to
roughly 33% of the nation’s total grain output, marking it as an essential element of the
Chinese agricultural ecosystem [7,8]. Understanding the spatial and temporal aspects of
multiple cropping is crucial for assessing crop productivity, identifying cropping patterns,
and shaping agricultural policies. The urgency for such insights is accentuated by China’s
fast urbanization and the ensuing alterations in agricultural land use, particularly the
marginalization or abandonment of croplands and a potential trend toward transitioning
from multiple to single cropping systems [9,10].

Time-series remote sensing data have been extensively used for identifying crop
types, understanding crop phenology, documenting crop rotations, and tracking their
changes or trends [11–14]. Despite the broad application of such data across various

Remote Sens. 2024, 16, 4801. https://doi.org/10.3390/rs16244801 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16244801
https://doi.org/10.3390/rs16244801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs16244801
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16244801?type=check_update&version=1


Remote Sens. 2024, 16, 4801 2 of 16

agricultural monitoring objectives, there has been relatively less research focused on the
mapping of single or multiple cropping patterns, particularly at a national scale in countries
like China and spanning long durations. Zhu et al. [15] conducted mapping of single
and double cropping systems at a 1 km spatial resolution using 10-day Maximum Value
Composite SPOT/VGT Normalized Difference Vegetation Index (NDVI) time-series for
the northern provinces of China from 1999 to 2004. Subsequent studies have enhanced
the mapping resolution to 500 m using Moderate Resolution Imaging Spectroradiometer
(MODIS) data [16,17]. Liu et al. [18] developed 250 m global annual cropping intensity
products for the years 2001–2019 using MODIS Enhanced Vegetation Index (EVI), marking
significant progress in the spatial resolution of agricultural mapping.

Identifying trends in single and multiple cropping patterns typically requires detailed,
long-term analysis on a pixel-by-pixel basis. The complexity of this task is due to the
ever-changing agricultural practices and environmental conditions. For earlier studies,
data accessibility issues arose as map products may not have been publicly available. More
recent mapping products are still difficult to compile due to differences in spatial resolu-
tion, the time periods covered, and the high level of uncertainties in mapping accuracy.
For instance, we conducted a quick comparison of the two most recent studies by Qiu
et al. [16] and Liu et al. [18], specifically examining the crop intensity maps for China from
2015–2021. We found that the average percentage of single cropping within total croplands
was approximately 64% and 84%, respectively, according to these studies. Such a discrep-
ancy highlights the considerable uncertainty inherent in remote sensing-derived cropping
patterns. Further research is necessary to enhance the accuracy of mapping algorithms and
the integration of diverse data sources, such as cropland masking, as well as to validate
remote sensing-derived cropping maps with ground-truth data.

Mapping single or multiple cropping patterns encounters challenges similar to those
found in other time-series remote sensing applications. Specifically, mapping results
are sensitive to various analytical components, including the spatial–temporal resolution
of input data, image noise, and specific algorithms used for single/multiple cropping
detection. For instance, time-series data smoothing algorithms such as Savitzky–Golay,
Whittaker smoother, and Harmonic Analysis are commonly used in the first step to remove
data noise within the time-series; subsequent peak detecting algorithms are then combined
with certain decision rules to map out single or multiple crops for each pixel [15–19]. It
is unclear how certain smooth parameters, for example, the window size in the Savitzky–
Golay (SG) approach, are selected. Similarly, researchers may need to adjust various
rules or parameters in peak detection of the time-series data. There is a pressing need
to investigate methodologies that integrate detailed calibration of these parameters in
supporting automated single/multiple cropping mapping.

The research objectives of this study were twofold: firstly, to develop 250 m resolu-
tion, national-scale mapping products of single and multiple cropping patterns in China,
covering the period from 2001 to 2023; and secondly, to analyze the spatial and temporal
trends of these cropping patterns. Our approach involved using 250 m MODIS time-series
data to produce accurate and consistent maps of single and multiple cropping practices.
Initially, we focused on determining the critical parameters for data smoothing and peak
detection algorithms. This involved employing a grid-search method to fine-tune the
mapping performance based on a calibration dataset. The optimized parameters were then
applied to the entire dataset to create annual maps of single and multiple cropping patterns.
Subsequently, we conducted an analysis of the temporal trends in cropping patterns to
understand whether there have been significant changes over the study period. Identifying
regions that exhibit substantial shifts in cropping practices was a key aspect of this analysis.
This research aimed to provide essential data that can support informed decision-making
at both the regional and national levels, ultimately contributing to improved agricultural
productivity and enhanced food security.
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2. Materials and Methods
2.1. Data and Data Preprocessing

