Optimized Landslide Susceptibility Mapping and Modelling Using the SBAS-InSAR Coupling Model
<p>Location of the study area in China. (<b>A</b>) map of China, (<b>B</b>) map of Shiyan City.</p> "> Figure 2
<p>Flowchart of this study.</p> "> Figure 3
<p>Flowchart of SBAS-InSAR.</p> "> Figure 4
<p>Principles of ensemble learning.</p> "> Figure 5
<p>Twelve static evaluation factors: (<b>a</b>) slope; (<b>b</b>) aspect; (<b>c</b>) slope length; (<b>d</b>) TRI; (<b>e</b>) distance from fault; (<b>f</b>) lithology; (<b>g</b>) TWI; (<b>h</b>) SPI; (<b>i</b>) distance from rivers; (<b>j</b>) land use; (<b>k</b>) distance from roads; (<b>l</b>) NDVI. The aspect groups are described as follows: 1: flatness; 2: north; 3: northeast; 4: east; 5: southeast; 6: south; 7: southwest; 8: west; 9: northwest. The lithology groups are described as follows: 1: PT1; 2: EO; 3: S1; 4: C1; 5: E; 6: O; 7: OPZ; 8: VPT3; 9: HUI; 10: GREEN; 11: C2P; 12: K2; 13: PT3; 14: EE; 15: BLUE; 16: PT2; 17: D.</p> "> Figure 5 Cont.
<p>Twelve static evaluation factors: (<b>a</b>) slope; (<b>b</b>) aspect; (<b>c</b>) slope length; (<b>d</b>) TRI; (<b>e</b>) distance from fault; (<b>f</b>) lithology; (<b>g</b>) TWI; (<b>h</b>) SPI; (<b>i</b>) distance from rivers; (<b>j</b>) land use; (<b>k</b>) distance from roads; (<b>l</b>) NDVI. The aspect groups are described as follows: 1: flatness; 2: north; 3: northeast; 4: east; 5: southeast; 6: south; 7: southwest; 8: west; 9: northwest. The lithology groups are described as follows: 1: PT1; 2: EO; 3: S1; 4: C1; 5: E; 6: O; 7: OPZ; 8: VPT3; 9: HUI; 10: GREEN; 11: C2P; 12: K2; 13: PT3; 14: EE; 15: BLUE; 16: PT2; 17: D.</p> "> Figure 6
<p>Landslide susceptibility maps. (<b>A</b>) map of XGBoost model, (<b>B</b>) map of RF model, (<b>C</b>) map of LR model, (<b>D</b>) map of GBDT model, (<b>E</b>) map of KNN model, and (<b>F</b>) map of ROC curves by different models.</p> "> Figure 6 Cont.
<p>Landslide susceptibility maps. (<b>A</b>) map of XGBoost model, (<b>B</b>) map of RF model, (<b>C</b>) map of LR model, (<b>D</b>) map of GBDT model, (<b>E</b>) map of KNN model, and (<b>F</b>) map of ROC curves by different models.</p> "> Figure 7
<p>Deformation rate. (<b>A</b>) map of deformation rate in the LOS direction, (<b>B</b>) map of deformation rate in the vertical direction.</p> "> Figure 8
<p>(<b>A</b>) map of the dynamic characteristic factor; (<b>B</b>) map of static and dynamic factors landslide susceptibility result of the RF model.</p> "> Figure 9
<p>(<b>A</b>) map of absolute value of deformation rate in the LOS direction, (<b>B</b>) map of optimizing susceptibility result.</p> "> Figure 10
<p>The importance value of factors in the RF model.</p> "> Figure 11
<p>The dendrogram of each factor’s characteristic importance in the RF model.</p> "> Figure 12
<p>Typical regional comparisons. (<b>A</b>,<b>B</b>) represent two typical regions with large deformation; (<b>A1</b>,<b>B1</b>) represent static factors evaluation results; (<b>A2</b>,<b>B2</b>) represent InSAR optimization matrix results; (<b>A3</b>,<b>B3</b>) represent evaluation results of combined dynamic and static factors.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Frequency Ratio (FR) Method
3.2. SBAS-InSAR Technology Flow
3.3. Ensemble Learning Models
- Boosting: The sequential serialization method is necessary due to the interdependencies between individual learners, both in terms of backward and forward progression.
