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Abstract: Landslide susceptibility mapping (LSM) can accurately estimate the location and probability
of landslides. An effective approach for precise LSM is crucial for minimizing casualties and damage.
The existing LSM methods primarily rely on static indicators, such as geomorphology and hydrology,
which are closely associated with geo-environmental conditions. However, landslide hazards are often
characterized by significant surface deformation. The Small Baseline Subset-Interferometric Synthetic
Aperture Radar (SBAS-InSAR) technology plays a pivotal role in detecting and characterizing surface
deformation. This work endeavors to assess the accuracy of SBAS-InSAR coupled with ensemble
learning for LSM. Within this research, the study area was Shiyan City, and 12 static evaluation factors
were selected as input variables for the ensemble learning models to compute landslide susceptibility.
The Random Forest (RF) model demonstrates superior accuracy compared to other ensemble learning
models, including eXtreme Gradient Boosting, Logistic Regression, Gradient Boosting Decision Tree,
and K-Nearest Neighbor. Furthermore, SBAS-InSAR was utilized to obtain surface deformation
rates both in the vertical direction and along the line of sight of the satellite. The former is used as a
dynamic characteristic factor, while the latter is combined with the evaluation results of the RF model
to create a landslide susceptibility optimization matrix. Comparing the precision of two methods for
refining LSM results, it was found that the method integrating static and dynamic factors produced a
more rational and accurate landslide susceptibility map.

Keywords: ensemble learning; SBAS-InSAR; landslide susceptibility mapping; ground surface
deformation rate

1. Introduction

Landslides are acknowledged as significant natural disasters on a global scale, ex-
erting substantial impacts on both societal security and the environment [1–3]. The data
demonstrate that landslides displace tens of thousands of individuals annually, resulting in
substantial economic losses totaling hundreds of millions of dollars [4–6]. Among these,
Latin America is geographically situated near the confluence of the American and Antarctic
plates. As a result, the region experiences recurrent seismic activity and significant crustal
movements, often leading to substantial landslides [7]. In the Santa Marta region, a geolog-
ical event occurred in 1986, causing soil subsidence and landslides. This incident resulted
in the destruction of over 100 residential structures located along the canyon and tragically
claimed the lives of nearly 200 individuals [8]. Additionally, over 5000 landslides have
occurred in the Three Gorges reservoir area due to a combination of factors, including the
region’s distinctive geological characteristics, alternating rainy and dry seasons, fluctua-
tions in reservoir levels, and the impact of human construction operations, which directly
influenced the social structure and development of the Three Gorges area [9–11].

Landslide susceptibility assessment has garnered significant attention from researchers
and specialists in recent years, as it can efficiently provide local geologic disaster manage-
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ment departments with reliable and scientifically sound support for implementing essential
defense and rescue measures [12–14]. Landslide susceptibility mapping (LSM) draws on
an assortment of contributory and predisposing factors to determine the characterization
of the geographic arrangement of landslides through either qualitative or quantitative
methodologies [15–20]. The approaches to evaluating LSM have continually evolved in
response to scientific and technological advancements, yet the landslide susceptibility
system remains a fundamental component throughout the entire development process. By
comparing the efficiency of supervised machine learning and ensemble learning techniques
in LSM, it was revealed that the model-building and forecasting capabilities of boosted
regression trees and random forests are slightly superior to flexible discriminant analysis
methods [21]. In addition, Boosting, Stacking, and Bagging ensemble learning techniques
were coupled with decision tree and artificial neural network methods for LSM. The find-
ings indicate that the application of ensemble learning techniques enhances the accuracy of
LSM results [22].

The nature of landslides involves the downward movement of rock and soil along
slopes [23]. However, landslide susceptibility assessment has traditionally relied on static
factors such as geological and hydrological data, which is obviously not conducive to the
recent landslide proneness evaluation [24,25]. Furthermore, the full utilization of deforming
landslide characteristics is often unattainable, leading to false negatives and consequently
reducing the reliability of landslide susceptibility evaluations. The incorporation of surface
deformation data in an appropriate manner can enhance the reliability of the landslide
susceptibility results. Conventional terrestrial monitoring stations are characterized by
exorbitant costs, implementation difficulties, and limitations in conducting comprehensive
macro-monitoring across expansive regions. Interferometric Synthetic Aperture Radar
(InSAR) not only addresses the limitations associated with conventional observation sites
but also enables continuous and weather-independent monitoring [26,27]. The applica-
tion of InSAR technology is widely employed across various domains, including urban
subsidence, groundwater monitoring, mine detection, and numerous other areas. It has
demonstrated the capability to provide high-precision monitoring at the millimeter scale,
which is crucial for early warning and prevention of landslide disasters [28–30].

