Integrating Satellite Observations and Hydrological Models to Unravel Large TROPOMI Methane Emissions in South Sudan Wetlands
<p>(<b>a</b>) South Sudan study region. Data layers from Stamen Terrain-USA/OSM and OpenStreetMap Humanitarian Data Model. (<b>b</b>) South Sudan river streams within South Sudan borders. The red dots are Hydroweb river altimetry measurement points used in the study.</p> "> Figure 2
<p>The TROPOMI XCH<sub>4</sub> annual average enhancement over the South Sudan Wetlands Region (SSWR) from 2018 to 2022 at 0.1° × 0.1° resolution. The SSWR, indicated by the black rectangle (latitude 5–10° N and longitude 28–34.5° E), encompasses the area of interest.</p> "> Figure 3
<p>Monthly CH<sub>4</sub> emissions for the South Sudan Wetlands Region (SSWR) derived from TROPOMI data from 2018 to 2022. The Y-axis represents CH<sub>4</sub> emissions anomalies in Tg CH<sub>4</sub>. The anomalies in CH<sub>4</sub> emissions are calculated as the deviation from the multi-year monthly mean, standardized by dividing the difference by the standard deviation (SD) of the observed values for that particular month across all years. Positive values indicate higher-than-average emissions, while negative values represent lower-than-average emissions.</p> "> Figure 4
<p>The TROPOMI-inferred CH<sub>4</sub> enhancements (black), river altimetry (pink), GRACE equivalent water thickness (green), and ENSO index (blue and red) for the South Sudan Wetland Region (SSWR) highlighting the interconnected dynamics. The anomalies in CH<sub>4</sub> emissions are calculated as the deviation from the multi-year monthly mean, standardized by dividing the difference by the standard deviation (SD) of the observed values for that particular month across all years. Positive values indicate higher-than-average emissions, while negative values represent lower-than-average emissions.</p> "> Figure 5
<p>(<b>a</b>) South Sudan Wetlands Region (SSWR) catchments, and (<b>b</b>) TROPOMI CH<sub>4</sub> emission in comparison to river altimetry measurements per catchment.</p> "> Figure 6
<p>Correlation between PCR-GLOBWB sub-surface parameters anomalies and TROPOMI CH₄ emission anomalies.</p> "> Figure 7
<p>Correlation between PCR-GLOBWB surface parameters anomalies and TROPOMI CH₄ emission anomalies.</p> "> Figure 8
<p>Correlation between PCR-GLOBWB river parameters anomalies and TROPOMI CH₄ emission anomalies.</p> "> Figure 9
<p>Comparison of normalized TROPOMI CH₄ emissions from the SSWR (black) alongside normalized water levels of Lake Victoria (green). The bars indicate the phases of the El Niño Southern Oscillation (ENSO), with El Niño events represented in blue and La Niña events in red, highlighting potential correlations between climatic phenomena and CH₄ emissions.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. TROPOMI CH4 Data and Emission Quantification
2.3. Evaluation Data
