Weak Target Detection Based on Full-Polarization Scattering Features under Sea Clutter Background
"> Figure 1
<p>Flowchart of the proposed feature-based detector.</p> "> Figure 2
<p>The range-time-intensity image of the sea clutter datasets. (<b>a</b>) #26 HH polarization. (<b>b</b>) #26 HV polarization. (<b>c</b>) #26 VH polarization. (<b>d</b>) #26 VV polarization.</p> "> Figure 3
<p>The average SCRs of ten sets of datasets.</p> "> Figure 4
<p>Polarization feature distributions of sea clutter range bins and target range bins (<math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>512</mn> </mrow> </semantics></math>). (<b>a</b>) Prs distribution of sea clutter range bins. (<b>b</b>) Prs distribution of target range bins. (<b>c</b>) Prd distribution of sea clutter range bins. (<b>d</b>) Prd distribution of target range bins. (<b>e</b>) Prf distribution of sea clutter range bins. (<b>f</b>) Prf distribution of target range bins.</p> "> Figure 4 Cont.
<p>Polarization feature distributions of sea clutter range bins and target range bins (<math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>512</mn> </mrow> </semantics></math>). (<b>a</b>) Prs distribution of sea clutter range bins. (<b>b</b>) Prs distribution of target range bins. (<b>c</b>) Prd distribution of sea clutter range bins. (<b>d</b>) Prd distribution of target range bins. (<b>e</b>) Prf distribution of sea clutter range bins. (<b>f</b>) Prf distribution of target range bins.</p> "> Figure 5
<p>Polarization feature distributions of sea clutter range bins and target range bins (<math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>2048</mn> </mrow> </semantics></math>). (<b>a</b>) Prs distribution of sea clutter range bins. (<b>b</b>) Prs distribution of target range bins. (<b>c</b>) Prd distribution of sea clutter range bins. (<b>d</b>) Prd distribution of target range bins. (<b>e</b>) Prf distribution of sea clutter range bins. (<b>f</b>) Prf distribution of target range bins.</p> "> Figure 5 Cont.
<p>Polarization feature distributions of sea clutter range bins and target range bins (<math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>2048</mn> </mrow> </semantics></math>). (<b>a</b>) Prs distribution of sea clutter range bins. (<b>b</b>) Prs distribution of target range bins. (<b>c</b>) Prd distribution of sea clutter range bins. (<b>d</b>) Prd distribution of target range bins. (<b>e</b>) Prf distribution of sea clutter range bins. (<b>f</b>) Prf distribution of target range bins.</p> "> Figure 6
<p>Polarization feature distributions of sea clutter range bins and target range bins (<math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>4096</mn> </mrow> </semantics></math>). (<b>a</b>) Prs distribution of sea clutter range bins. (<b>b</b>) Prs distribution of target range bins. (<b>c</b>) Prd distribution of sea clutter range bins. (<b>d</b>) Prd distribution of target range bins. (<b>e</b>) Prf distribution of sea clutter range bins. (<b>f</b>) Prf distribution of target range bins.</p> "> Figure 7
<p>Distributions of feature points of target bins and pure clutter in 3-D space when the length of subsequence L is set as (<b>a</b>) L = 512, (<b>b</b>) L = 1024, (<b>c</b>) L = 2048, (<b>d</b>) L = 4096.</p> "> Figure 8
<p>The decision convex hull with a false alarm of 1‰. (<b>a</b>) Distributions of clutter feature points in 3-D space, (<b>b</b>) decision convex hull constructed by clutter feature points.</p> "> Figure 9
<p>Detection probabilities of the proposed detector, tri-polarization feature detector [<a href="#B32-remotesensing-16-02987" class="html-bibr">32</a>] and DBEA detector [<a href="#B31-remotesensing-16-02987" class="html-bibr">31</a>] for ten datasets when the length of subsequence <math display="inline"><semantics> <mi>L</mi> </semantics></math> is set as (<b>a</b>) 512, (<b>b</b>) 1024, (<b>c</b>) 2048 and (<b>d</b>) 4096.</p> "> Figure 9 Cont.