The MODIS/Terra Surface Reflectance 8-Day data (MOD09Q1) spanning the years
2001–2023 were acquired from NASA’s Earthdata Search (https://search.earthdata.nasa.
gov/, accessed on 1 January 2024). Among available satellite datasets, MODIS is particu-
larly valuable for time-series analysis due to its high temporal resolution (1–2 days). The
8-day and 16-day MODIS composite data effectively reduce cloud cover impacts present
in the original daily data, making it widely used in agricultural mapping. Compared to
Landsat or Sentinel datasets, MODIS time-series data is well-suited for national and global
mapping because it provides a long time span (2000 to the present), an intermediate spatial
resolution of 250 m, and frequent temporal coverage. To encompass the study area as
illustrated in Figure 1, 19 MODIS tiles from horizontal zones 23 to 29 and vertical zones 3
to 7 were selected, resulting in a total of 20,102 MODIS tiles gathered for the analysis. We
extracted surface reflectance values for Band 1 (Red) and Band 2 (near-infrared, NIR) for
calculating the NDVI. NDVI mosaics were generated for every 8-day composite period.
These mosaics were then re-projected to the Albers Equal Area Conic (AEA) projection
system using a nearest-neighbor resampling method. The resolution of the NDVI data is
250 m × 250 m per grid cell.
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Figure 1. MODIS tiles (represented by dashed-line polygons) spanning horizontal zones 23 to 29 and
vertical zones three to seven. Cropland distribution at a 250 m resolution. The 10 m land cover map
products were employed to determine the percentage of croplands.

Cropland mask was derived from the 10 m land use and land cover map [20]. These
land cover map products were derived from Sentinel-2 images using deep learning al-
gorithms. The ESRI land cover map has an overall accuracy of 85.96% [20]) and the
cropland/non-cropland specific accuracy was 85.33% [21]. The original 9-class map prod-
ucts for 2022 were downloaded from https://livingatlas.arcgis.com/landcover/, accessed
on 10 July 2024. We singled out the cropland class and computed proportions within each
250 m MODIS grid cell. For the purpose of mapping single or multiple cropping patterns,
only MODIS pixels where the cropland proportion exceeded 90% were selected. The overall
distribution of ‘pure’ cropland pixels is illustrated in Figure 1.

To support our cropping pattern mapping task, we leveraged the crop intensity
map products from Qiu et al. [16] covering the years 2015 to 2021, creating a calibration
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dataset. Their processing code and related files are available at https://doi.org/10.6084/m9
.figshare.14936052, accessed on 18 September 2024. We randomly selected 5000 pixels that
consistently exhibited either single or multiple cropping patterns over the seven-year span.
From this selection, a smaller subset (n = 1000) from the initial set of 5000 pixels was visually
analyzed using corresponding NDVI time-series data, confirming an overall accuracy
exceeding 90%. Utilizing this set of calibration data allowed us to assess various methods
for mapping cropping patterns and to fine-tune parameters for improved mapping accuracy.
Preliminary testing also showed that reducing the sample size to 1000 or expanding it to
20,000 had minimal impact on the analysis results after reaching 3000 sample pixels.

2.2. Data Smoothing

The original NDVI time series derived from the MODIS data contains noise, charac-
terized by spikes and dips due to cloud cover, shadows, weather conditions, and noise
introduced by the sensor itself [22]. We applied the widely recognized Savitzky–Golay
(SG) smoothing to reduce image noise [23]. The SG method employs a sliding window
across the dataset, where a polynomial of second degree is fitted to the data points within
each window (e.g., 2n + 1 points, with n being the window size chosen by the user). The
value at the center of each window is substituted with the value derived from the poly-
nomial fit. For a given application, the ideal window size is unknown, necessitating a
careful selection process to balance the trade-offs between smoothing the data sufficiently
to remove noise while preserving the true signal, especially the important features of the
NDVI time series such as seasonal peaks. We implemented this process using the TIMESAT
software package [24]. We noted that TIMESAT smoothing algorithms typically require
approximately 75% of valid data points within a time series to accurately predict realistic
values for missing data [25]. Using the MODIS QA layers as input, we identified pixels
labelled as cloudy or in a shadow state. We then assessed the annual NDVI time series
and flagged locations with more than 25% missing values (i.e., cloud or shadow). For each
mapping year from 2001 to 2023, we generated a quality layer, labeling pixels with more
than 25% missing data as 0 and those with less than 25% missing data as 1. For pixels
coded as 1, we examined the presence of single or multiple cropping patterns by analyzing
the number of peaks within each calendar year, using the reconstructed NDVI time series.