2.3.1. PCR-GLOBWB Hydrological Model
2.3.2. Water Height Measurements
2.3.3. Multivariate El Niño/Southern Oscillation (ENSO) Index (MEI.v2)
2.3.4. Equivalent Water Height GRACE Data
3. Results
3.1. TROPOMI XCH4 Enhancements
3.2. South Sudan Emission Quantification
3.3. TROPOMI CH4 and Hydrological Data Assessment
3.3.1. Catchment River Altimetry and TROPOMI CH4 Emissions
3.3.2. Hydrological Model Data Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Xu, X.; Fang, C.; Li, B.; Nie, M. Differences in the Temperature Dependence of Wetland CO2 and CH4 Emissions Vary with Water Table Depth. Nat. Clim. Change 2021, 11, 766–771. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, Carbon, and Climate Change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Nahlik, A.M.; Fennessy, M.S. Carbon Storage in US Wetlands. Nat. Commun. 2016, 7, 13835. [Google Scholar] [CrossRef] [PubMed]
- IPCC Summary for Policymakers: Synthesis Report. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [CrossRef]
- Rosentreter, J.A.; Borges, A.V.; Deemer, B.R.; Holgerson, M.A.; Liu, S.; Song, C.; Melack, J.; Raymond, P.A.; Duarte, C.M.; Allen, G.H.; et al. Half of Global Methane Emissions Come from Highly Variable Aquatic Ecosystem Sources. Nat. Geosci. 2021, 14, 225–230. [Google Scholar] [CrossRef]
- Shaw, J.T.; Allen, G.; Barker, P.; Pitt, J.R.; Pasternak, D.; Bauguitte, S.J.-B.; Lee, J.; Bower, K.N.; Daly, M.C.; Lunt, M.F.; et al. Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Glob. Biogeochem. Cycles 2022, 36, e2021GB007261. [Google Scholar] [CrossRef]
- Gerlein-safdi, C.; Bloom, A.A.; Plant, G.; Kort, E.A.; Ruf, C.S. Improving Representation of Tropical Wetland Methane Emissions With CYGNSS Inundation Maps. Glob. Biogeochem. Cycles 2021, 35, e2020GB006890. [Google Scholar] [CrossRef]
- Villa, J.A. Functional Representation of Biological Components in Methane-Cycling Processes in Wetlands Improves Modeling Predictions. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005794. [Google Scholar] [CrossRef]
- Sheng, J.X.; Jacob, D.J.; Turner, A.J.; Maasakkers, J.D.; Sulprizio, M.P.; Bloom, A.A.; Andrews, A.E.; Wunch, D. High-Resolution Inversion of Methane Emissions in the Southeast US Using SEAC4RS Aircraft Observations of Atmospheric Methane: Anthropogenic and Wetland Sources. Atmos. Chem. Phys. 2018, 18, 6483–6491. [Google Scholar] [CrossRef]
- Pandey, S.; Houweling, S.; Krol, M.; Aben, I.; Monteil, G.; Nechita-Banda, N.; Dlugokencky, E.J.; Detmers, R.; Hasekamp, O.; Xu, X.; et al. Enhanced Methane Emissions from Tropical Wetlands during the 2011 La Niña. Sci. Rep. 2017, 7, 45759. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zimmermann, N.E.; Stenke, A.; Li, X.; Hodson, E.L.; Zhu, G.; Huang, C.; Poulter, B. Emerging Role of Wetland Methane Emissions in Driving 21st Century Climate Change. Proc. Natl. Acad. Sci. USA 2017, 114, 9647–9652. [Google Scholar] [CrossRef] [PubMed]
