Dynamic of Fluorescence Emissions at O2A and O2B Telluric Absorption Bands in Forested Areas with Seasonal APAR and GPP Variations
<p>Positions of Bílý Kříž and Štítná experimental sites within the Czech Republic. Photographs show instrumentation used for measurements of canopy sun-induced fluorescence at both sites. The upper row photos show the layout of instruments at the Bílý Kříž site; lower row photos display instrumentation in the beech forest at the Štítná site.</p> "> Figure 2
<p>Spectra of irradiance and reflected radiance from the spruce (<span class="html-italic">Picea abies</span>) forest at the Bílý Kříž station and from the beech (<span class="html-italic">Fagus sylvatica</span>) forest at the Štítná station measured at midday on a sunny day in summer. Grey vertical lines indicate the wavelengths used as reference for estimating fluorescence emissions in the O<sub>2</sub>A band and in the O<sub>2</sub>B band from the spectra.</p> "> Figure 3
<p>Canopy height model (CHM) raster images of trees measured using a spectrometer. On the left side we show the structure of tree crowns as seen from above. Raster images are on a greyscale that indicates identified height of the pixel in the canopy. The upper row includes raw and α<sub>S</sub> images of spruce trees, lower row shows dynamics of beech tree. Dynamics of estimated shadow fraction in this area in 1 h steps near midday are shown with red color. Pictures show dynamics of shadows on 5 July.</p> "> Figure 4
<p>Canopy height model (CHM) raster images of trees measured using a spectrometer. On the left side, we show the structure of tree crowns as seen from above. Raster images are on a greyscale that indicates identified height of the pixel in the canopy. The upper row includes raw and α<sub>S</sub> images of spruce trees, lower row shows dynamics of beech tree. Dynamics of estimated shadow fraction in this area in 1 h steps near midday are shown with red color. Pictures show dynamics of shadows on 15 September.</p> "> Figure 5
<p>Dynamics of fluorescence in O<sub>2</sub>A band (SIFA) and fluorescence in O<sub>2</sub>B band (SIFB) shown in direct comparison with seasonal trend in NDVI at spruce and beech forests. Black dots show mean dynamics in a 2 h long period at midday. Grey points refer to dynamics at 30 min intervals within days with PAR intensities > 300 µmol m<sup>−2</sup> s<sup>−1</sup> and SZA > 25°.</p> "> Figure 6
<p>Dynamics in yield of fluorescence emission in O<sub>2</sub>A band (FYSIFA) and O<sub>2</sub>B band (FYSIFB). Mean value dynamics for a midday 2 h long period is shown with a black line. Grey points put into display values at 30 min intervals.</p> "> Figure 7
<p>Diurnal change of incoming PAR to the forest at the Bílý Kříž site on days evaluated as clear days. Daily dynamics of fluorescence emission in O<sub>2</sub>A band and O<sub>2</sub>B bands from the spruce forest are shown with adjacent change in the yield of this emission. The yield of SIFA and SIFB is expressed per unit of absorbed PAR (nm). Dynamics of shadow fraction in area under spectrometer (α<sub>S</sub>JAZ) and at the forest level (α<sub>S</sub>FOREST) at corresponding sun azimuth and zenith angles (Z) are shown in the bottom panel.</p> "> Figure 8
<p>Diurnal change of incoming PAR to the forest at the Štítná site on days evaluated as clear days. Daily dynamics of fluorescence emission in O<sub>2</sub>A band and O<sub>2</sub>B bands are shown with adjacent change in the yield of this emission. Dynamics of shadow fraction in area under spectrometer (α<sub>S</sub>JAZ) and at the forest level (α<sub>S</sub>FOREST) at corresponding sun azimuth and zenith angles (Z) are shown in the bottom panel.</p> "> Figure 9