<p>Detection probabilities of the proposed detector, tri-polarization feature detector [<a href="#B32-remotesensing-16-02987" class="html-bibr">32</a>] and DBEA detector [<a href="#B31-remotesensing-16-02987" class="html-bibr">31</a>] for ten datasets when the length of subsequence <math display="inline"><semantics> <mi>L</mi> </semantics></math> is set as (<b>a</b>) 512, (<b>b</b>) 1024, (<b>c</b>) 2048 and (<b>d</b>) 4096.</p> "> Figure 10
<p>Comparison average ROC curves. (<b>a</b>) The proposed detector and classical polarization detector, (<b>b</b>) the proposed detector and joint-fractal detector, (<b>c</b>) the proposed detector and tri-feature detector, (<b>d</b>) the proposed detector and graph connectivity detector.</p> "> Figure 10 Cont.
<p>Comparison average ROC curves. (<b>a</b>) The proposed detector and classical polarization detector, (<b>b</b>) the proposed detector and joint-fractal detector, (<b>c</b>) the proposed detector and tri-feature detector, (<b>d</b>) the proposed detector and graph connectivity detector.</p> ">
Abstract
:1. Introduction
2. Target Detection Model Analysis and Design of Polarization Feature Detector
2.1. Target Detection Model Analysis
2.2. Polarization Feature Extraction
2.3. Feature-Based Detector
3. Experimental Results Analysis and Performance Evaluation
3.1. Real Measured IPIX Datasets
3.2. Polarization Feature Analysis
3.3. Detection Performance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carretero-Moya, J.; Gismero-Menoyo, J.; Blanco-del-Campo, Á.; Asensio-Lopez, A. Statistical Analysis of a High-Resolution Sea-Clutter Database. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2024–2037. [Google Scholar] [CrossRef]
- Fiche, A.; Angelliaume, S.; Rosenberg, L.; Khenchaf, A. Analysis of X-band SAR sea-clutter distributions at different grazing angles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4650–4660. [Google Scholar] [CrossRef]
- Xin, Z.; Liao, G.; Yang, Z.; Zhang, Z.; Dang, H. Analysis of Distribution Using Graphical Goodness of Fit for Airborne SAR Sea-Clutter Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5719–5728. [Google Scholar] [CrossRef]
- Rosenberg, L.; Bocquet, S. Application of the Pareto plus noise distribution to medium grazing angle sea-clutter. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 255–261. [Google Scholar] [CrossRef]
- Mezache, A.; Soltani, F.; Sahed, M.; Chalabi, I. Model for non-Rayleigh clutter amplitudes using compound inverse Gaussian distribution: An experimental analysis. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 143–153. [Google Scholar] [CrossRef]
- Conte, E.; De Maio, A.; Galdi, C. Statistical analysis of real clutter at different range resolutions. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 903–918. [Google Scholar] [CrossRef]
- Sahed, M.; Kenane, E.; Khalfa, A. Exact Closed-Form Pfa Expressions for CA-CFAR and GO-CFAR Detectors in Gamma-Distributed Radar Clutter. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4674–4679. [Google Scholar] [CrossRef]
- Lo, T.; Leung, H.; Litva, J.; Haykin, S. Fractal characterisation of sea-scattered signals and detection of sea-surface targets. IEEE Proc. F-Radar Signal Process. 1993, 140, 243–250. [Google Scholar] [CrossRef]
- Xu, X. Low observable targets detection by joint fractal properties of sea clutter: An experimental study of IPIX OHGR datasets. IEEE Trans. Antennas Propag. 2010, 58, 1425–1429. [Google Scholar]
- Fan, Y.; Tao, M.; Su, J.; Wang, L. Weak target detection based on joint fractal characteristics of autoregressive spectrum in sea clutter background. IEEE Trans. Geosci. Remote Sens. 2019, 16, 1070–1077. [Google Scholar] [CrossRef]