2.3. Peak Detection

While earlier research differentiated between double and triple cropping within the
multi-cropping framework, triple cropping accounts for only about 0.33–2% of the total
cropland area [8,26]. For simplicity, we grouped double and triple cropping practices
together under a broader category of multiple cropping. We used the “findpeaks” function
from MATLAB R2002a’s signal processing toolbox for peak detection. Figure 2 presents
NDVI signal examples for both single and double cropping scenarios, displaying data from
one year for clarity. We employed a threshold of 0.35 for NDVI values [18], considering
only those above this threshold as potential peak candidates. In the case of single cropping,
a single NDVI peak indicates one primary growing season. For identifying multiple
cropping patterns, we adopted an additional criterion that requires at least 80 days between
peaks, following the guidelines established by Sakamoto et al. [27] and Yang et al. [28].
The findpeaks function automatically selects the tallest peak in the NDVI time-series and
removes peaks that occur within 10 consecutive 8-day MODIS composite periods. This
process is iteratively repeated through the built-in feature.

Using the aforementioned calibration data as a basis, we carefully analyzed the peak
detection results and their connection to single and multiple cropping systems. For certain
time-series, we identified smaller peaks that did not correspond to actual crop growing
seasons. To improve our peak detection techniques, we evaluated additional criteria such
as peak width and prominence, as illustrated in Figure 2. Peak width is important as it
directly corresponds to the crop growing cycle while peak prominence has a lesser impact
on improving the accuracy of distinguishing between single and multiple cropping. For
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example, a peak width of more than 30 days (equivalent to approximately four 8-day
MODIS composites) was found to be necessary to represent a crop growth cycle, ensuring
the NDVI signal accurately reflects the phenological stages of crop development. The
calibration data facilitated the examination of various peak widths to identify the optimal
settings for accurate crop cycle representation.

Concurrently, we examined how the SG smoothing technique influences peak de-
tection, mainly by adjusting the size of the smoothing window (ranging from 5 to 13 in
increments of 2) and adjusting the peak width (ranging from 2 to 6.5 in increments of
0.5). This process aimed to assess their effect on accurately identifying single or multiple
cropping patterns. We employed a grid search method to pinpoint the best combination of
parameters by matching detected peaks against known cropping patterns of either single
or multiple cycles. The effectiveness of each set of parameters was quantitatively assessed
using the F1 score [29], a commonly used measure of mapping accuracy. The F1 score
provides a balance between precision and recall, which is essential for handling potential
imbalances between cropping categories. The parameter set that achieved the highest F1
score was then applied in mapping cropping patterns for all cropland pixels over a period
from 2001 to 2023.

Accuracy assessments were carried out pixel-wise for specific mapping years: 2001,
2011, and 2021. For each year’s map, 350 pixels (about 0.04‰ of total cropland pixel)
were randomly chosen to verify the identification of single or multiple cropping patterns,
totaling 1050 random points for the overall accuracy evaluation. MODIS 8-day time-series
data were used as a reference in a visual assessment to record the number of peaks. The
accuracy of the mapping was quantified using confusion matrix, overall accuracy, and the
F1 score.
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2.4. Trend Analysis of Cropping Patterns

The annual single/multiple crop mapping results from 2001 to 2023 were used to
support the long-term crop intensity change analysis. For each mapping year, single and
multiple cropping patterns were encoded as 1 and 2, respectively, for each 250 m MODIS
pixel. To approximate crop intensity, average values were computed within 3 km by 3 km
moving windows. Long-term trends in crop intensity from 2001 to 2023 were then analyzed
on a window-by-window basis using the non-parametric Mann–Kendall test, which is well-
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suited for environmental data as it does not assume a specific distribution. For 3 km × 3 km
grids with significant trends, Sen’s slope estimator was applied to determine the direction
and magnitude of these trends. Positive or negative trends in crop intensity were identified
based on Sen’s slope results, highlighting areas with significant increases or decreases in
cropping intensity over the 23-year period. This approach allowed us to pinpoint specific
areas where crop intensities were either rising or declining.