<p>Dependency of fluorescence in O<sub>2</sub>A band (SIFA) and O<sub>2</sub>B band (SIFB) on amount of absorbed photosynthetically active radiation (APAR). Relationships between black points refer to averaged data across 2 h interval at midday on days with almost no clouds. N = 80 for spruce data set and N = 93 for beech data set. Grey points data refer to relationships on selected days between the data in 30 min intervals between 10:00 to 14:00 h. The asterisk indicates statistical significance of the result (*** for <span class="html-italic">p</span> ˂0.001, ** for <span class="html-italic">p</span> ˂0.01).</p> "> Figure 10
<p>Dependency of fluorescence emission in O<sub>2</sub>A band (SIFA) and O<sub>2</sub>B band (SIFB) on NDVI of the spruce and beech forests. Black points refer to fluorescence and NDVI data in time intervals with significant relationship between fluorescence emission and NDVI. These points refer to data measured in the summer period, N = 46 for spruce data set and N = 68 for beech data set. Grey points show relationships between data in 30 min intervals, and relationships refer to time intervals shown in <a href="#remotesensing-15-00067-f009" class="html-fig">Figure 9</a>. The asterisk *** indicates statistically significant result at <span class="html-italic">p</span> < 0.001.</p> "> Figure 11
<p>Dependency between SIFA and GPP at examined forest sites is shown in the upper panels. Dependency between SIFB and GPP is shown in the bottom panels. Black points refer to seasonal values of parameters averaged across 2 h long intervals on days with clear sky conditions. Grey points show relationship between data on selected days in 30 min temporal intervals between 10:00 and 14:00 h. The asterisk *** indicates statistically significant result at <span class="html-italic">p</span> < 0.001.</p> "> Figure 12
<p>Seasonal variations in the ratio between fluorescence emission in the O<sub>2</sub>A and in the O<sub>2</sub>B band. Black points highlight average seasonal variation in SIFA:SIFB ratio estimated across 2 h long interval in the midday. Grey points show dynamics in 30 min intervals, temporal intervals are equal to those displayed in <a href="#remotesensing-15-00067-f005" class="html-fig">Figure 5</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Measurements of NDVI and Fluorescence
2.3. Estimation of Canopy Shadow Fraction
2.4. Eddy Covariance Data
2.5. Data Analysis
3. Results
3.1. Seasonal Pattern of Fluorescence Changes
3.2. Variability of Fluorescence within Days
3.3. Factors That Determine Fluorescence Emissions in the O2A and O2B Bands
4. Discussion
4.1. Measurement of Fluorescence in the O2B Band
4.2. Relationship of Fluorescence Emissions to GPP
4.3. The Ratio between Fluorescence Emissions at O2A and O2B Bands
4.4. General Purpose of the Study
- -
- -
- fluorescence in the O2B band is influenced with canopy NDVI (Figure 10);
- -
- -
- in the evergreen needle forest, fluorescence in the O2B band decreases towards autumn more strongly than O2A fluorescence, coherently with decreasing GPP (Figure 5), the change being linked to sensitivity of the emission to foliar NDVI;
- -
- a negative correlation is recorded in the beech forest in the relationship between SIFB and GPP, the trend is related to NDVI seasonality, and the connection between the data deteriorates under lower PAR levels (Figure 11);
- -