- Albuhaisi, Y.A.Y.; van der Velde, Y.; Houweling, S. The Importance of Spatial Resolution in the Modeling of Methane Emissions from Natural Wetlands. Remote Sens. 2023, 15, 2840. [Google Scholar] [CrossRef]
- Petrescu, A.M.R.; Lohila, A.; Tuovinen, J.-P.; Baldocchi, D.D.; Desai, A.R.; Roulet, N.T.; Vesala, T.; Dolman, A.J.; Oechel, W.C.; Marcolla, B.; et al. The Uncertain Climate Footprint of Wetlands Under Human Pressure. Proc. Natl. Acad. Sci. USA 2015, 112, 4594–4599. [Google Scholar] [CrossRef] [PubMed]
- Albuhaisi, Y.A.Y.; van der Velde, Y.; De Jeu, R.; Zhang, Z.; Houweling, S. High-Resolution Estimation of Methane Emissions from Boreal and Pan-Arctic Wetlands Using Advanced Satellite Data. Remote Sens. 2023, 15, 3433. [Google Scholar] [CrossRef]
- Hu, H.; Landgraf, J.; Detmers, R.; Borsdorff, T.; Aan de Brugh, J.; Aben, I.; Butz, A.; Hasekamp, O. Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophys. Res. Lett. 2018, 45, 3682–3689. [Google Scholar] [CrossRef]
- Frankenberg, C.; Aben, I.; Bergamaschi, P.; Dlugokencky, E.J.; Van Hees, R.; Houweling, S.; Van Der Meer, P.; Snel, R.; Tol, P. Global Column-Averaged Methane Mixing Ratios from 2003 to 2009 as Derived from SCIAMACHY: Trends and Variability. J. Geophys. Res. Atmos. 2011, 116, 1–12. [Google Scholar] [CrossRef]
- Pandey, S.; Houweling, S.; Lorente, A.; Borsdorff, T.; Tsivlidou, M.; Anthony Bloom, A.; Poulter, B.; Zhang, Z.; Aben, I. Using Satellite Data to Identify the Methane Emission Controls of South Sudan’s Wetlands. Biogeosciences 2021, 18, 557–572. [Google Scholar] [CrossRef]
- Lunt, M.M.; Palmer, P.P.; Feng, L.; Taylor, C.C.; Boesch, H.; Parker, R.R. An Increase in Methane Emissions from Tropical Africa between 2010 and 2016 Inferred from Satellite Data. Atmos Chem Phys 2019, 19, 14721–14740. [Google Scholar] [CrossRef]
- Fisher, R.; Lowry, D.; Lanoisellé, M.; Brownlow, R.; Pyle, J.A.; Cain, M.; Warwick, N.; Skiba, U.; Skiba, U.; Drewer, J.; et al. Measurement of the 13C Isotopic Signature of Methane Emissions From Northern European Wetlands. Glob. Biogeochem. Cycles 2017, 31, 605–623. [Google Scholar] [CrossRef]
- Methane Cycling in Wetland Ecosystems; Vrije Universiteit Amsterdam: Amsterdam, The Netherlands, 2024.
- Cui, M.; Ma, A.; Qi, H.; Bai, Z.; Zhuang, G.; Zhao, G. Warmer Temperature Accelerates Methane Emissions From the Zoige Wetland on the Tibetan Plateau Without Changing Methanogenic Community Composition. Sci. Rep. 2015, 5, 11616. [Google Scholar] [CrossRef] [PubMed]
- Koffi, E.N.; Bergamaschi, P.; Alkama, R.; Cescatti, A. An Observation-Constrained Assessment of the Climate Sensitivity and Future Trajectories of Wetland Methane Emissions. Sci. Adv. 2020, 6, eaay4444. [Google Scholar] [CrossRef]