However, the effective integration of InSAR and LSM for landslide susceptibility
assessment is still in the exploratory phase, with full consideration of their respective
advantages. Fusion techniques based on the Analytic Hierarchy Process method [31] and
the Weighted Overlay method [32,33] are constrained by the experts’ empirical knowledge,
which may introduce uncertainty of results with issues of high subjectivity and a significant
risk of false positives [34]. In addition, Kouhartsiouk [35] and Bo et al. [36] used InSAR
to update landslide inventory data before conducting landslide susceptibility assessment,
which is labor-intensive, time-consuming, and inefficient. And, deformation identified
using InSAR does not necessarily indicate the occurrence of a landslide disaster. Building on
the aforementioned studies, utilizing various models for evaluating landslide susceptibility
and coupling them with InSAR involves more than simply overlaying or visually comparing
deformation results with LSM. Instead, it involves a deep integration of them, with a
focus on a comprehensive evaluation of the study area. In short, this work seeks to
assess and compare the effectiveness of several coupled models in updating LSM using
InSAR deformation data and to identify the most optimal landslide dynamic sensitivity
evaluation model.

This study involved the construction of five ensemble learning models, including
eXtreme Gradient Boosting (XGBoost) [37], Random Forest (RF) [38], Logistic Regres-
sion (LR) [39], Gradient Boosting Decision Tree (GBDT) [40], and K-Nearest Neighbor
(KNN) [41], to conduct an initial assessment of landslide susceptibility. The Small Baseline
Subset-Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology was utilized to
determine the ground deformation rate in both the satellite line of sight (LOS) and the verti-
cal direction. Subsequently, the landslide susceptibility evaluation of Shiyan City in Hubei
Province was conducted by comparing the impacts of two separate implementations of the



Remote Sens. 2024, 16, 2873 3 of 20

dynamic characteristic factor and the InSAR optimization matrix in order to scientifically
incorporate InSAR deformation outcomes with the original landslide susceptibility. The
primary objectives encompass delivering precise and reliable scientific support for land-
slide early warning, rescue, and protective measures in Shiyan City, as well as facilitating
the continuation of landslide identification, regional geological hazard investigations, and
further academic research.

2. Study Area and Data
2.1. Study Area

This study focuses on Shiyan City, located in the northwestern region of Hubei
Province, within the core region of the Qinba Mountain range, along the mid-upper sections
of the Han River. The city’s topography is characterized by elevated northern and southern
regions, while the central area is defined by lower elevations. The landforms in the area
are classified into four primary types: hills, low mountains, mid-mountains, and alpine
mountains, with mountainous yellow-brown loam being the predominant soil type [42,43].
The predominant geological composition of the mountains consists primarily of limestone
and metamorphic rocks, along with extensive fractures, narrower valleys, and drastic
height variations. Shiyan City is situated in the north subtropical continent rainy humid
climate with an average annual temperature ranging from 13 to 16 ◦C and an average
annual precipitation of 829 mm over the past 20 years. The urban area is characterized by
an extensive network of watercourses, with the Blocking River being the most prominent,
extending over a length of 338.6 km [44,45]. The official records indicate that the city has
experienced a total of 3575 landslides, with 3298 of them having been recorded the type of
landslide. There are a total of 204 landslides classified as rocky, 2938 as earthy landslides,
and 156 as a combination of rocky and earthy landslides. Figure 1 depicts the geographic
location of Shiyan City and the distribution of landslides.
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2.2. Data

The study primarily utilizes data from 3529 landslide catastrophe sites—comprising
four enormous, seven extra-large, and one hundred eighty-one large landslides—provided
by the Natural Resources and Urban Rural Development Bureau of Shiyan City in China.
STRM 30 m DEM was employed to determine the topography and hydrological conditions-
related landslide impact factors. The national fundamental geographic database, at a scale
of 1:250,000, was used for navigating roads and rivers. The indicators of land-use type
evaluation were derived from global land cover with a 30 m resolution. The stratigraphy,
lithology, and geologic structure were derived from national geologic map data. The
Normalized Difference Vegetation Index (NDVI) was computed using four sets of remotely
sensed images from Landsat-8 OLI launched by NASA in California, USA 2013, with
row and column numbers “125,037”, “125,038”, “126,037”, and “126,038”. Sentinel-1A
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images from September 2021 to March 2022 were used to generate surface deformation
rates. Table 1 tabulates the data sources.

Table 1. Data sources.

Data Type Data Source Time

Landslides http://gtzy.shiyan.gov.cn/
(accessed on 13 March 2023) 2016

Administrative boundaries of
Shiyan City

http://datav.aliyun.com/portal/school/atlas/area_selector
(accessed on 20 March 2023) 2021

STRM30 m DEM https://www.gscloud.cn/
(accessed on 20 March 2023) 2009

Land cover https://www.webmap.cn/commres.do?method=globeIndex
(accessed on 5 April 2023) 2010

National basic geographic
database

https://www.webmap.cn/commres.do?method=result25W
(accessed on 5 April 2023) 2015

National geologic map data http://www.tuxingis.com/locaspace.html (accessed on 5 April
2023) 2013

Landsat-8 OLI Remote
Sensing images

https://www.gscloud.cn/
(accessed on 23 April 2023) 2021

Sentinel-1A images https://search.asf.alaska.edu/
(accessed on 3 May 2023)