2.5. Mapping Implementation and Computational Design

Processing the extensive dataset of 20,102 8-day MODIS scenes covering the period
from 2001 to 2023, along with the associated data preprocessing tasks such as applying
the SG smoothing and employing the findpeaks function, required substantial computing
resources. To enhance efficiency, we adopted a parallel processing strategy, leveraging the
Tinkercliffs cluster through Virginia Tech’s Advanced Research Computing (ARC) services.
Spatially, cropland pixels were segmented into smaller processing groups, while temporally,
MODIS time-series data were broken down into more manageable segments, allowing
functions like findpeaks to be executed on an annual basis. The data and workflow to
produce an annual cropping intensity map are shown in Figure 3.
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3. Results
3.1. Impacts of Data Smoothing and Peak Detection Parameters

We used the F1 scores to evaluate the accuracy of single/multiple crop mapping for
the calibration dataset (n = 5000). A higher F1 score (i.e., closer to 1) indicates higher
accuracy. It is important to mention that we implemented two threshold criteria to detect
NDVI peaks: a minimum NDVI value of 0.35 and a minimum interval of 80 days between
consecutive peaks. Figure 4 illustrates how applying additional thresholds and parameters,
such as SG window sizes and peak widths, affects F1 score variations.
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various Savitzky–Golay (SG) smoothing combinations, SG window sizes, and peak width parameters.

The application of the SG smoothing generally enhanced the accuracy of peak detection
and mapping. For instance, when the peak width criterion was omitted (i.e., peak width
set to 0), the F1 score obtained using the original NDVI time series as input was 0.762.
However, when employing SG filtering with window sizes ranging from 5 to 13 for 8-day
MODIS composites, the F1 scores notably improved, falling between 0.831 and 0.889.
This improvement underscores the importance of data denoising. The presence of abrupt
increases and decreases in the original NDVI time series complicates its direct use for
accurate peak detection or the mapping of cropping patterns.

For SG filter window sizes ranging from five to eleven on MODIS composites, F1
scores increased and then decreased as the peak width criterion was adjusted from zero to
seven. The optimal F1 scores were achieved with a peak width threshold of three to four
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MODIS composites (equivalent to 24–32 days). Peaks with a duration shorter than 24 days
typically do not reflect genuine crop growth cycles. Utilizing an excessively broad peak
width threshold, such as seven 8-day MODIS composites, poses the risk of overlooking
narrower peaks. This oversight could result in the misclassification of areas with multiple
cropping cycles as having only a single crop cycle. Moreover, employing wider SG filter
window sizes, such as 13, resulted in diminished peak detection accuracy compared to the
outcomes from narrower window sizes. This drop in accuracy was particularly notable
when broader peak width criteria were applied.

The optimal parameter combination, yielding the highest F1 score of 0.928, involved
an SG moving window size of five and a peak width of four. These calibrated parameters
were applied to map single/multiple cropping patterns across all cropland areas from 2001
to 2023.

3.2. Annual Cropping Pattern Maps and Accuracy Assessment

Accuracy assessment of single/multiple cropping was evaluated on a pixel-by-pixel
basis at a 250 m resolution for selected mapping years of 2001, 2011, and 2021. As depicted
in Table 1, the overall accuracy ranged from 89.7% to 92.0%, and corresponding F1 scores
0.921 to 0.943. These F1 scores align closely with those derived from the training dataset,
indicating robust model performance. The user accuracy (UA) for single crop classifications
was high, above 94% for all three mapping years. The UA for multiple crop classifications
were lower, ranged from 81.9% to 84.4%. A closer examination of NDVI time series data
for misclassifications of multiple crops suggested that they predominantly occurred in the
southern provinces. This issue is largely attributed to the increased levels of uncertainty
in NDVI time-series data caused by cloud cover and rain, which are more prevalent in
these regions.

Table 1. Pixel-wise (250 m) accuracy assessment for the 2001, 2011, and 2021 cropping pattern mapping.