- Hardy, A.; Palmer, P.I.; Oakes, G. Satellite Data Reveal How Sudd Wetland Dynamics Are Linked with Globally-Significant Methane Emissions. Environ. Res. Lett. 2023, 18, 074044. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Varon, D.J.; Jacob, D.J.; McKeever, J.; Jervis, D.; Durak, B.O.A.; Xia, Y.; Huang, Y. Quantifying Methane Point Sources From Fine-Scale Satellite Observations of Atmospheric Methane Plumes. Atmos. Meas. Tech. 2018, 11, 5673–5686. [Google Scholar] [CrossRef]
- van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P/TROPOMI NO2 Slant Column Retrieval: Method, Stability, Uncertainties, and Comparisons Against OMI. 2019. Available online: https://amt.copernicus.org/preprints/amt-2019-471/amt-2019-471.pdf (accessed on 4 June 2023). [CrossRef]
- Dobber, M.; Kleipool, Q.; Veefkind, P.; Levelt, P.F.; Rozemeijer, N.M.; Hoogeveen, R.W.; Aben, I.; de Vries, J.; Otter, G. From Ozone Monitoring Instrument (OMI) to Tropospheric Monitoring Instrument (TROPOMI). In Proceedings of the International Conference on Space Optics 2008, Toulouse, France, 14–17 October 2008. [Google Scholar] [CrossRef]
- Liu, M.; Van der A, R.; van Weele, M.; Eskes, H.; Lu, X.; Veefkind, P.; de Laat, J.; Kong, H.; Wang, J.; Sun, J.; et al. A New Divergence Method to Quantify Methane Emissions Using Observations of Sentinel-5p TROPOMI. ESS Open Archive 2021, 48. [Google Scholar] [CrossRef]
- Reuter, M.; Buchwitz, M.; Schneising, O.; Krautwurst, S.; O’Dell, C.; Richter, A.; Bovensmann, H.; Burrows, J.P. Towards monitoring localized CO2 emissions from space: Co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmos. Chem. Phys. 2019, 19, 9371–9383. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J.P.; Borsdorff, T.; Deutscher, N.M.; Feist, D.G.; Griffith, D.; Hase, F.; et al. A Scientific Algorithm to Simultaneously Retrieve Carbon Monoxide and Methane From TROPOMI Onboard Sentinel-5 Precursor. Atmos. Meas. Tech. 2019, 12, 6771–6802. [Google Scholar] [CrossRef]
- Maasakkers, J.D.; Varon, D.J.; Elfarsdóttir, A.; McKeever, J.; Jervis, D.; Mahapatra, G.; Pandey, S.; Lorente, A.; Borsdorff, T.; Foorthuis, L.R.; et al. Using Satellites to Uncover Large Methane Emissions From Landfills. Sci. Adv. 2022, 8, eabn9683. [Google Scholar] [CrossRef]
- Qu, Z.; Jacob, D.J.; Shen, L.; Lu, X.; Zhang, Y.; Scarpelli, T.R.; Nesser, H.; Sulprizio, M.P.; Maasakkers, J.D.; Bloom, A.A.; et al. Global Distribution of Methane Emissions: A Comparative Inverse Analysis of Observations From the TROPOMI and GOSAT Satellite Instruments. Atmos. Chem. Phys. 2021, 21, 14159–14175. [Google Scholar] [CrossRef]
- Hu, H.; Hasekamp, O.; Butz, A.; Galli, A.; Landgraf, J.; Aan De Brugh, J.; Borsdorff, T.; Scheepmaker, R.; Aben, I. The Operational Methane Retrieval Algorithm for TROPOMI. Atmos. Meas. Tech. 2016, 9, 5423–5440. [Google Scholar] [CrossRef]
- Hasekamp, O.; Lorente, A.; Hu, H.; Butz, A.; Aan De Brugh, J.; Landgraf, J. Algorithm Theoretical Baseline Document for Sentinel-5 Precursor Methane Retrieval. Available online: https://sentinel.esa.int/web/sentinel/home (accessed on 4 June 2023).