- the ratio between fluorescence emissions at O2A and O2B bands shows similar response at the start of the season at both forest sites, but the trend diverges towards autumn dependent on tree species and dynamics of NDVI (Figure 12).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balzarolo, M.; Anderson, K.; Nichol, C.; Rossini, M.; Vescovo, L.; Arriga, N.; Wohlfahrt, G.; Calvet, J.-C.; Carrara, A.; Cerasoli, S.; et al. Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and Current Controversies. Sensors 2011, 11, 7954–7981. [Google Scholar] [CrossRef] [PubMed]
- Hall, F.G.; Hilker, T.; Coops, N.C.; Lyapustin, A.; Huemmrich, K.F.; Middleton, E.; Margolis, H.; Drolet, G.; Black, T.A. Multi-Angle Remote Sensing of Forest Light Use Efficiency by Observing PRI Variation with Canopy Shadow Fraction. Remote Sens. Environ. 2008, 112, 3201–3211. [Google Scholar] [CrossRef] [Green Version]
- Markiet, V.; Hernandez-Clemente, R.; Mõttus, M. Spectral Similarity and PRI Variations for a Boreal Forest Stand Using Multi-Angular Airborne Imagery. Remote Sens. 2017, 9, 1005. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, Y.; Zhang, Q.; Chen, J.M.; Porcar-Castell, A.; Guanter, L.; Wu, Y.; Zhang, X.; Wang, H.; Ding, D.; et al. Assessing Bi-Directional Effects on the Diurnal Cycle of Measured Solar-Induced Chlorophyll Fluorescence in Crop Canopies. Agric. For. Meteorol. 2020, 295, 108147. [Google Scholar] [CrossRef]
- Garroutte, E.L.; Hansen, A.J.; Lawrence, R.L. Using NDVI and EVI to Map Spatiotemporal Variation in the Biomass and Quality of Forage for Migratory Elk in the Greater Yellowstone Ecosystem. Remote Sens. 2016, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.; Rinderle, U. The Role of Chlorophyll Fluorescence in the Detection of Stress Conditions in Plants. Crit. Rev. Anal. Chem. 1988, 19, S29–S85. [Google Scholar] [CrossRef]
- Acebron, K.; Matsubara, S.; Jedmowski, C.; Emin, D.; Muller, O.; Rascher, U. Diurnal Dynamics of Nonphotochemical Quenching in Arabidopsis Npq Mutants Assessed by Solar-Induced Fluorescence and Reflectance Measurements in the Field. New Phytol. 2021, 229, 2104–2119. [Google Scholar] [CrossRef]
- Damm, A.; Elber, J.; Erler, A.; Gioli, B.; Hamdi, K.; Hutjes, R.; Kosvancova, M.; Meroni, M.; Miglietta, F.; Moersch, A.; et al. Remote Sensing of Sun-Induced Fluorescence to Improve Modeling of Diurnal Courses of Gross Primary Production (GPP). Glob. Chang. Biol. 2010, 16, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, C. Variability and Application of the Chlorophyll Fluorescence Emission Ratio Red/Far-Red of Leaves. Photosynth. Res. 2007, 92, 261–271. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. Leaf Chlorophyll Fluorescence Corrected for Re-Absorption by Means of Absorption and Reflectance Measurements. J. Plant Physiol. 1998, 152, 283–296. [Google Scholar] [CrossRef]
- van Wittenberghe, S.; Alonso, L.; Verrelst, J.; Hermans, I.; Delegido, J.; Veroustraete, F.; Valcke, R.; Moreno, J.; Samson, R. Upward and Downward Solar-Induced Chlorophyll Fluorescence Yield Indices of Four Tree Species as Indicators of Traffic Pollution in Valencia. Environ. Pollut. 2013, 173, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Julitta, T.; Corp, L.A.; Rossini, M.; Burkart, A.; Cogliati, S.; Davies, N.; Hom, M.; MacArthur, A.; Middleton, E.M.; Rascher, U.; et al. Comparison of Sun-Induced Chlorophyll Fluorescence Estimates Obtained from Four Portable Field Spectroradiometers. Remote Sens. 2016, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Meroni, M.; Colombo, R. Leaf Level Detection of Solar Induced Chlorophyll Fluorescence by Means of a Subnanometer Resolution Spectroradiometer. Remote Sens. Environ. 2006, 103, 438–448. [Google Scholar] [CrossRef]