September
2021–March 2022

3. Methods

To effectively address the deficiency of dynamic factors in traditional landslide sus-
ceptibility assessment and to enhance the rationality and scientific rigor of LSM in Shiyan
City, this study undertakes four core tasks: (1) evaluating landslide susceptibility using
multi-models based on static factors; (2) acquiring surface deformation rates; (3) assessing
landslide susceptibility by integrating dynamic and static factors; and (4) optimizing the
landslide susceptibility assessment using the InSAR optimization matrix. One of the most
fundamental aspects is to advance the quantitative analysis techniques of multi-source
data and multi-models to achieve the most accurate static landslide susceptibility results.
Additionally, it is crucial to process the surface deformation data obtained via SBAS-InSAR
and integrate it with the initial landslide susceptibility results. The primary aim of our
work is to identify the most effective fusion approach by comparing two methodologies for
incorporating InSAR results into landslide susceptibility assessments: the dynamic char-
acteristic factor and the InSAR optimization matrix. Figure 2 depicts the comprehensive
technical workflow of the study.
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quantifies the degree of association between the distribution of geologic hazards and
disaster-predisposing factors through the calculation of frequency ratios. The magnitude
of the FR value is directly proportional to the impact of the environmental factor on the
emergence of geohazards; a higher FR value indicates a more significant influence of the
environmental factor’s interval on the development of geohazards [46,47]. The formula for
the FR method is

FR =
li/Li
ni/Ni

(1)

where FR is the frequency ratio, l is the number of landslide rasters in a single environ-
mental factor partition, L is the total number of landslide rasters in the study region, n is
the number of rasters in that environmental factor partition, and N is the total number of
rasters in the study region.

3.2. SBAS-InSAR Technology Flow

SBAS-InSAR is a ground deformation monitoring technique that processes a series of
synthetic aperture radar (SAR) images, akin to the Differential Interferometric Synthetic
Aperture Radar (D-InSAR) and the Permanent Scatterer Interferometric Synthetic Aperture
Radar (PS-InSAR) techniques [48,49]. In contrast to D-InSAR and PS-InSAR, SBAS-InSAR
exhibits greater repeatability, scalability, and precision monitoring results due to the fact
that the short spatial-temporal baseline subset combination can suppress the influence of
decorrelation caused by random errors. Furthermore, the SBAS-InSAR methodology is
capable of handling datasets with varying sample rates, thus enabling a broader spectrum
of activities compared to conventional methodologies.

The fundamental principle of SBAS-InSAR involves generating a multi-master image
set with temporal and spatial thresholds, modeling and resolving it, and then producing a
time series map for the study area. The primary technological procedures are as follows:
Initially, the raw data are converted to single look complex images, and further proceedings
are conducted with precision orbit ephemerides data. Subsequently, the multi-master
image is established for differential interference processing predicated on the temporal and
spatial thresholding principles, aimed at reducing the consequences of the atmospheric
phase, topographic phase, error phase, and data spatiotemporal correlation. Ultimately,
the surface deformation phase of the image set is jointly resolved by means of the least
squares approach, and the surface deformation phase is obtained through the singular
value decomposition technique, generating deformation results across the entire time series.
Figure 3 depicts the Flowchart of SBAS-InSAR.
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To sum up, SBAS-InSAR technology offers significant benefits in terms of repeatability,
scalability, and surface morphology capture [50]. The application of this method, which
produces precise and detailed data on surface deformation, is increasingly essential in
various domains such as ecological conservation, management of natural resources, and
urban development [51,52].

3.3. Ensemble Learning Models

Ensemble learning has emerged as a prominent field of study in machine learning,
owing to its straightforward premise and exceptional accuracy. It employs a finite set of
autonomous learners, referred to as weak learners, to collectively address a given problem.
These weak learners are then combined to form a composite model, known as strong
learners. The performance of the strong learners is contingent upon the output of each
individual learner within the ensemble, thereby enabling a unified solution to the problem
at hand. Current ensemble learning methodologies can be broadly categorized into two
primary classes, depending on the generation of individual learners.

1. Boosting: The sequential serialization method is necessary due to the interdependen-
cies between individual learners, both in terms of backward and forward progression.

2. Bagging: The parallelization approach is developed simultaneously as a result of the
relative independence among individual learners.

Figure 4 illustrates the core principles of ensemble learning, which is implemented
through a two-part process: the learning phase and the application phase.
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Learning phase: Using some methods to make the training set D produce T subsets,
such as D1, D2, . . ., DT, and defining a single classifier (base classifier) for each subset, such
as C1, C2, . . ., CT, thus integrating the system C(x) = { C1,C2, . . ., CT}.

Application phase: For the input samples x = (x1, x2, . . ., xp), each base classifier Ct
(1 ≤ t ≤ T) can output its own judgment Ct(x). The ultimate classification outcome is
determined by combining the results of all the basic classifiers, typically by methods like
weighted summation or majority vote.

Given the exceptional performance of ensemble learning in processing complex data
with high precision, generalization, and robustness, we selected five widely used ensemble
learning models, namely XGBoost, RF, LR, GBDT, and KNN, for landslide sensitivity
assessment. Among these models, GBDT integrates the results of multiple decision trees,
capturing the nonlinear relationship between evaluation factors and effectively handling
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complex multi-source data. XGBoost enhances training and prediction efficiency through
algorithm optimization and parallel processing, performing well on large datasets. RF
can assess the feature importance of evaluation factors to identify the key influencing
factors and demonstrate robustness against overfitting. LR is suitable for analyzing and
modeling the potential linear relationships in landslide susceptibility assessment. KNN, an
adaptable method that utilizes nearest-neighbor characteristics, is particularly effective for
local area evaluation.