- Butz, A.; Galli, A.; Hasekamp, O.; Landgraf, J.; Tol, P.; Aben, I. TROPOMI Aboard Sentinel-5 Precursor: Prospective Performance of CH 4 Retrievals for Aerosol and Cirrus Loaded Atmospheres. Remote Sens. Environ. 2012, 120, 267–276. [Google Scholar] [CrossRef]
- Buchwitz, M.; Schneising, O.; Reuter, M.; Heymann, J.; Krautwurst, S.; Bovensmann, H.; Burrows, J.P.; Boesch, H.; Parker, R.J.; Somkuti, P.; et al. Satellite-Derived Methane Hotspot Emission Estimates Using a Fast Data-Driven Method. Atmos. Chem. Phys. 2017, 17, 5751–5774. [Google Scholar] [CrossRef]
- Bierkens, M.F.P. Global Hydrology 2015: State, Trends, and Directions. Water Resour. Res. 2015, 51, 4923–4947. [Google Scholar] [CrossRef]
- de Graaf, I.E.M.; Sutanudjaja, E.; van Beek, L.P.H.; Bierkens, M.F.P. A High-Resolution Global-Scale Groundwater Model. Hydrol. Earth Syst. Sci. 2015, 19, 823–837. [Google Scholar] [CrossRef]
- Sutanudjaja, E.; van Beek, L.P.H.; Wanders, N.; Wada, Y.; Bosmans, J.; Drost, N.; van der Ent, R.; de Graaf, I.; Hoch, J.M.; de Jong, K.; et al. PCR-GLOBWB 2: A 5 Arcmin Global Hydrological and Water Resources Model. Geosci. Model. Dev. 2018, 11, 2429–2453. [Google Scholar] [CrossRef]
- Santos da Silva, J.; Calmant, S.; Seyler, F.; Rotunno Filho, O.C.; Cochonneau, G.; Mansur, W.J. Water Levels in the Amazon Basin Derived from the ERS 2 and ENVISAT Radar Altimetry Missions. Remote Sens. Environ. 2010, 114, 2160–2181. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Arsen, A.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A Lake Database to Monitor in the Near Real Time Water Level and Storage Variations from Remote Sensing Data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Zhang, Y.; Jacob, D.J.; Lu, X.; Maasakkers, J.D.; Scarpelli, T.R.; Sheng, J.X.; Shen, L.; Qu, Z.; Sulprizio, M.P.; Chang, J.; et al. Attribution of the Accelerating Increase in Atmospheric Methane during 2010-2018 by Inverse Analysis of GOSAT Observations. Atmos. Chem. Phys. 2021, 21, 3643–3666. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Michel, S.E.; Lan, X.; Röckmann, T.; Denier van der Gon, H.A.C.; Schmitt, J.; Palmer, P.I.; Dyonisius, M.N.; et al. Atmospheric Methane: Comparison Between Methane’s Record in 2006–2022 and During Glacial Terminations. Glob. Biogeochem. Cycles 2023, 37, e2023GB007875. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Martinez-Velarte, M.C.; Landgraf, J. Accounting for Surface Reflectance Spectral Features in TROPOMI Methane Retrievals. Atmos. Meas. Tech. 2023, 16, 1597–1608. [Google Scholar] [CrossRef]
- Zeleke, T.T.; Zakaria Wani Lukwasa, A.; Ture Beketie, K.; Yayeh Ayal, D. Analysis of Spatio-Temporal Precipitation and Temperature Variability and Trend over Sudd-Wetland, Republic of South Sudan. Clim. Serv. 2024, 34, 100451. [Google Scholar] [CrossRef]
- Dong, B.; Peng, S.; Liu, G.; Pu, T.; Gerlein-Safdi, C.; Prigent, C.; Lin, X. Underestimation of Methane Emissions From the Sudd Wetland: Unraveling the Impact of Wetland Extent Dynamics. Geophys. Res. Lett. 2024, 51, e2024GL110690. [Google Scholar] [CrossRef]
- Siderius, C.; Van Walsum, P.E.V.; Roest, C.W.J.; Smit, A.A.M.F.R.; Hellegers, P.J.G.J.; Kabat, P.; Van Ierland, E.C. The Role of Rainfed Agriculture in Securing Food Production in the Nile Basin. Environ. Sci. Policy 2016, 61, 14–23. [Google Scholar] [CrossRef]
- Rhodes, R.H.; Brook, E.J.; McConnell, J.R.; Blunier, T.; Sime, L.C.; Faïn, X.; Mulvaney, R. Atmospheric Methane Variability: Centennial-Scale Signals in the Last Glacial Period. Glob. Biogeochem. Cycles 2017, 31, 575–590. [Google Scholar] [CrossRef]