- Xiong, G.; Xi, C.; Dong, D.; Yu, W. Cross correlation singularity power spectrum theory and application in radar target detection within sea clutter. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3753–3765. [Google Scholar] [CrossRef]
- Fan, Y.; Tao, M.; Su, J.; Wang, L. Weak target detection based on whole-scale Hurst exponent of autoregressive spectrum in sea clutter background. Digit. Signal Process. 2020, 101, 102714. [Google Scholar] [CrossRef]
- Fan, Y.; Luo, F.; Li, M. Weak target detection in sea clutter background using local-multifractal spectrum with adaptive window length. IET Radar Sonar Navig. 2015, 9, 835–842. [Google Scholar] [CrossRef]
- Hu, J.; Tung, W.; Gao, J. Detection of low observable targets within sea clutter by structure function based multifractal analysis. IEEE Trans. Antennas Propag. 2006, 54, 136–143. [Google Scholar] [CrossRef]
- Guo, Z.; Shui, P.; Bai, X. Small target detection in sea clutter using all-dimensional Hurst exponents of complex time sequence. Digit. Signal Process. 2020, 101, 102707. [Google Scholar] [CrossRef]
- Fan, Y.; Tao, M.; Su, J. Multifractal Correlation Analysis of Autoregressive Spectrum-Based Feature Learning for Target Detection Within Sea Clutter. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Shi, S.; Shui, P. Sea-surface floating small target detection by one-class classifier in time-frequency feature space. IEEE Geosci. Remote Sens. Lett. 2018, 56, 6395–6411. [Google Scholar] [CrossRef]
- Xie, J.; Xu, X. Phase-Feature-Based Detection of Small Targets in Sea Clutter. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Huang, Y. Radar Moving Target Detection in Clutter Background via Adaptive Dual-Threshold Sparse Fourier Transform. IEEE Access 2019, 7, 58200–58211. [Google Scholar] [CrossRef]
- Guo, Z.; Shui, P.; Bai, X. Sea-Surface small target detection based on K-NN with controlled false alarm rate in sea clutter. J. Radars 2020, 9, 654–663. [Google Scholar]
- Shi, Y.; Chen, W. Sea Surface Target Detection Using Global False Alarm Controllable Adaptive Boosting Based on Correlation Features. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, T. Decision tree based sea-surface weak target detection with false alarm rate controllable. IEEE Signal. Process. Lett. 2019, 26, 793–797. [Google Scholar] [CrossRef]
- Guo, Z.; Shui, P. Anomaly Based Sea-Surface Small Target Detection Using K-Nearest Neighbor Classification. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4947–4964. [Google Scholar] [CrossRef]
- Guo, Z.; Bai, X.; Li, J.; Shui, P. Fast Detection of Small Targets in High-Resolution Maritime Radars by Feature Normalization and Fusion. IEEE J. Ocean. Eng. 2022, 47, 736–750. [Google Scholar] [CrossRef]
- Shui, P.; Li, D.; Xu, S. Tri-feature-based detection of floating small targets in sea clutter. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1416–1430. [Google Scholar] [CrossRef]
- Shi, Y.; Yao, T.; Guo, Y. Floating Small Target Detection Based on Graph Connected Density in Sea Surface. J. Electron. Inf. Technol. 2021, 43, 3185–3192. [Google Scholar]
- Su, N.; Chen, X.; Guan, J.; Huang, Y.; Wang, X.; Xue, Y. Radar Maritime Target Detection via Spatial–Temporal Feature Attention Graph Convolutional Network. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Su, N.; Chen, X.; Guan, J.; Huang, Y. Maritime Target Detection Based on Radar Graph Data and Graph Convolutional Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xu, S.; Jiao, Y.; Bai, X.; Jiang, J. Small Target Detection Based on Frequency Domain Multichannel Graph Feature Perception on Sea Surface. J. Electron. Inf. Technol. 2023, 45, 1567–1574. [Google Scholar]
- Augusto, A.; Antonio, D.M.; Alfonso, F. Polarimetric Radar Signal Processing; SciTech Publishing Inc., Raleigh, NC, USA, 2022.