- Perez-Priego, O.; Zarco-Tejada, P.J.; Miller, J.R.; Sepulcre-Cantó, G.; Fereres, E. Detection of Water Stress in Orchard Trees with a High-Resolution Spectrometer through Chlorophyll Fluorescence in-Filling of the O-2-A Band. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2860–2869. [Google Scholar] [CrossRef]
- Frankenberg, C.; O´Dell, C.; Guanter, L.; McDuffie, J. Remote Sensing of Near-Infrared Chlorophyll Fluorescence from Space in Scattering Atmospheres: Implications for Its Retrieval and Interferences with Atmospheric CO2 Retrievals. Atmos. Meas. Tech. 2012, 5, 2081–2094. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y.; Garrity, S.R.; Middleton, E.M.; Huemmrich, K.F. The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and Its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange. Remote Sens. Environ. 2014, 152, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Frankenberg, C.; Jung, M.; Joiner, J.; Guanter, L.; Köhler, P.; Magney, T. Overview of Solar-Induced Chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, Cross-Mission Comparison, and Global Monitoring for GPP. Remote Sens. Environ. 2018, 209, 808–823. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; He, B. Chlorophyll Fluorescence Observed by OCO-2 Is Strongly Related to Gross Primary Productivity Estimated from Flux Towers in Temperate Forests. Remote Sens. Environ. 2018, 204, 659–671. [Google Scholar] [CrossRef]
- Migliavacca, M.; Perez-Priego, O.; Rossini, M.; El-Madany, T.S.; Moreno, G.; van der Tol, C.; Rascher, U.; Berninger, A.; Bessenbacher, V.; Burkart, A.; et al. Plant Functional Traits and Canopy Structure Control the Relationship between Photosynthetic CO2 Uptake and Far-Red Sun-Induced Fluorescence in a Mediterranean Grassland under Different Nutrient Availability. New Phytol. 2017, 214, 1078–1091. [Google Scholar] [CrossRef] [Green Version]
- Rossini, M.; Panigada, C.; Cilia, C.; Meroni, M.; Busetto, L.; Cogliati, S.; Amaducci, S.; Colombo, R. Discriminating Irrigated and Rainfed Maize with Diurnal Fluorescence and Canopy Temperature Airborne Maps. ISPRS Int. J. Geo-Inf. 2015, 4, 626–646. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Tyystjarvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfuendel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking Chlorophyll a Fluorescence to Photosynthesis for Remote Sensing Applications: Mechanisms and Challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magney, T.S.; Frankenberg, C.; Köhler, P.; North, G.; Davis, T.S.; Dold, C.; Dutta, D.; Fisher, J.B.; Grossmann, K.; Harrington, A.; et al. Disentangling Changes in the Spectral Shape of Chlorophyll Fluorescence: Implications for Remote Sensing of Photosynthesis. J. Geophys. Res. Biogeosci. 2019, 124, 1491–1507. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Atherton, J.; Peñuelas, J.; Filella, I.; Kolari, P.; Aalto, J.; Ruhanen, H.; Bäck, J.; Porcar-Castell, A. Do All Chlorophyll Fluorescence Emission Wavelengths Capture the Spring Recovery of Photosynthesis in Boreal Evergreen Foliage? Plant Cell Environ. 2019, 42, 3264–3279. [Google Scholar] [CrossRef]
- Pierrat, Z.; Nehemy, M.F.; Roy, A.; Magney, T.; Parazoo, N.C.; Laroque, C.; Pappas, C.; Sonnentag, O.; Grossmann, K.; Bowling, D.R.; et al. Tower-Based Remote Sensing Reveals Mechanisms Behind a Two-Phased Spring Transition in a Mixed-Species Boreal Forest. J. Geophys. Res. 2021, 126, e2020JG006191. [Google Scholar] [CrossRef]
- Lappi, J.; Stenberg, P. Joint Effect of Angular Distribution of Radiation and Spatial Pattern of Trees on Radiation Interception. Ecol. Modell. 1998, 112, 45–51. [Google Scholar] [CrossRef]