- Bloom, A.A.; Palmer, P.I.; Fraser, A.; Reay, D.S.; Frankenberg, C. Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data. Science 2010, 327, 322–325. [Google Scholar] [CrossRef]
- Gumbricht, T.; Roman-Cuesta, R.M.; Verchot, L.; Herold, M.; Wittmann, F.; Householder, E.; Herold, N.; Murdiyarso, D. An Expert System Model for Mapping Tropical Wetlands and Peatlands Reveals South America as the Largest Contributor. Glob. Chang. Biol. 2017, 23, 3581–3599. [Google Scholar] [CrossRef]
- Jerman, V.; Metje, M.; Mandić-Mulec, I.; Frenzel, P. Wetland restoration and methanogenesis: The activity of microbial populations and competition for substrates at different temperatures. Biogeosciences 2009, 6, 1127–1138. [Google Scholar] [CrossRef]
PCR-GLOBWB Parameter | Description | Unit | |
---|---|---|---|
Sub-surface parameters | Capillary rise | The upward movement of water in porous materials due to surface tension. | m.month−1 |
Groundwater Recharge | The process of water percolating through the ground to replenish underground aquifers. | m.month−1 | |
Upper soil moisture | The moisture content in the upper soil layer (5 cm). | m3.m−3 | |
Lower soil moisture | The moisture content in deeper soil layers (5−30 cm). | m3.m−3 | |
Surface water parameters | Surface water level | The water height in rivers, lakes, or other surface water bodies. | m |
Near-surface soil saturation degree | A measure of how saturated or waterlogged the top layer of soil is expressed as a percentage. | % | |
Flood inundation depth | The depth of water covering an area during a flood event. | m | |
Flood inundation volume | The total volume of water that inundates an area during a flood. | m3 | |
Fraction of surface water | The proportion of water present on the Earth’s surface in comparison to the total water volume of the cell area. | % | |
River parameters | Channel storage | The water within river channels often fluctuates with river flow and precipitation events. | m3 |
Discharge | The volume of water flowing through a particular cross-section in a river or stream. | m3.month−1 |
Time | XCH4 Enhancement (ppb) | Coverage (%) | Wind Speed (m/s) | Emission (Tg/yr) |
---|---|---|---|---|
2018 | 17.1 ± 4.3 | 55.0 | 2.8 ± 0.3 | 9.63 ± 2.9 |
2019 | 19.1 ± 4.3 | 60.3 | 2.7 ± 0.3 | 9.29 ± 2.8 |
2020 | 26.7 ± 4.7 | 54.6 | 2.9 ± 0.2 | 17.0 ± 3.5 |
2021 | 22.6 ± 5.2 | 59.6 | 2.8 ± 0.2 | 12.2 ± 3.6 |
2022 | 23.0 ± 5.2 | 52.9 | 3.0 ± 0.3 | 15.6 ± 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albuhaisi, Y.A.Y.; van der Velde, Y.; Pandey, S.; Houweling, S. Integrating Satellite Observations and Hydrological Models to Unravel Large TROPOMI Methane Emissions in South Sudan Wetlands. Remote Sens. 2024, 16, 4744. https://doi.org/10.3390/rs16244744
Albuhaisi YAY, van der Velde Y, Pandey S, Houweling S. Integrating Satellite Observations and Hydrological Models to Unravel Large TROPOMI Methane Emissions in South Sudan Wetlands. Remote Sensing. 2024; 16(24):4744. https://doi.org/10.3390/rs16244744
Chicago/Turabian StyleAlbuhaisi, Yousef A. Y., Ype van der Velde, Sudhanshu Pandey, and Sander Houweling. 2024. "Integrating Satellite Observations and Hydrological Models to Unravel Large TROPOMI Methane Emissions in South Sudan Wetlands" Remote Sensing 16, no. 24: 4744. https://doi.org/10.3390/rs16244744
APA StyleAlbuhaisi, Y. A. Y., van der Velde, Y., Pandey, S., & Houweling, S. (2024). Integrating Satellite Observations and Hydrological Models to Unravel Large TROPOMI Methane Emissions in South Sudan Wetlands. Remote Sensing, 16(24), 4744. https://doi.org/10.3390/rs16244744