- Bagging: The parallelization approach is developed simultaneously as a result of the relative independence among individual learners.
4. Results
4.1. Landslide Causative Static Factors
4.2. Static Factors Evaluation Results
4.3. SBAS-InSAR Results
4.4. Evaluation of Combined Dynamic and Static Factors
4.5. InSAR Optimization Matrix Result
5. Discussion
5.1. Analysis of Research Results
5.2. Effect Analysis of SBAS-InSAR Results
5.3. Landslide Disaster Prevention and Control Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Confuorto, P.; Di Martire, D.; Infante, D.; Novellino, A.; Papa, R.; Calcaterra, D.; Ramondini, M. Monitoring of remedial works performance on landslide-affected areas through ground-and satellite-based techniques. Catena 2019, 178, 77–89. [Google Scholar] [CrossRef]
- Perera, E.N.C.; Jayawardana, D.T.; Jayasinghe, P.; Bandara, R.M.S.; Alahakoon, N. Direct impacts of landslides on socio-economic systems: A case study from Aranayake, Sri Lanka. Geoenviron. Disasters 2018, 5, 11. [Google Scholar] [CrossRef]
- Zhou, X.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci. Front. 2021, 12, 101211. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Xu, Q.; Burgmann, R.; Milledge, D.G.; Tomas, R.; Fan, X.; Zhao, C.; Liu, X.; Peng, J.; et al. Entering the era of earth observation-based landslide warning systems: A novel and exciting framework. IEEE Geosci. Remote Sens. Mag. 2020, 8, 136–153. [Google Scholar] [CrossRef]
- Fang, K.; Tang, H.; Li, C.; Su, X.; An, P.; Sun, S. Centrifuge modelling of landslides and landslide hazard mitigation: A review. Geosci. Front. 2023, 14, 101493. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Hu, X.; Yin, K.; Wang, Y. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area. Landslides 2022, 19, 1585–1597. [Google Scholar] [CrossRef]
- Vargas-Cuervo, G.; Hernández-Peña, Y.T.; Zafra-Mejía, C.A. Challenges for Sustainable Urban Planning: A Spatiotemporal Analysis of Complex Landslide Risk in a Latin American Megacity. Sustainability 2024, 16, 3133. [Google Scholar] [CrossRef]
- Bommer, J.; Ledbetter, S. The San Salvador earthquake of 10th October 1986. Disasters 1987, 11, 83–95. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, K.; Zhou, C.; Ahmed, B. Establishment of landslide groundwater level prediction model based on GA-SVM and influencing factor analysis. Sensors 2020, 20, 845. [Google Scholar] [CrossRef]
- Tang, H.; Wasowski, J.; Juang, C.H. Geohazards in the three Gorges Reservoir Area, China–Lessons learned from decades of research. Eng. Geol. 2019, 261, 105267. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Xue, S.; Wang, R.; Xiao, M. Stability analysis of a typical landslide mass in the Three Gorges Reservoir under varying reservoir water levels. Environ. Earth Sci. 2020, 79, 42. [Google Scholar] [CrossRef]