- Ač, A.; Malenovský, Z.; Olejníčková, J.; Gallé, A.; Rascher, U.; Mohammed, G. Meta-Analysis Assessing Potential of Steady-State Chlorophyll Fluorescence for Remote Sensing Detection of Plant Water, Temperature and Nitrogen Stress. Remote Sens. Environ. 2015, 168, 420–436. [Google Scholar] [CrossRef] [Green Version]
- Wieneke, S.; Burkart, A.; Cendrero-Mateo, M.P.; Julitta, T.; Rossini, M.; Schickling, A. Linking Photosynthesis and Sun-Induced Fluorescence at Sub-Daily to Seasonal Scales. Remote Sens. Environ. 2018, 219, 247–258. [Google Scholar] [CrossRef]
- Kováč, D.; Ač, A.; Šigut, L.; Peñuelas, J.; Grace, J.; Urban, O. Combining NDVI, PRI and the Quantum Yield of Solar-Induced Fluorescence Improves Estimations of Carbon Fluxes in Deciduous and Evergreen Forests. Sci. Total Environ. 2022, 829, 154681. [Google Scholar] [CrossRef]
- Kováč, D.; Veselovská, P.; Klem, K.; Večeřová, K.; Ač, A.; Peñuelas, J.; Urban, O. Potential of Photochemical Reflectance Index for Indicating Photochemistry and Light Use Efficiency in Leaves of European Beech and Norway Spruce Trees. Remote Sens. 2018, 10, 1202. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.K.; Ryu, D.; Western, A.W.; Suter, H.; Young, I.M. Which Multispectral Indices Robustly Measure Canopy Nitrogen across Seasons: Lessons from an Irrigated Pasture Crop. Comput. Electron. Agric. 2021, 182, 106000. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Yang, P.; van der Tol, C. Linking Canopy Scattering of Far-Red Sun-Induced Chlorophyll Fluorescence with Reflectance. Remote Sens. Environ. 2018, 209, 456–467. [Google Scholar] [CrossRef]
- Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.; Arneth, A.; Barr, A.; Stoy, P.; Wohlfahrt, G. Separation of Net Ecosystem Exchange into Assimilation and Respiration Using a Light Response Curve Approach: Critical Issues and Global Evaluation. Glob. Chang. Biol. 2010, 16, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L. Basic and Extensible Post-Processing of Eddy Covariance Flux Data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef] [Green Version]
- Mohotti, A.J.; Lawlor, D.W. Diurnal Variation of Photosynthesis and Photoinhibition in Tea: Effects of Irradiance and Nitrogen Supply during Growth in the Field. J. Exp. Bot. 2002, 53, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Daumard, F.; Goulas, Y.; Champagne, S.; Fournier, A.; Ounis, A.; Olioso, A.; Moya, I. Continuous Monitoring of Canopy Level Sun-Induced Chlorophyll Fluorescence During the Growth of a Sorghum Field. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4292–4300. [Google Scholar] [CrossRef]
- Meroni, M.; Barducci, A.; Cogliati, S.; Castagnoli, F.; Rossini, M.; Busetto, L.; Migliavacca, M.; Cremonese, E.; Galvagno, M.; Colombo, R.; et al. The Hyperspectral Irradiometer, a New Instrument for Long-Term and Unattended Field Spectroscopy Measurements. Rev. Sci. Instrum. 2011, 82, 43106. [Google Scholar] [CrossRef]
- Campbell, P.K.E.; Huemmrich, K.F.; Middleton, E.M.; Ward, L.A.; Julitta, T.; Daughtry, C.S.T.; Burkart, A.; Russ, A.L.; Kustas, W.P. Diurnal and Seasonal Variations in Chlorophyll Fluorescence Associated with Photosynthesis at Leaf and Canopy Scales. Remote Sens. 2019, 11, 488. [Google Scholar] [CrossRef] [Green Version]
- Tagliabue, G.; Panigada, C.; Dechant, B.; Baret, F.; Cogliati, S.; Colombo, R.; Migliavacca, M.; Rademske, P.; Schickling, A.; Schüttemeyer, D.; et al. Exploring the Spatial Relationship between Airborne-Derived Red and Far-Red Sun-Induced Fluorescence and Process-Based GPP Estimates in a Forest Ecosystem. Remote Sens. Environ. 2019, 231, 111272. [Google Scholar] [CrossRef]
- Magney, T.S.; Barnes, M.L.; Yang, X. On the Covariation of Chlorophyll Fluorescence and Photosynthesis across Scales. Geophys. Res. Lett. 2020, 47, e2020GL091098. [Google Scholar] [CrossRef]