4. Results
4.1. Landslide Causative Static Factors

The geological environment significantly influences the likelihood of landslide haz-
ards. Incorporating the fundamental principles of geologic catastrophe development in
Shiyan City, twelve static evaluation factors were preliminarily identified, including four
topographic and geomorphologic factors (terrain roughness index (TRI), aspect, slope
length, and slope), two geologic and lithologic factors (distance from fault and lithology),
three hydrologic factors (topographic wetness index (TWI), stream power index (SPI),
and distance from rivers), and three land cover factors (land use, distance from roads,
and NDVI). After format conversion, discretization, spatial analysis, and other relevant
procedures, each evaluation index is resampled into a raster with a 30 m resolution, which
is then utilized to determine the evaluation units. The continuous variables, such as slope,
slope length, etc., were split under five classifications by the natural breakpoint method,
and the multi-value extraction to point tool was employed to generate the assessment
dataset. To address the imbalance between landslide and non-landslide points, samples
were allocated in a 1:2 ratio for each category, with 30% designated as the test set and 70%
as the training set, ensuring sample balance and training model accuracy. By employing
five ensemble learning models—XGBoost, RF, LR, GBDT, and KNN—along with accuracy
assessment and comparative statistical analysis, the most effective results were achieved in
the assessment of static landslide susceptibility. Figure 5 and Table 2 illustrate information
of causative static factors.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 21 
 

 

Shiyan City, twelve static evaluation factors were preliminarily identified, including four 
topographic and geomorphologic factors (terrain roughness index (TRI), aspect, slope 
length, and slope), two geologic and lithologic factors (distance from fault and lithology), 
three hydrologic factors (topographic wetness index (TWI), stream power index (SPI), and 
distance from rivers), and three land cover factors (land use, distance from roads, and 
NDVI). After format conversion, discretization, spatial analysis, and other relevant proce-
dures, each evaluation index is resampled into a raster with a 30 m resolution, which is 
then utilized to determine the evaluation units. The continuous variables, such as slope, 
slope length, etc., were split under five classifications by the natural breakpoint method, 
and the multi-value extraction to point tool was employed to generate the assessment da-
taset. To address the imbalance between landslide and non-landslide points, samples were 
allocated in a 1:2 ratio for each category, with 30% designated as the test set and 70% as 
the training set, ensuring sample balance and training model accuracy. By employing five 
ensemble learning models—XGBoost, RF, LR, GBDT, and KNN—along with accuracy as-
sessment and comparative statistical analysis, the most effective results were achieved in 
the assessment of static landslide susceptibility. Figure 5 and Table 2 illustrate information 
of causative static factors. 

 

 

 

Figure 5. Cont.



Remote Sens. 2024, 16, 2873 8 of 20
Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 5. Twelve static evaluation factors: (a) slope; (b) aspect; (c) slope length; (d) TRI; (e) distance 
from fault; (f) lithology; (g) TWI; (h) SPI; (i) distance from rivers; (j) land use; (k) distance from 
roads; (l) NDVI. The aspect groups are described as follows: 1: flatness; 2: north; 3: northeast; 4: east; 
5: southeast; 6: south; 7: southwest; 8: west; 9: northwest. The lithology groups are described as 
follows: 1: PT1; 2: EO; 3: S1; 4: C1; 5: E; 6: O; 7: OPZ; 8: VPT3; 9: HUI; 10: GREEN; 11: C2P; 12: K2; 
13: PT3; 14: EE; 15: BLUE; 16: PT2; 17: D. 

Table 2. Values for parts of causative factors. 

Factors Class Landslides Frequency of Landslides Classification Value 

Slope (°) 

0–11.03 556 15.81% 1 
11.03–19.92 1398 39.75% 2 
19.92–27.88 1084 30.82% 3 
27.88–37.07 390 11.09% 4 
37.17–78.13 89 2.53% 5 

Slope lenth (m) 

0–78.23 2225 63.26% 1 
78.23–235.63 839 23.86% 2 
235.63–486.96 335 9.53% 3 
486.96–942.51 106 3.01% 4 
942.51–3503 12 0.34% 5 

TRI 

0–5.20 1081 30.74% 1 
5.20–9.46 1570 44.64% 2 
9.46–14.19 645 18.34% 3 

14.19–20.81 196 5.57% 4 
20.81–90.80 25 0.71% 5 

Distance to faults (m) 

<500 213 6.06% 1 
500–1000 182 5.17% 2 
1000–2000 358 10.18% 3 
2000–4000 626 17.80% 4 

>4000 2138 60.79% 5 

TWI 

1.96–5.69 1335 37.96% 1 
5.69–7.70 1727 49.10% 2 
7.70–11.06 336 9.55% 3 

11.06–16.23 97 2.76% 4 
16.23–26.39 22 0.63% 5 

SPI 

0–934 3452 98.15% 1 
934–4207 61 1.73% 2 

4207–10,284 4 0.11% 3 
10,284–22,905 0 0.00% 4 
22,905–59,836 0 0.00% 5 

Distance to rivers (m) <500 306 8.70% 1 

Figure 5. Twelve static evaluation factors: (a) slope; (b) aspect; (c) slope length; (d) TRI; (e) distance
from fault; (f) lithology; (g) TWI; (h) SPI; (i) distance from rivers; (j) land use; (k) distance from
roads; (l) NDVI. The aspect groups are described as follows: 1: flatness; 2: north; 3: northeast; 4: east;
5: southeast; 6: south; 7: southwest; 8: west; 9: northwest. The lithology groups are described as
follows: 1: PT1; 2: EO; 3: S1; 4: C1; 5: E; 6: O; 7: OPZ; 8: VPT3; 9: HUI; 10: GREEN; 11: C2P; 12: K2;
13: PT3; 14: EE; 15: BLUE; 16: PT2; 17: D.