- Cantarino, I.; Carrion, M.A.; Goerlich, F.; Ibañez, V.M. A ROC analysis-based classification method for landslide susceptibility maps. Landslides 2019, 16, 265–282. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Zhao, Z.; He, Y.; Yao, S.; Yang, W.; Wang, W.; Zhang, L.; Sun, Q. A comparative study of different neural network models for landslide susceptibility mapping. Adv. Space Res. 2022, 70, 383–401. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, L.; Niu, R.-Q.; Trinder, C.J.; Peng, L.; Lei, T. Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. J. Mt. Sci. 2020, 17, 670–685. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Zhu, A.X. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci. Total Environ. 2020, 718, 137231. [Google Scholar] [CrossRef]
- Li, W.B.; Fan, X.M.; Huang, F.M.; Wu, X.; Yin, K.; Chang, Z.L. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models. Earth Sci. 2021, 46, 3777–3795. [Google Scholar]
- Pham, B.T.; Phong, T.V.; Nguyen-Thoi, T.; Parial, K.; KSingh, S.; Ly, H.B.; Nguyen, K.T.; Ho, L.S.; Le, H.V.; Prakash, I. Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto Int. 2022, 37, 735–757. [Google Scholar] [CrossRef]
- Segoni, S.; Tofani, V.; Rosi, A.; Catani, F.; Casagli, N. Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front. Earth Sci. 2018, 6, 85. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F. Landslide susceptibility mapping: Machine and ensemble learning based on remote sensing big data. Remote Sens. 2020, 12, 1737. [Google Scholar] [CrossRef]
- Hu, X.; Mei, H.; Zhang, H.; Li, Y.; Li, M. Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China. Nat. Hazards 2020, 105, 1663–1689. [Google Scholar] [CrossRef]
- Santangelo, M.; RMarchesini, I.; Bucci, F.; Cardinali, M.; Cavalli, M.; Crema, S.; Marchi, L.; Alvioli, M.; Guzzetti, F. Exposure to landslides in rural areas in Central Italy. J. Maps 2021, 17, 124–132. [Google Scholar] [CrossRef]
- Ciampalini, A.; Raspini, F.; Lagomarsino, D.; Catani, F.; Casagli, N. Landslide susceptibility map refinement using PSInSAR data. Remote Sens. Environ. 2016, 184, 302–315. [Google Scholar] [CrossRef]
- Dai, C.; Li, W.; Lu, H.; Zhang, S. Landslide hazard assessment method considering the deformation factor: A case study of Zhouqu, Gansu Province, Northwest China. Remote Sens. 2023, 15, 596. [Google Scholar] [CrossRef]
- Roy, P.; Martha, T.R.; Khanna, K.; Jain, N.; Kumar, K.V. Time and path prediction of landslides using InSAR and flow model. Remote Sens. Environ. 2022, 271, 112899. [Google Scholar] [CrossRef]
- van Natijne, A.; Bogaard, T.; van Leijen, F.; Hanssen, R.; Lindenbergh, R. World-wide InSAR sensitivity index for landslide deformation tracking. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102829. [Google Scholar] [CrossRef]
- Dong, J.; Niu, R.; Li, B.; Xu, H.; Wang, S. Potential landslides identification based on temporal and spatial filtering of SBAS-InSAR results. Geomat. Nat. Hazards Risk 2023, 14, 52–75. [Google Scholar] [CrossRef]
- Dong, L.; Wang, C.; Tang, Y.; Tang, F.; Zhang, H.; Wang, J.; Duan, W. Time series InSAR three-dimensional displacement inversion model of coal mining areas based on symmetrical features of mining subsidence. Remote Sens. 2021, 13, 2143. [Google Scholar] [CrossRef]
- Ponziani, F.; Ciuffi, P.; Bayer, B.; Berni, N.; Franceschini, S.; Simoni, A. Regional-scale InSAR investigation and landslide early warning thresholds in Umbria, Italy. Eng. Geol. 2023, 327, 107352. [Google Scholar] [CrossRef]