- Marrs, J.K.; Reblin, J.S.; Logan, B.A.; Allen, D.W.; Reinmann, A.B.; Bombard, D.M.; Tabachnik, D.; Hutyra, L.R. Solar-Induced Fluorescence Does not Track Photosynthetic Carbon Assimilation Following Induced Stomatal Closure. Geophys. Res. Lett. 2020, 47, e2020GL087956. [Google Scholar] [CrossRef]
- Cogliati, S.; Rossini, M.; Julitta, T.; Meroni, M.; Schickling, A.; Burkart, A.; Pinto, F.; Rascher, U.; Colombo, R. Continuous and Long-Term Measurements of Reflectance and Sun-Induced Chlorophyll Fluorescence by Using Novel Automated Field Spectroscopy Systems. Remote Sens. Environ. 2015, 164, 270–281. [Google Scholar] [CrossRef]
- Pinto, F.; Damm, A.; Schickling, A.; Panigada, C.; Cogliati, S.; Müller-Linow, M.; Balvora, A. Sun-Induced Chlorophyll Fluorescence from High-Resolution Imaging Spectroscopy Data to Quantify Spatio-Temporal Patterns of Photosynthetic Function in Crop Canopies. Plant Cell Environ. 2016, 39, 1500–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul-Limoges, E.; Damm, A.; Hueni, A.; Liebisch, F.; Eugster, W.; Schaepman, M.E.; Buchmann, N. Effect of Environmental Conditions on Sun-Induced Fluorescence in a Mixed Forest and a Cropland. Remote Sens. Environ. 2018, 219, 310–323. [Google Scholar] [CrossRef]
- Kováč, D.; Veselá, B.; Klem, K.; Večeřová, K.; Materová, Z.; Peñuelas, J.; Urban, O. Correction of PRI for Carotenoid Pigment Pools Improves Photosynthesis Estimation across Different Irradiance and Temperature Conditions. Remote Sens. Environ. 2020, 244, 111834. [Google Scholar] [CrossRef]
- Pons, T.L.; Welschen, R.A.M. Midday Depression of Net Photosynthesis in the Tropical Rainforest Tree Eperua Grandiflora: Contributions of Stomatal and Internal Conductances, Respiration and Rubisco Functioning. Tree Physiol. 2003, 23, 937–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurasová, I.; Kalina, J.; Urban, O.; Štroch, M.; Špunda, V. Acclimation of Two Distinct Plant Species, Spring Barley and Norway Spruce, to Combined Effect of Various Irradiance and CO2 Concentration during Cultivation in Controlled Environment. Photosynth. 2003, 41, 513–523. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Picchi, V.; Panigada, C.; Cogliati, S.; Nali, C.; Colombo, R. Assessing Steady-State Fluorescence and PRI from Hyperspectral Proximal Sensing as Early Indicators of Plant Stress: The Case of Ozone Exposure. Sensors 2008, 8, 1740–1754. [Google Scholar] [CrossRef] [Green Version]
- Peguero-Pina, J.J.; Morales, F.; Flexas, J.; Gil-Pelegrín, E.; Moya, I. Photochemistry, Remotely Sensed Physiological Reflectance Index and de-Epoxidation State of the Xanthophyll Cycle in Quercus Coccifera under Intense Drought. Oecologia 2008, 156, 1–11. [Google Scholar] [CrossRef]
- Cogliati, S.; Celesti, M.; Cesana, I.; Miglietta, F.; Genesio, L.; Julitta, T.; Schuettemeyer, D.; Drusch, M.; Rascher, U.; Jurado, P.; et al. A Spectral Fitting Algorithm to Retrieve the Fluorescence Spectrum from Canopy Radiance. Remote Sens. 2019, 11, 1840. [Google Scholar] [CrossRef]
- de la Motte, L.; Beauclaire, Q.; Heinesch, B.; Cuntz, M.; Foltýnová, L.; Šigut, L.; Kowalska, N.; Manca, G.; Ballarin, I.G.; Vincke, C.; et al. Non-Stomatal Processes Reduce Gross Primary Productivity in Temperate Forest Ecosystems during Severe Edaphic Drought. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190527. [Google Scholar] [CrossRef] [PubMed]
- Koffi, E.N.; Rayner, P.J.; Norton, A.J.; Frankenberg, C.; Scholze, M. Investigating the Usefulness of Satellite-Derived Fluorescence Data in Inferring Gross Primary Productivity within the Carbon Cycle Data. Biogeosciences 2015, 12, 4067–4084. [Google Scholar] [CrossRef] [Green Version]