Table 2. Values for parts of causative factors.

Factors Class Landslides Frequency of Landslides Classification Value

Slope (◦)

0–11.03 556 15.81% 1
11.03–19.92 1398 39.75% 2
19.92–27.88 1084 30.82% 3
27.88–37.07 390 11.09% 4
37.17–78.13 89 2.53% 5

Slope lenth (m)

0–78.23 2225 63.26% 1
78.23–235.63 839 23.86% 2
235.63–486.96 335 9.53% 3
486.96–942.51 106 3.01% 4
942.51–3503 12 0.34% 5

TRI

0–5.20 1081 30.74% 1
5.20–9.46 1570 44.64% 2

9.46–14.19 645 18.34% 3
14.19–20.81 196 5.57% 4
20.81–90.80 25 0.71% 5

Distance to faults (m)

<500 213 6.06% 1
500–1000 182 5.17% 2

1000–2000 358 10.18% 3
2000–4000 626 17.80% 4

>4000 2138 60.79% 5

TWI

1.96–5.69 1335 37.96% 1
5.69–7.70 1727 49.10% 2

7.70–11.06 336 9.55% 3
11.06–16.23 97 2.76% 4
16.23–26.39 22 0.63% 5

SPI

0–934 3452 98.15% 1
934–4207 61 1.73% 2

4207–10,284 4 0.11% 3
10,284–22,905 0 0.00% 4
22,905–59,836 0 0.00% 5

Distance to rivers (m)

<500 306 8.70% 1
500–1000 229 6.51% 2

1000–1500 161 4.58% 3
1500–2000 118 3.36% 4

>2000 2703 76.86% 5

Land use

Cultivate land 1657 47.11% 1
Forest 1532 43.56% 2

Grassland 267 7.59% 3
Wetland 0 0.00% 4

Water bodies 10 0.28% 5
Artificial surfaces 51 1.45% 6
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Table 2. Cont.

Factors Class Landslides Frequency of Landslides Classification Value

Distance to roads (m)

<500 1045 29.71% 1
500–1000 360 10.24% 2

1000–1500 307 8.73% 3
1500–2000 300 8.53% 4

>2000 1505 42.79% 5

NDVI

−0.99–−0.57 10 0.28% 1
−0.57–−0.07 65 1.85% 2
−0.07–0.26 759 21.58% 3
0.26–0.45 1609 45.75% 4
0.45–0.80 1074 30.54% 5

4.2. Static Factors Evaluation Results

The outcomes obtained from the five assessment models for landslide susceptibility
span a numerical range spanning from zero to one. These data were reclassified into five
distinct categories, namely very low, low, moderate, high, and very high zones, utilizing
the natural breakpoint method. The predictive performance of the models was assessed
through the receiver operator characteristic (ROC) curve, which assesses prediction accu-
racy based on the area under the curve (AUC), thereby quantifying computational precision.
Figure 6 depicts the static factors evaluation results and the ROC curves of different models.
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Figure 6. Landslide susceptibility maps. (A) map of XGBoost model, (B) map of RF model, (C) map
of LR model, (D) map of GBDT model, (E) map of KNN model, and (F) map of ROC curves by
different models.

The ROC accuracy of each model, GBDT, XGBoost, and RF, illustrates greater reliability,
with model AUC values exceeding 0.75. To further identify the optimal model results, this
work quantifies the number of rasters, the number of landslides, and the percentage within
each susceptible interval. The findings are presented in Table 3.

Table 3. Landslide susceptibility level zoning.

Model
Landslide

Susceptibility
Level

Number of
Pixels in
Domain

Percent of
Domain (%)

Number of
Landslides

Percent of
Landslides (%)

GBDT

Very low 10,880,445 40.98 336 9.57
Low 4,985,541 18.78 365 10.40

Moderate 3,362,087 12.66 423 12.05
High 2,626,950 9.89 502 14.30

Very high 4,692,903 17.68 1884 53.68

LR

Very low 4,728,064 17.80 216 6.15
Low 9,888,848 37.25 765 21.79

Moderate 4,700,527 17.71 605 17.24
High 4,751,518 17.90 1005 28.63

Very high 2,478,969 9.34 919 26.18
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Table 3. Cont.