Reference

2001 2011 2021

SC MC SC MC SC MC

SC 210 13 230 11 216 13

MC 23 104 17 92 20 101

OA (F1) 89.7 (0.921) 92.0 (0.943) 90.6 (0.929)

SC UA: 94.2 PA: 90.1 UA: 95.4 PA: 93.1 UA: 94.3 PA: 91.5

MC UA: 81.9 PA: 88.9 UA: 84.4 PA: 89.3 UA: 83.5 PA: 88.6
SC: Single crop; MC: Multiple crop; OA: Overall accuracy; UA: User’s accuracy; PA: Producer’s accuracy.

The spatial distributions of single/multiple crops are depicted in Figure 5. To simplify
the visualization, only the map for 2023 is displayed. Areas with a concentration of multiple
cropping practices include the provinces of Henan, Shandong, Hebei, Anhui, and Jiangsu
(Figure 5c,d). As reported in Chen et al. [30], the varieties of multiple cropping systems vary
by region. For instance, the provinces of Henan, Shandong, and Hebei are predominantly
characterized by wheat–corn double cropping patterns. In contrast, Anhui and Jiangsu are
primarily associated with wheat–rice double cropping systems. Single cropping systems
are predominantly found in the northern and northwestern regions of China, including the
provinces of Heilongjiang, Jilin, Liaoning, the Inner Mongolia Autonomous Region, Gansu
Province, and certain areas of the Xinjiang Uygur Autonomous Region (Figure 5a,b). This
prevalence is attributed to the region’s climatic conditions, which feature a colder climate
and shorter growing season in comparison to the more temperate and subtropical areas
of China.
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their locations are indicated by red dots: (a) Northeast China Plain, (b) Qinghai-Tibet Plateau,
(c) North China Plain, (d) Yangtze Plain, and (e) Southern China. Only the 2023 map is presented
here for simplicity.

3.3. Trend Analysis of Cropping Intensity

At the national level, the percentages of multiple crops within all cropland from the
year 2001 to 2023 are depicted in Figure 6. The percentages ranged from 29.6% to 35.2%.
Generally, there was a decline from 2001, reaching the lowest point around 2013. From
2013 onward, there was an upward trend with fluctuations, suggesting a shift toward more
intensive agricultural practices over the recent period. Toward the latter part of the timeline,
the percentage approached some of the higher levels observed (~34%) within the series, yet
it remained marginally below the initial levels recorded in 2001.

The analysis of crop intensity at a local level was conducted through the examination
of 3 km × 3 km analytical windows, with trend analysis of 268,350 windows, each incorpo-
rating at least one 250 m cropland pixel. Approximately 14.5% of these windows displayed
significant trends (p < 0.05) according to the Mann–Kendall test, indicating monotonic
changes in cropping patterns between 2001 and 2023. Additional Sen’s slope analysis
pinpointed that a specific subset of these windows (n = 34,569 or roughly 12.9%) showed
either positive or negative changes.
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Figure 7 shows the locations where significant shifts in crop intensity have been
quantitatively identified using the Mann–Kendall test and Sen’s slope. Notably, about
half of these highlighted areas exhibited upward trends, suggesting an increase in crop
intensity over the observed period. Such upward trends were particularly prominent
in clusters located within the Hebei and Shandong Provinces. Conversely, a noticeable
decrease in crop intensity was observed in Shaanxi and Gansu Provinces. These findings
underscore the spatial variability of agricultural intensification and retreat, offering insights
into regional agricultural dynamics. Figure 8 offers further analysis on changes in cropping
intensity, highlighting NDVI time-series data from 2001 to 2023 for two selected 3 km
sample windows. Figure 8a illustrates the transition from multiple to single cropping
practices, and Figure 8b shows the shift from single to multiple cropping practices. The
Sen’s slope values for these two windows are −0.0245 and 0.0279, respectively, indicating
decreasing and increasing trends in cropping intensity. For these sample windows, average
NDVI values were computed for all cropland pixels within each window across each
MODIS composite.
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4. Discussion

Our cropping pattern mapping started with the application of two threshold criteria
for NDVI peak detection: a baseline NDVI value of 0.35 and a minimum 80-day interval
between successive peaks. Data smoothing techniques, specifically the SG smoother, proved
essential for eliminating spurious fluctuations, with smaller moving window sizes (five to
seven MODIS composites) being particularly effective. Overly aggressive smoothing of
NDVI time-series data may adversely affect peak detection and the accurate mapping of
cropping patterns. Similar results were reported in other studies focusing on the impacts of
data smoothing on land cover mapping [22].