- Dechant, B.; Ryu, Y.; Badgley, G.; Zeng, Y.; Berry, J.A.; Zhang, Y.; Goulas, Y.; Li, Z.; Zhang, Q.; Kang, M.; et al. Canopy Structure Explains the Relationship between Photosynthesis and Sun-Induced Chlorophyll Fluorescence in Crops. Remote Sens. Environ. 2020, 241, 111733. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Tang, J.; Mustard, J.F.; Lee, J.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, A.D. Solar-Induced Chlorophyll Fluorescence That Correlates with Canopy Photosynthesis on Diurnal and Seasonal Scales in a Temperate Deciduous Forest. Geophys. Res. Lett. 2015, 42, 2977–2987. [Google Scholar] [CrossRef]
- Verma, M.; Schimel, D.; Evans, B.; Frankenberg, C.; Beringer, J.; Eldering, A. Effect of Environmental Conditions on the Relationship between Solar-Induced Fluorescence and Gross Primary Productivity at an OzFlux Grassland Site. J. Geophys. Res. Biogeosci. 2017, 2, 716–733. [Google Scholar] [CrossRef] [Green Version]
- Miao, G.; Guan, K.; Yang, X.; Bernacchi, C.J.; Berry, J.A.; DeLudia, E.H. Sun-Induced Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean Field from Seasonally Continuous Measurements. J. Geophys. Res. Biogeosci. 2018, 123, 610–623. [Google Scholar] [CrossRef]
- van der Tol, C.; Berry, J.A.; Campbell, P.K.E.; Rascher, U. Models of Fluorescence and Photosynthesis for Interpreting Measurements of Solar-Induced Chlorophyll Fluorescence. J. Geophys. Res. Biogeosci. 2014, 119, 2312–2327. [Google Scholar] [CrossRef]
- Yang, P.; van der Tol, C.; Campbell, P.K.E.; Middleton, E.M. Unraveling the Physical and Physiological Basis for the Solar-Induced Chlorophyll Fluorescence and Photosynthesis Relationship Using Continuous Leaf and Canopy Measurements of a Corn Crop. Biogeosciences 2021, 18, 441–465. [Google Scholar] [CrossRef]
- Apostol, S.; Viau, A.A.; Tremblay, N. A Comparison of Multiwavelength Laser-Induced Fluorescence Parameters for the Remote Sensing of Nitrogen Stress in Field-Cultivated Corn. Can. J. Remote Sens. 2007, 33, 150–161. [Google Scholar] [CrossRef]
- Kebabian, P.L.; Theisen, A.F.; Kallelis, S.; Freedman, A. A Passive Two-Band Sensor of Sunlight-Excited Plant Fluorescence. Rev. Sci. Instrum. 1999, 70, 4386–4393. [Google Scholar] [CrossRef]
- Corp, L.A.; McMurtrey, J.E.; Middleton, E.M.; Mulchi, C.L.; Chappelle, E.W.; Daughtry, C.S.T. Fluorescence Sensing Systems: In Vivo Detection of Biophysical Variations in Field Corn Due to Nitrogen Supply. Remote Sens. Environ. 2003, 86, 470–479. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kováč, D.; Novotný, J.; Šigut, L.; Grace, J.; Urban, O. Dynamic of Fluorescence Emissions at O2A and O2B Telluric Absorption Bands in Forested Areas with Seasonal APAR and GPP Variations. Remote Sens. 2023, 15, 67. https://doi.org/10.3390/rs15010067
Kováč D, Novotný J, Šigut L, Grace J, Urban O. Dynamic of Fluorescence Emissions at O2A and O2B Telluric Absorption Bands in Forested Areas with Seasonal APAR and GPP Variations. Remote Sensing. 2023; 15(1):67. https://doi.org/10.3390/rs15010067
Chicago/Turabian StyleKováč, Daniel, Jan Novotný, Ladislav Šigut, John Grace, and Otmar Urban. 2023. "Dynamic of Fluorescence Emissions at O2A and O2B Telluric Absorption Bands in Forested Areas with Seasonal APAR and GPP Variations" Remote Sensing 15, no. 1: 67. https://doi.org/10.3390/rs15010067
APA StyleKováč, D., Novotný, J., Šigut, L., Grace, J., & Urban, O. (2023). Dynamic of Fluorescence Emissions at O2A and O2B Telluric Absorption Bands in Forested Areas with Seasonal APAR and GPP Variations. Remote Sensing, 15(1), 67. https://doi.org/10.3390/rs15010067