Model
Landslide

Susceptibility
Level

Number of
Pixels in
Domain

Percent of
Domain (%)

Number of
Landslides

Percent of
Landslides (%)

RF

Very low 4,701,470 17.71 65 1.85
Low 9,470,206 35.67 399 11.37

Moderate 6,025,650 22.70 697 19.86
High 3,801,322 14.31 1032 29.40

Very high 2,549,278 9.60 1317 37.52

XGBoost

Very low 5,481,662 20.64 86 2.45
Low 9,441,984 35.57 498 14.19

Moderate 3,442,159 12.97 336 9.57
High 5,503,552 20.73 1292 36.81

Very high 2,678,569 10.90 1298 36.98

KNN

Very low 9,693,047 36.51 529 15.07
Low 6,904,034 26.01 712 20.28

Moderate 2,712,572 10.21 412 11.73
High 5,350,227 20.15 1165 33.19

Very high 1,888,046 7.11 692 19.71

The landslide susceptibility result of the RF model exhibits superior ROC precision.
The high and very high susceptibility zones encompass more landslide hazard sites within
a smaller area. The regions of high susceptibility are primarily located along rivers and in
certain lowland areas, aligning with the fundamental principles of geologic hazards forma-
tion. Consequently, it is evident that the RF model is more effective in assessing outcomes,
and the LSM result derived from the static factors using the RF model is designated as A.

4.3. SBAS-InSAR Results

Geological hazards such as landslides, collapses, and ground subsidence have consis-
tently posed a significant threat to social security and economic development in Shiyan City.
These potential hazards are typically accompanied by notable surface deformation [53,54].
This study utilized the ENVI SARscape 5.6.2 radar image processing software, developed
by Sarmap, to apply the SBAS-InSAR methodology for identifying areas of surface defor-
mation in Shiyan City for ascending orbiting Sentinel-1A images from September 2021 to
March 2022. The surface deformation information acquired through the SBAS-InSAR tech-
nique can be leveraged for early detection, monitoring, and risk assessment of geological
hazards, thereby providing essential data support for local territorial spatial planning [55].
The SAR dataset consists of interferometric pairs of radar images with small spatial base-
lines and short temporal intervals, determined through the time series analysis technique to
monitor regional deformation. The interferometric deformation results of the SAR dataset
are subsequently resolved using differential interferometry to extract surface deformation
in both the vertical and the LOS directions. Figure 7 depicts the deformation rate obtained
by the SBAS-InSAR technique. The deformation rate along the LOS direction ranges from
−68.7518 mm/year to 39.4417 mm/year, while the vertical deformation rate ranges from
−82.7976 mm/year to 47.4995 mm/year.
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4.4. Evaluation of Combined Dynamic and Static Factors

The landslides move downward, and the positive value of the surface deformation
in the vertical direction indicates upward movement, while the negative value signifies
downward movement. In light of the aforementioned principles, the positive portion of
the vertical surface deformation rate is adjusted to 0, preserving only the negative values.
In accordance with the surface deformation rate distribution map, the vast majority of the
study area exhibits a deformation rate between 0 and 5.844 mm/year, with high rates of
deformation sporadically distributed. Subsequently, by classifying the screened vertical de-
formation rates as five sections, the dynamic characteristic factor is integrated with the static
evaluation factors, forming a new dataset. This dataset, comprising 13 dynamic and static
evaluation factors overall, is then input into the optimal evaluation RF model in Section 4.2
to generate the landslide susceptibility evaluation result B. Figure 8 depicts the dynamic
characteristic factor and the evaluation result of combined static and dynamic factors.
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4.5. InSAR Optimization Matrix Result

The positive values of the surface deformation rate in the LOS direction indicate the
proximity to the flight direction, while the negative values indicate the distance from the
satellite’s flight direction. In this study, the absolute deformation rate in the LOS direction
is categorized into five distinct groups: V1 (0–10 mm/year), V2 (10–20 mm/year), V3
(20–30 mm/year), V4 (30–40 mm/year), and V5 (>40 mm/year). Similarly, the static factor
LSM result from the RF model, denoted as result A, is also classified into five groups: H1
(very low), H2 (low), H3 (moderate), H4 (high), and H5 (very high). The generation of the
landslide susceptibility optimization matrix involves the combination of the above two
factors, as illustrated in Table 4. And Figure 9 depicts the absolute value of deformation
rate in the LOS direction and the optimizing landslide susceptibility result.

Table 4. InSAR optimization matrix.

V1 V2 V3 V4 V5

H1 1 2 3 4 5

H2 2 2 3 4 5

H3 3 3 3 4 5

H4 4 4 4 4 5

H5 5 5 5 5 5
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5. Discussion
5.1. Analysis of Research Results

Landslide susceptibility assessment has traditionally relied heavily on static data
(e.g., topography, hydrology) for decades, while landslides are intended to be the dynamic
nature associated with the movement of rock and soil along a sloped surface, which is
influenced by rainfall, earthquakes, and man-made cuts in slopes and downslope slides,
either as a whole or in scattered pieces [23], under the influence of gravity. The lack of
dynamic data, such as surface deformation, makes it challenging to comprehensively
analyze the characteristics of deforming landslides [6,49,56], leading to false-positive or
false-negative landslide susceptibility results and undermining the reliability of LSM.
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Advances in remote sensing technology, however, have significantly enhanced both the
sources and efficiency of data collection, enabling more accurate landslide susceptibility
assessments [57].