Different from previous studies, we incorporated an additional peak width threshold
to effectively exclude ’narrow’ peaks that do not correspond to the crop-growing cycle.
Again, there was no prior knowledge on the choice of threshold. Our key optimization step
involved utilizing comprehensive training data, enabling the simultaneous fine-tuning of
data smoothing and peak detection parameters. Despite the potential challenges and time
required to gather such data [15], we believe that it should be an essential initial step in
most remote sensing-based cropping pattern mapping tasks. Without a good calibration
dataset and optimized mapping algorithms, achieving accurate and reliable mapping of
cropping patterns over extended periods would be significantly hindered.

In addition to conducting pixel-wise accuracy assessments, we explored other crop-
ping intensity map products to further validate our mapping results. We note that many
available cropping intensity products differ in temporal and spatial resolutions, as well as in
the cropland masks applied. We compared our results with GCI30, a global 30 m cropping
intensity mapping product developed by Zhang et al. [30]. We selected GCI30 due to its
higher spatial resolution (30 m) and strong overall accuracy (above 90%). GCI30 was de-
rived using a combination of Landsat 7 ETM+, Landsat 8 OLI, and Sentinel-2 MSI imagery,
with MODIS Vegetation Index (MOD13Q1) data used for gap-filling purposes. The dataset
represents a single-layer cropping pattern averaged over a three-year window (2016–2018).
We also introduced the GCI250 dataset by Liu et al. [17] for comparison, as it shares the
same spatial resolution (250 m) and similar temporal coverage (2001–2019) as our dataset.
GCI250 was derived using the Enhanced Vegetation Index (EVI) from MOD13Q1 data,
processed through a sixth-order polynomial function. Table 2 compares the proportions of
single and multiple cropping areas across the datasets. For consistency, the proportions
in GCI250 and our data products were averaged over the period 2016–2018 to align with
the GCI30 dataset. Among the datasets, GCI250 exhibited the highest proportion of single
cropping (82.8%). The proportions of single cropping in GCI30 and our dataset were 74.9%
and 67.6%, respectively. Spatially, the comparison between GCI30 and our results revealed
a more consistent pattern of single and multiple cropping across China. In contrast, GCI250
tended to overestimate single cropping and underestimate multiple cropping.

Table 2. Proportions of single and multiple cropping intensity in China from different studies.

Existing Products
and Studies Study Period Spatial

Resolution
Single Cropping Area (%)

(2016–2018)
Multiple Cropping

Area (%) (2016–2018) MCI of China

GCI30 [29] 2016–2018 30 m 74.9 25.1 1.25

GCI250 [17] 2001–2019 250 m 82.8 17.2 1.17

Our study 2001–2023 250 m 67.6 32.4 1.32

To enable pixel-wise comparisons, we aggregated the 30 m resolution GCI30 dataset
to 250 m to align with the MODIS-derived cropping patterns. Both the GCI250 and our
dataset were averaged over the 2016–2018 period using a voting approach. To mitigate
inconsistencies, we excluded mismatched areas caused by differing cropland masks and
missing data across the three datasets. For the remaining consistent cropland extent, we
compared our dataset and GCI250 against the aggregated GCI30, used as a reference
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(ground truth). The overall agreement between our dataset and GCI30 was 92%, while
the agreement between GCI250 and GCI30 was 88%. These results indicate that our
MODIS-derived 250 m cropping pattern aligns well with the high-resolution GCI30 dataset,
demonstrating the robustness of our mapping approach.

The observed differences in cropping patterns can largely be attributed to the cropland
masks used in these studies. Zhang et al. [31] integrated ten existing land cover maps to
identify common cropland pixels for the development of GCI30. In contrast, Liu et al. [18]
employed the Self-adapting Statistics Allocation Model of Global Cropland (SASAM-
GC) [32] and used probabilities greater than 10% cropland as the mask for GCI250. This
approach likely led to the inclusion of more cropland pixels with mixed signals from
non-cropland land cover types, which may explain the high percentage (82.8%) of single-
cropping patterns identified in their products. In our study, we utilized ESRI’s 10 m land
cover product to identify relatively pure cropland pixels by applying a 90% threshold
within each 250 m grid. Consequently, our cropping pattern can be considered more
representative of actual cropland use, minimizing the influence of mixed signals from
non-cropland cover types.