- Devara, M.; Tiwari, A.; Dwivedi, R. Landslide susceptibility mapping using MT-InSAR and AHP enabled GIS-based multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2021, 12, 675–693. [Google Scholar] [CrossRef]
- Cao, C.; Zhu, K.; Xu, P.; Shan, B.; Yang, G.; Song, S. Refined landslide susceptibility analysis based on InSAR technology and UAV multi-source data. J. Clean. Prod. 2022, 368, 133146. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Liang, Y.; Sun, P.; Li, Y.; Su, X.; Wang, A.; Meng, X. Landslide risk assessment using a combined approach based on InSAR and random forest. Remote Sens. 2022, 14, 2131. [Google Scholar] [CrossRef]
- Hong, H. Assessing landslide susceptibility based on hybrid Best-first decision tree with ensemble learning model. Ecol. Indic. 2023, 147, 109968. [Google Scholar] [CrossRef]
- Kouhartsiouk, D.; Perdikou, S. The application of DInSAR and Bayesian statistics for the assessment of landslide susceptibility. Nat. Hazards 2021, 105, 2957–2985. [Google Scholar] [CrossRef]
- Xiao, B.; Zhao, J.; Li, D.; Zhao, Z.; Zhou, D.; Xi, W.; Li, Y. Combined SBAS-InSAR and PSO-RF Algorithm for Evaluating the Susceptibility Prediction of Landslide in Complex Mountainous Area: A Case Study of Ludian County, China. Sensors 2022, 22, 8041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, C.; Tang, L.; Gu, X.; Wang, L. Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms. Gondwana Res. 2023, 123, 41–53. [Google Scholar] [CrossRef]
- Sun, D.; Gu, Q.; Wen, H.; Xu, J.; Zhang, Y.; Shi, S.; Xue, M.; Zhou, X. Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization. Gondwana Res. 2023, 123, 89–106. [Google Scholar] [CrossRef]
- Cemiloglu, A.; Zhu, L.; Mohammednour, A.B.; Azarafza, M.; Nanehkaran, Y.A. Landslide susceptibility assessment for Maragheh County, Iran, using the logistic regression algorithm. Land 2023, 12, 1397. [Google Scholar] [CrossRef]
- Yang, C.; Liu, L.-L.; Huang, F.; Huang, L.; Wang, X.-M. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Res. 2023, 123, 198–216. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B.; Bui, D.T.; Alamri, A.M. Systematic sample subdividing strategy for training landslide susceptibility models. Catena 2020, 187, 104358. [Google Scholar] [CrossRef]
- Cheng, W.; Zhu, J.; Zeng, X.; You, Y.; Li, X.; Wu, J. Water Resources Carrying Capacity Based on the DPSIRM Framework: Empirical Evidence from Shiyan City, China. Water 2023, 15, 3060. [Google Scholar] [CrossRef]
- Sheng, Y.; Xu, G.; Jin, B.; Zhou, C.; Li, Y.; Chen, W. Data-driven landslide spatial prediction and deformation monitoring: A case study of Shiyan City, China. Remote Sens. 2023, 15, 5256. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, Y.; Jing, X.; Wang, S.; Zhao, L. Spatial nutrient load analysis based on output coefficient method and land use pattern identification: A case study of Shiyan City. J. Environ. Eng. Technol. 2022, 12, 660–665. [Google Scholar]
- Zhu, Z.; Chen, L.; Zhou, L.; Zhou, Y.; Li, J.; Luo, J.; Xiao, S.; Gao, Q. Surface Deformation Monitoring in Shiyan Based on Multi-Temporal Insar Technology. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 10, 755–761. [Google Scholar] [CrossRef]