In recent years, InSAR technology has gained significant traction among geohazard
practitioners and researchers, driven by the availability of open access to Sentinel-1A remote
sensing image data, which has exhibited excellent applicability in the early identification of
potential landslides and the monitoring of deformation signs. Moreover, previous studies
have shown that coupling InSAR technology with geological theories could enhance the
sensitivity of landslide threat assessments to some extent [58]. Despite these advancements,
the effective utilization of the surface deformation information gathered through InSAR
technology for LSM remains an area of active research and development. With the primary
objective of landslide susceptibility evaluation in Shiyan City, two extensively used ap-
proaches for integrating InSAR deformation findings with landslide susceptibility results
were selected in this research: the dynamic characteristic factor and the InSAR optimization
matrix. The magnitude of the FR value can serve as an indicator of the significance of the
interval in which the environmental elements are situated in the formation of geohazards.
This study conducts a statistical analysis of the FR values obtained from two distinct InAR
fusion landslide susceptibility assessments, and higher FR values correspond to a greater
number of landslide rasters per unit area, hence indicating a more accurate evaluation.

The susceptibility ranges classified as high and very high are closely aligned in terms
of both the proportion of rasters and the percentage of landslides, in accordance with the
statistical results in Table 5. There is a slight differentiation between the intervals of the
very low and low susceptibility classes, while a significant disparity is observed among
the moderate susceptibility classes. For the high susceptibility class interval, the result
of the dynamic characteristic factor is slightly lower than that of the InSAR optimization
matrix, with a difference of less than 0.02 in FR values. Conversely, for the remaining four
intervals, the dynamic characteristic factor is higher. Overall, the dynamic characteristic
factor yields a higher FR value, indicating a greater number of landslide rasters per unit
area per susceptibility partition and superior predictive performance.

Table 5. Comparison between different evaluation approaches.

Evaluation
Approach

Landslide
Susceptibility Level

Number of
Pixels in
Domain

Percent of
Domain (%)

Number of
Landslides

Percent of
Landslides

(%)
FR

dynamic
characteristic

factor

Very low 6,146,899 23.15 99 2.82 0.12
Low 9,775,531 36.82 505 14.39 0.39

Moderate 3,985,362 15.01 481 13.70 0.91
High 4,036,548 15.20 1063 30.28 1.99

Very high 2,603,586 9.80 1362 38.80 3.96

InSAR
optimization

matrix

Very low 4,235,667 15.95 47 1.3 0.08
Low 9,443,633 35.57 382 10.88 0.3

Moderate 6,344,038 23.90 713 20.31 0.85
High 3,942,904 14.85 1048 29.86 2.01

Very high 2,581,684 9.72 1320 37.61 3.87

Figure 6 illustrates that the regions with high and very high susceptibility are pri-
marily concentrated around the confluence of Zhuxi County and Zhushan County, Fang
County Center, Zhangwan District, Xunyang District, Maohuai District, and the junction of
Danjiangkou City alongside the Han River. Table 6 displays the statistical data related to
the evaluation of the dynamic characteristic factor. The rate of hazard development per
100 square kilometers and the density of landslides progressively increase as the suscepti-
bility level rises. In the zone characterized by very high susceptibility, the landslide density
reaches 0.58, with landslide hazards developing over an area of 6.30 km2.
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Table 6. Landslide susceptibility result statistics incorporating dynamic characteristic factor.

Landslide
Susceptibility

Level

Zoning Area
(km2)

Number of
Landslides

Landslides
Density

Landslides Area
(km2)

Percentage of
Land-

slides/100 km2

Very low 5532.21 99 0.02 3.48 0.06
Low 8797.98 505 0.06 18.72 0.21

Moderate 3586.83 481 0.13 17.81 0.50
High 3632.89 1063 0.29 46.08 1.27

Very high 2343.23 1362 0.58 147.63 6.30

5.2. Effect Analysis of SBAS-InSAR Results

Using SBAS-InSAR technology to obtain deformation information, the surface defor-
mation rate predominantly ranges from 0 to 10 mm/y in the vertical direction as well as
the LOS direction. The regions with significant deformation exhibit a scattered, point-like
distribution. The InSAR optimization matrix, determined by expert experience, primarily
addresses false negatives when correcting landslide susceptibility results. Consequently,
small areas with a low landslide susceptibility rating and a major concentration of de-
formation are directly classified as high or very high susceptibility zones owing to the
optimization matrix, thereby highlighting a notable limitation.

Gini importance was measured by calculating the average reduction in the Gini index
across all decision tree nodes for each feature in the RF model [59], and the importance
scores of each factor were ranked to ascertain the contribution value to the landslide
susceptibility results. The final characteristic importance of each factor is displayed in
Figures 10 and 11. Notably, some topographic and hydrological factors exhibit minimal
impact. Conversely, the distance from rivers and roads exerts the greatest influence, while
the vertical deformation rate is ranked fourth. This indicates that the RF model effectively
incorporates surface deformation results.