Within the common cropland mask used across these three products, differences in
single and multiple cropping patterns were driven by the mapping algorithms. Zhang
et al. [31] relied on detecting transition points within time-series data, whereas our approach
focused on peak detection combined with peak width thresholding. Liu et al. [18] used a
sixth-order polynomial fitting method to map cropping intensity. Each of these methods
has its own strengths and weaknesses, although a pixel-wise comparison showed better
agreement between our data and GCI30.

Our study provides valuable insights into the spatial and temporal dynamics of single
and multiple cropping patterns in China from 2001 to 2023. The combined use of the
Mann–Kendall test and Sen’s slope analysis underscores the changes occurring within
China’s agricultural landscape. Our findings reveal a fluctuating yet generally increasing
trend in multiple cropping practices over the observed period, particularly post-2010. This
resurgence may signify a strategic response to enhancing food security and optimizing
land use efficiency amidst the pressures of urbanization and climate change [33–35]. The
pronounced clusters of increased crop intensity in Hebei and Shandong provinces, as iden-
tified in our analyses, suggest regional hotspots of agricultural intensification that may be
driven by favorable policies, technological advancements, or both. Conversely, the decline
observed in Shaanxi and Gansu provinces could reflect the challenges posed by water
scarcity, soil degradation, or policy shifts favoring less intensive farming practices [36,37].

At the national scale, from 2001 to 2023, we observed a trend that initially showed
a decrease and then an increase in the percentages of multiple crops (see Figure 6). This
pattern prompted us to conduct a further analysis for the period from 2013 to 2023, using the
Mann–Kendall test and Sen’s slope, to explore more recent trends. Within this timeframe, a
subset of 3 km analytical windows exhibited either positive (n = 8400, or 3.13%) or negative
(n = 5172, or 1.93%) trends, which were much fewer in comparison to the entire 2001 to
2023 period. One reason for this discrepancy is that the sample size for this time series
analysis encompasses only 11 years, potentially limiting the detection of broader trends.

The 8-day MODIS NDVI datasets were found to offer sufficient temporal resolution
for the large-scale mapping of cropping patterns. However, a limitation of this study
was its focus on ’pure’ cropland pixels at the 250 m spatial resolution. For MODIS pixels
containing partial croplands, applying peak detection directly may lead to significant
uncertainties due to interference from other land cover types, such as forests or urban areas,
affecting the cropland’s temporal signals [38]. A possible solution involves using spatial
proximity to allocate cropping patterns based on neighboring pure croplands, where single
or multiple crops can be mapped with greater accuracy. Furthermore, utilizing harmonized
Landsat and Sentinel data [39] could facilitate the generation of 30 m resolution cropping
pattern map products [31,40,41]. At the finer spatial resolution, the issue of land cover
mixture can be substantially mitigated. In future studies, we plan to update our single-
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and double-cropping map products by integrating continuous or dynamic land use/cover
datasets for China, including CLCD [42] and CACD [43]. Future research should also
consider the integration of additional data sources, including socio-economic datasets,
to identify the driving factors behind the observed trends. Investigating the effects of
policy changes and technological advancements on cropping practices could offer deeper
insights into sustainable agricultural intensification and food security strategies in China
and other regions.

5. Conclusions

This study focused on mapping large-scale annual cropping patterns using a peak de-
tection algorithm applied to 8-day MODIS NDVI time-series data. Through the utilization
of a calibration dataset, we employed a grid-search method to fine-tune the selection of
parameters, such as the SG smoothing window size and peak width. Our results indicate
that an SG moving window size of five to seven MODIS composites, coupled with a peak
width of four MODIS composites, yielded the highest peak detection accuracy. Pixel-wise
accuracy assessments for the mapping years of 2001, 2011, and 2021 showed good over-
all accuracy, ranging between 89.7% and 92.0%. Nationally, the percentage of multiple
crops varied from 29.6% to 35.2% from 2001 to 2023. At a more granular level of 3 km
analytical windows, approximately 12.9% exhibited significant changes, either positive
or negative, as determined by the Mann–Kendall test and Sen’s slope analyses. Notably,
spatial clusters of both increasing and decreasing trends in cropping intensity were identi-
fied, particularly in the provinces of Hebei, Shandong, Shaanxi and Gansu, respectively.
This medium-resolution annual cropping intensity data in China can be used to explore
cropping potential, guide land use planning, adjust agricultural structure, estimate grain
yield, and coordinate the food trade.
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