- Khan, H.; Shafique, M.; Khan, M.A.; Bacha, M.A.; Shah, S.U.; Calligaris, C. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. Egypt. J. Remote. Sens. Space Sci. 2018, 22, 11–24. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, R.K.; Bansal, V.K. GIS-based comparative study of information value and frequency ratio method for landslide hazard zonation in a part of mid-Himalaya in Himachal Pradesh. Innov. Infrastruct. Solut. 2019, 4, 28. [Google Scholar] [CrossRef]
- Yan, Y.; Doin, M.-P.; Lopez-Quiroz, P.; Tupin, F.; Fruneau, B.; Pinel, V.; Trouve, E. Mexico City subsidence measured by InSAR time series: Joint analysis using PS and SBAS approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1312–1326. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, S.; Chen, Z.; Liu, Y.; Xu, Z.; Zhao, R. Landslide susceptibility evaluation integrating weight of evidence model and InSAR results, west of Hubei Province, China. Egypt. J. Remote Sens. Space Sci. 2023, 26, 95–106. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, Y.; Tan, K. Coal mining deformation monitoring using SBAS-InSAR and offset tracking: A case study of Yu County, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6077–6087. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, C.; Wu, Z.; Zhang, Z.; Yang, S.; Yang, W. Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies. Sci. Rep. 2023, 13, 8031. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Wang, S.; Xu, L.; Peng, J. Monitoring and stability analysis of the deformation in the Woda landslide area in Tibet, China by the DS-InSAR method. Remote Sens. 2022, 14, 532. [Google Scholar] [CrossRef]
- Liu, G.; Zbigniew, P.; Stefano, S.; Benni, T.; Wu, L.; Fan, J.; Bai, S.; Wei, L.; Yan, S.; Song, R.; et al. Land surface displacement geohazards monitoring using multi-temporal InSAR techniques. J. Geod. Geoinf. Sci. 2021, 4, 77. [Google Scholar]
- Awasthi, S.; Jain, K.; Bhattacharjee, S.; Gupta, V.; Varade, D.; Singh, H.; Narayan, A.B.; Budillon, A. Analyzing urbanization induced groundwater stress and land deformation using time-series Sentinel-1 datasets applying PSInSAR approach. Sci. Total Environ. 2022, 844, 157103. [Google Scholar] [CrossRef]
- Zhu, Z.; Gan, S.; Yuan, X.; Zhang, J. Landslide susceptibility mapping with integrated SBAS-InSAR technique: A case study of Dongchuan District, Yunnan (China). Sensors 2022, 22, 5587. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Wang, L.; McCabe, M.F. Multi-sensor remote sensing for drought characterization: Current status, opportunities and a roadmap for the future. Remote Sens. Environ. 2021, 256, 112313. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, Z.; Zhao, C.; Xu, Y.; Kim, J.W.; Gallegos, A.J. InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California. Remote Sens. Environ. 2021, 258, 112400. [Google Scholar] [CrossRef]
- Rana, K.; Ozturk, U.; Malik, N. Landslide geometry reveals its trigger. Geophys. Res. Lett. 2021, 48, e2020GL090848. [Google Scholar] [CrossRef]
Data Type | Data Source | Time |