Two regions with large deformation, labeled A and B, were selected to compare the
static factors evaluation results, the combined dynamic and static factors evaluation results,
and the InSAR optimization matrix results in order to further identify the optimal method to
optimize landslide susceptibility outcomes. Figure 12 reveals that the susceptibility rating of
the InSAR optimization matrix results significantly increases when the deformation is more
concentrated in regions A and B, leading to over-correcting false negatives. In contrast, the
combined dynamic and static factors evaluation results comprehensively consider surface
deformation data and effectively incorporate geological circumstances to accurately adjust
the static landslide susceptibility outcomes. Overall, combining dynamic and static factors
in landslide susceptibility assessment allows for a more comprehensive exploration of the
spatial distribution of landslides, providing more dependable recommendations for early
warning of landslide disasters.
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5.3. Landslide Disaster Prevention and Control Recommendations

The Yaotan River landslide series is located within the geographical boundaries of
Jiahe Town, Xunxi County, Shiyan City, and belongs to the Han River Basin. The geo-
graphic coordinates are east longitude 110◦00′19′′ and north latitude 32◦53′46′′. This area
is characterized by the schist precipitation, reservoir seepage, creep-slip type of landslides,
without the presence of weir lakes. The survey identified 17 landslides of numerous shapes
within the region, distributed from west to east in four landslide groups, namely Qiaogou,
Jiehe-Xinmiao-Shihuiyao, Yaotan River-No. 2 school in town, and Tankou-Xiaowanggou.
Among them, the Qiaogou group includes four landslides such as Qiao1 to Qiao4; the
Jiehe-Xinmiao-Shihuiyao group contains Xin1 landslide; the Yaotan river-No. 2 school in
town group includes four landslides such as Yao1, Yao2, Yao3, and Yao middle school;
Tankou-Xiaowanggou is distributed with eight landslides such as Tan1 to Tan 8. The
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landslide series is characterized by a cumulative volume of 13,590,000 cubic meters, an
aggregate area of 950,000 square meters, and an average thickness of 14 m, impacting
around 1500 individuals. It constitutes an unstable situation, amounting to a projected
revenue loss of 50 million yuan and posing a significant risk.

The manifestation of the deformation of the Yaotan River landslides series is evident
through various phenomena, such as pulling apart house walls, tilting and collapsing of
houses, slipping of house foundations, twisting of cultivated land and roads, collapsing
of bastion walls, and cracks in the ground. The evident characteristics of horizontal shear
displacement can be observed at the leading edge of the landslide. The collapse of rock
and soil bodies, landslides, and subsidence frequently occur along highways during or
following periods of intense or prolonged rainfall. These events are typically accompanied
by the appearance of ground fissures, small drum mounds, and small dislocated bodies. The
Yaotan River landslide series has been classified as possessing diminished potential energy
as a result of the geotechnical characteristics of the accumulation layer, hydrodynamic
circumstances, and analysis of deformation. Traction and push-type creep slip are the
primary deformation forms.

The Yaotan River landslide series is situated in the mountainous region of Northwest
Hubei, where the key factor contributing to the risk of landslides is the region’s geologically
inferior environment. The extensive magnitude and the loose composition of its materials
pose significant risks to both the implementation of the South-to-North Water Diversion
Project and the security of the Danjiangkou Reservoir located downstream along the
Han River.

In recent years, landslides have occurred with increasing frequency due to the com-
bined effects of unfavorable elements involving rainfall and human engineering activity.
These events have had severe social and economic impacts, prompting local governments
to allocate significant resources for disaster mitigation. The presence of landslides has
become a significant impediment to the growth and progress of the local economy. Specifi-
cally considering the environmental context of the Yaotan River landslide series, the Xin
1 landslide is believed to present significant hazards with the potential for catastrophic
consequences. To mitigate the potential for further displacement of the Xin 1 landslide body,
it is recommended to implement cut-square load reduction measures and construct support
and blocking structures. Furthermore, the removal and diversion of the landslide debris
both upstream and downstream of the Hanjiang River are essential to reduce stress exerted
on the river banks, enhance the stability of the landslide areas, and, if necessary, facilitate
the relocation of affected residents to alternative shelters. Surface drainage facilities should
be constructed near the Yaotan River-No. 2 school in town group to prevent water infil-
tration, alleviate groundwater pressure, and avoid erosion of potential landslide surfaces.
For the Tankou-Xiaowanggou group, it is crucial to install drainage systems to improve
soil stability and reduce the force of landslides. Environmental protection measures, such
as enhancing vegetation, are vital to prevent slope instability and surface erosion, thereby
reducing landslide occurrences. The Qiaogou landslide group poses a relatively moderate
danger; hence, it is advisable to implement the practice of converting cropland into wood
as a means of preventing soil erosion and soil rock desertification.

6. Conclusions

A preliminary landslide susceptibility assessment was conducted using the RF model,
which is known for its proficiency in handling extensive datasets and complex feature
connections, as well as its robustness against overfitting. Aiming at the problem that
traditional landslide susceptibility assessment lacks dynamic factors and struggles to
capture deformation characteristics, this paper introduces SBAS-InSAR to extract surface
deformation information. Subsequently, two methods of incorporating the InSAR results
into landslide susceptibility assessment are explored, and their respective advantages
and disadvantages are analyzed. The findings demonstrate that it is more meaningful to
incorporate InSAR results into landslide susceptibility assessment as a dynamic factor.
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Nevertheless, further improvements are necessary in subsequent studies due to data
accessibility issues, inherent constraints of InSAR technology, and the complexity of land-
slide hazard occurrence. Based on the current research findings, further extensive research
can be carried out, focusing on the early identification of landslides and the implementation
of an early warning system for landslides.
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