- Wu, P.; Wang, J.; Wang, W. Small Target Detection in Sea Clutter Based on Polarization Characteristics Decomposition. J. Electron. Inf. Technol. 2011, 33, 816–822. [Google Scholar] [CrossRef]
- Xu, S.; Zheng, J.; Pu, J.; Shui, P. Sea-surface floating small target detection based on polarization features. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1505–1509. [Google Scholar] [CrossRef]
- Van Zyl, J.J. Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. Opt. Photonics 1993, 1748, 184–212. [Google Scholar]
- Van Zyl, J.J.; Arii, M.; Kim, Y. Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues. IEEE Geosci. Remote Sens. 2011, 49, 3452–3459. [Google Scholar] [CrossRef]
- Zhao, Y.; He, W.; Ren, H. Polarization Descattering Imaging of Underwater Complex Targets Based on Mueller Matrix Decomposition. IEEE Photonics J. 2022, 14, 1–6. [Google Scholar]
- Martín-de-Nicolás, J.; Jarabo-Amores, P.; Rey-Maestre, N.; Mata-Moya, D.; Bárcena-Humanes, J.L. A non-parametric CFAR detector based on SAR sea clutter statistical modelling. In Proceedings of the 2015 IEEE International Conference on Image Processing, Quebec City, QC, Canada, 27–30 September 2015; pp. 4426–4430. [Google Scholar]
- Kuang, C.; Wang, C.; Wen, B. An Improved CA-CFAR Method for Ship Target Detection in Strong Clutter Using UHF Radar. IEEE Signal Process. Lett. 2020, 27, 1445–1449. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, T.; He, Y. GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- The IPIX Radar Database [EB/OL]. 2001. Available online: http://soma.ece.mcmaster.ca/ipix/ (accessed on 1 January 2001).
Performance Indexes | Values | Dataset Labels | CUT | Guard Bins |
---|---|---|---|---|
Frequency | 9.39 GHz | 19931111163625starea54 | 8 | 7, 9, 10 |
PRF | 1 KHz | 19931109191449starea30 | 7 | 6, 8 |
Target | buoy | 19931109202217starea30 | 7 | 6, 8, 9 |
Radar height | 30 m | 19931118162155starea310 | 7 | 6, 8, 9 |
Range | 19931118162625starea311 | 7 | 6, 8, 9 | |
resolution | 30 m | 19931118174259starea320 | 7 | 6, 8, 9 |
19931110001635starea40 | 7 | 5, 6, 8 | ||
19931108220902starea26 | 7 | 6, 8 | ||
19931118023604starea280 | 8 | 7, 10 | ||
19931107135603starea17 | 9 | 8, 10, 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Chen, D.; Chen, S.; Su, J.; Tao, M.; Guo, Z.; Wang, L. Weak Target Detection Based on Full-Polarization Scattering Features under Sea Clutter Background. Remote Sens. 2024, 16, 2987. https://doi.org/10.3390/rs16162987
Fan Y, Chen D, Chen S, Su J, Tao M, Guo Z, Wang L. Weak Target Detection Based on Full-Polarization Scattering Features under Sea Clutter Background. Remote Sensing. 2024; 16(16):2987. https://doi.org/10.3390/rs16162987
Chicago/Turabian StyleFan, Yifei, Duo Chen, Shichao Chen, Jia Su, Mingliang Tao, Zixun Guo, and Ling Wang. 2024. "Weak Target Detection Based on Full-Polarization Scattering Features under Sea Clutter Background" Remote Sensing 16, no. 16: 2987. https://doi.org/10.3390/rs16162987
APA StyleFan, Y., Chen, D., Chen, S., Su, J., Tao, M., Guo, Z., & Wang, L. (2024). Weak Target Detection Based on Full-Polarization Scattering Features under Sea Clutter Background. Remote Sensing, 16(16), 2987. https://doi.org/10.3390/rs16162987