---|---|---|
Landslides | http://gtzy.shiyan.gov.cn/ (accessed on 13 March 2023) | 2016 |
Administrative boundaries of Shiyan City | http://datav.aliyun.com/portal/school/atlas/area_selector (accessed on 20 March 2023) | 2021 |
STRM30 m DEM | https://www.gscloud.cn/ (accessed on 20 March 2023) | 2009 |
Land cover | https://www.webmap.cn/commres.do?method=globeIndex (accessed on 5 April 2023) | 2010 |
National basic geographic database | https://www.webmap.cn/commres.do?method=result25W (accessed on 5 April 2023) | 2015 |
National geologic map data | http://www.tuxingis.com/locaspace.html (accessed on 5 April 2023) | 2013 |
Landsat-8 OLI Remote Sensing images | https://www.gscloud.cn/ (accessed on 23 April 2023) | 2021 |
Sentinel-1A images | https://search.asf.alaska.edu/ (accessed on 3 May 2023) | September 2021–March 2022 |
Factors | Class | Landslides | Frequency of Landslides | Classification Value |
---|---|---|---|---|
Slope (°) | 0–11.03 | 556 | 15.81% | 1 |
11.03–19.92 | 1398 | 39.75% | 2 | |
19.92–27.88 | 1084 | 30.82% | 3 | |
27.88–37.07 | 390 | 11.09% | 4 | |
37.17–78.13 | 89 | 2.53% | 5 | |
Slope lenth (m) | 0–78.23 | 2225 | 63.26% | 1 |
78.23–235.63 | 839 | 23.86% | 2 | |
235.63–486.96 | 335 | 9.53% | 3 | |
486.96–942.51 | 106 | 3.01% | 4 | |
942.51–3503 | 12 | 0.34% | 5 | |
TRI | 0–5.20 | 1081 | 30.74% | 1 |
5.20–9.46 | 1570 | 44.64% | 2 | |
9.46–14.19 | 645 | 18.34% | 3 | |
14.19–20.81 | 196 | 5.57% | 4 | |
20.81–90.80 | 25 | 0.71% | 5 | |
Distance to faults (m) | <500 | 213 | 6.06% | 1 |
500–1000 | 182 | 5.17% | 2 | |
1000–2000 | 358 | 10.18% | 3 | |
2000–4000 | 626 | 17.80% | 4 | |
>4000 | 2138 | 60.79% | 5 | |
TWI | 1.96–5.69 | 1335 | 37.96% | 1 |
5.69–7.70 | 1727 | 49.10% | 2 | |
7.70–11.06 | 336 | 9.55% | 3 | |
11.06–16.23 | 97 | 2.76% | 4 | |
16.23–26.39 | 22 | 0.63% | 5 | |
SPI | 0–934 | 3452 | 98.15% | 1 |
934–4207 | 61 | 1.73% | 2 | |
4207–10,284 | 4 | 0.11% | 3 | |
10,284–22,905 | 0 | 0.00% | 4 | |
22,905–59,836 | 0 | 0.00% | 5 | |
Distance to rivers (m) | <500 | 306 | 8.70% | 1 |
500–1000 | 229 | 6.51% | 2 | |
1000–1500 | 161 | 4.58% | 3 | |
1500–2000 | 118 | 3.36% | 4 | |
>2000 | 2703 | 76.86% | 5 | |
Land use | Cultivate land | 1657 | 47.11% | 1 |
Forest | 1532 | 43.56% | 2 | |
Grassland | 267 | 7.59% | 3 | |
Wetland | 0 | 0.00% | 4 | |
Water bodies | 10 | 0.28% | 5 | |
Artificial surfaces | 51 | 1.45% | 6 | |
Distance to roads (m) | <500 | 1045 | 29.71% | 1 |
500–1000 | 360 | 10.24% | 2 | |
1000–1500 | 307 | 8.73% | 3 | |
1500–2000 | 300 | 8.53% | 4 | |
>2000 | 1505 | 42.79% | 5 | |
NDVI | −0.99–−0.57 | 10 | 0.28% | 1 |
−0.57–−0.07 | 65 | 1.85% | 2 | |
−0.07–0.26 | 759 | 21.58% | 3 | |
0.26–0.45 | 1609 | 45.75% | 4 | |
0.45–0.80 | 1074 | 30.54% | 5 |
Model | Landslide Susceptibility Level | Number of Pixels in Domain | Percent of Domain (%) | Number of Landslides | Percent of Landslides (%) |
---|---|---|---|---|---|
GBDT | Very low | 10,880,445 | 40.98 | 336 | 9.57 |
Low | 4,985,541 | 18.78 | 365 | 10.40 | |
Moderate | 3,362,087 | 12.66 | 423 | 12.05 | |
High | 2,626,950 | 9.89 | 502 | 14.30 | |
Very high | 4,692,903 | 17.68 | 1884 | 53.68 | |
LR | Very low | 4,728,064 | 17.80 | 216 | 6.15 |
Low | 9,888,848 | 37.25 | 765 | 21.79 | |
Moderate | 4,700,527 | 17.71 | 605 | 17.24 | |
High | 4,751,518 | 17.90 | 1005 | 28.63 | |
Very high | 2,478,969 | 9.34 | 919 | 26.18 | |
RF | Very low | 4,701,470 | 17.71 | 65 | 1.85 |
Low | 9,470,206 | 35.67 | 399 | 11.37 | |
Moderate | 6,025,650 | 22.70 | 697 | 19.86 | |
High | 3,801,322 | 14.31 | 1032 | 29.40 | |
Very high | 2,549,278 | 9.60 | 1317 | 37.52 | |
XGBoost | Very low | 5,481,662 | 20.64 | 86 | 2.45 |
Low | 9,441,984 | 35.57 | 498 | 14.19 | |
Moderate | 3,442,159 | 12.97 | 336 | 9.57 | |
High | 5,503,552 | 20.73 | 1292 | 36.81 | |
Very high | 2,678,569 | 10.90 | 1298 | 36.98 | |
KNN | Very low | 9,693,047 | 36.51 | 529 | 15.07 |
Low | 6,904,034 | 26.01 | 712 | 20.28 | |
Moderate | 2,712,572 | 10.21 | 412 | 11.73 | |
High | 5,350,227 | 20.15 | 1165 | 33.19 | |
Very high | 1,888,046 | 7.11 | 692 | 19.71 |
V1 | V2 | V3 | V4 | V5 | |
---|---|---|---|---|---|
H1 | 1 | 2 | 3 | 4 | 5 |
H2 | 2 | 2 | 3 | 4 | 5 |
H3 | 3 | 3 | 3 | 4 | 5 |
H4 | 4 | 4 | 4 | 4 | 5 |
H5 | 5 | 5 | 5 | 5 | 5 |
Evaluation Approach | Landslide Susceptibility Level | Number of Pixels in Domain | Percent of Domain (%) | Number of Landslides | Percent of Landslides (%) | FR |
---|---|---|---|---|---|---|
dynamic characteristic factor | Very low | 6,146,899 | 23.15 | 99 | 2.82 | 0.12 |
Low | 9,775,531 | 36.82 | 505 | 14.39 | 0.39 | |
Moderate | 3,985,362 | 15.01 | 481 | 13.70 | 0.91 | |
High | 4,036,548 | 15.20 | 1063 | 30.28 | 1.99 | |
Very high | 2,603,586 | 9.80 | 1362 | 38.80 | 3.96 | |
InSAR optimization matrix | Very low | 4,235,667 | 15.95 | 47 | 1.3 | 0.08 |
Low | 9,443,633 | 35.57 | 382 | 10.88 | 0.3 | |
Moderate | 6,344,038 | 23.90 | 713 | 20.31 | 0.85 | |
High | 3,942,904 | 14.85 | 1048 | 29.86 | 2.01 | |
Very high | 2,581,684 | 9.72 | 1320 | 37.61 | 3.87 |
Landslide Susceptibility Level | Zoning Area (km2) | Number of Landslides | Landslides Density | Landslides Area (km2) | Percentage of Landslides/100 km2 |
---|---|---|---|---|---|
Very low | 5532.21 | 99 | 0.02 | 3.48 | 0.06 |
Low | 8797.98 | 505 | 0.06 | 18.72 | 0.21 |
Moderate | 3586.83 | 481 | 0.13 | 17.81 | 0.50 |
High | 3632.89 | 1063 | 0.29 | 46.08 | 1.27 |
Very high | 2343.23 | 1362 | 0.58 | 147.63 | 6.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Qi, X.; Peng, B.; Wang, J. Optimized Landslide Susceptibility Mapping and Modelling Using the SBAS-InSAR Coupling Model. Remote Sens. 2024, 16, 2873. https://doi.org/10.3390/rs16162873
Wu X, Qi X, Peng B, Wang J. Optimized Landslide Susceptibility Mapping and Modelling Using the SBAS-InSAR Coupling Model. Remote Sensing. 2024; 16(16):2873. https://doi.org/10.3390/rs16162873
Chicago/Turabian StyleWu, Xueling, Xiaoshuai Qi, Bo Peng, and Junyang Wang. 2024. "Optimized Landslide Susceptibility Mapping and Modelling Using the SBAS-InSAR Coupling Model" Remote Sensing 16, no. 16: 2873. https://doi.org/10.3390/rs16162873
APA StyleWu, X., Qi, X., Peng, B., & Wang, J. (2024). Optimized Landslide Susceptibility Mapping and Modelling Using the SBAS-InSAR Coupling Model. Remote Sensing, 16(16), 2873. https://doi.org/10.3390/rs16162873