Air Temperature Monitoring over Low Latitude Rice Planting Areas: Combining Remote Sensing, Model Assimilation, and Machine Learning Techniques
<p>Distribution of RA and meteorological stations in Guangdong Province.</p> "> Figure 2
<p>Ta estimation model framework for three areas combining multi-source datasets with different ML models.</p> "> Figure 3
<p>Taylor plots of modeling results for different ML models and datasets. (<b>A</b>). GLASS combination. (<b>B</b>). CMFD combination. (<b>C</b>). GLDAS combination. (<b>D</b>). ERA5 combination.</p> "> Figure 4
<p>Relative importance ratios for different dataset sources. (<b>A</b>). Relative importance partition of the GLASS combination. (<b>B</b>). Relative importance partition of the CMFD combination. (<b>C</b>). Relative importance partition of the GLDAS combination. (<b>D</b>). Relative importance partition of the ERA5 combination.</p> "> Figure 5
<p>Plots predicted versus in situ observed Ta point densities from 10-fold cross-validation results. The blue line is the linear regression of the scattered points; the red line is the 1:1 line.</p> "> Figure 6
<p>Interannual RMSE variability using RF model for each dataset combination. Annual RMSE values for each model over seven years are shown as violin plots. The red lines indicate the quartiles; the top red line is the 75% quartile, and the bottom red line is the 25% quartile. The black dashed line represents the median.</p> "> Figure 7
<p>Monthly RF model performance of RA and NA under the ERA5 combination.</p> "> Figure 8
<p>Box plots of temperature differences between RA and NA.</p> "> Figure 9
<p>Scatter plot of the monthly temperature difference between RA meteorological station S59075 and NA meteorological station S59117.</p> "> Figure 10
<p>The relative importance of impact factors from the ERA5 combination in RA and NA.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. In Situ Observation Data
2.2.2. DEM Data
2.2.3. Satellite Observation Data
2.2.4. Data Products and Reanalysis Datasets
3. Methodology
3.1. Data Preprocessing
3.2. Modeling
3.2.1. RF Model
3.2.2. ANN Model
3.2.3. LSTM Model
3.2.4. MLR Model
3.3. Model Training and Validation
4. Result
4.1. Model Performance Evaluation
4.2. Relative Importance of Covariates
4.3. Effects of Rice Planting on Modeling and Temperature Variation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | All areas of Guangdong Province |
Adam | Adaptive moment estimation |
ANN | Artificial neural network |
CMDC | China Meteorological Data Service Center |
CMFD | China meteorological forcing dataset |
CNN | Convolutional neural network |
DEM | Digital Elevation Model |
DL | Deep learning |
EC-LUE | Eddy covariance-light use efficiency |
ECMWF | European Centre for Medium range Weather Forecasts |
ELE | Elevation |
ERA5 | European Centre for Medium range Weather Forecasts Reanalysis v5 |
ET | Evapotranspiration |
GLASS | Global land surface satellite |
GLDAS | Global land data assimilation system |
HEG | Hdf-Eos to GIS conversion tool |
LST | Land surface temperature |
LSTM | Long short-term memory |
MAE | Mean Absolute Error |
ML | Machine learning |
MLR | Multiple linear regression |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NA | Non-rice planting |
NDVI | Normalized difference vegetation index |
NIR | Black-sky albedo in Near Infrared band |
NPP | Net primary production |
SP | Surface pressure |
R2 | Correlation of determination |
RA | Rice planting areas |
RF | Random forest |
RMSE | Root Mean Square Error |
RNN | Recurrent neural network |
SRTM | Shuttle Radar Topography Mission |
SST | Sea surface temperature |
Ta | Air temperature |
TP | Total precipitation |
WD | Wind speed |
References
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The Human Imperative of Stabilizing Global Climate Change at 1.5 °C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Duan, S.; Li, Z.; Wu, P.; Wu, H.; Zhao, W.; Qian, Y. Reconstruction of land surface temperature under cloudy conditions from Landsat 8 data using annual temperature cycle model. Remote Sens. Environ. 2022, 281, 113261. [Google Scholar] [CrossRef]
- Bazrafshan, J. Effect of Air Temperature on Historical Trend of Long-Term Droughts in Different Climates of Iran. Water Resour. Manag. 2017, 31, 4683–4698. [Google Scholar] [CrossRef]
- Duan, Z.; Tuo, Y.; Liu, J.; Gao, H.; Song, X.; Zhang, Z.; Yang, L.; Mekonnen, D.F. Hydrological Evaluation of Open-Access Precipitation and Air Temperature Datasets Using SWAT in a Poorly Gauged Basin in Ethiopia. J. Hydrol. 2019, 569, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Sun, R.; Chen, L. The Trend Inconsistency between Land Surface Temperature and Near Surface Air Temperature in Assessing Urban Heat Island Effects. Remote Sens. 2020, 12, 1271. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising Temperatures Reduce Global Wheat Production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Wang, H.; Yang, T.; Chen, J.; Bell, S.M.; Wu, S.; Jiang, Y.; Sun, Y.; Zeng, Y.; Zeng, Y.; Pan, X.; et al. Effects of Free-Air Temperature Increase on Grain Yield and Greenhouse Gas Emissions in a Double Rice Cropping System. Field Crops Res. 2022, 281, 108489. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z.; Zhang, T.; Fahad, S.; Cui, K.; Nie, L.; Peng, S.; Huang, J. The Effect of Season-Long Temperature Increases on Rice Cultivars Grown in the Central and Southern Regions of China. Front. Plant Sci. 2017, 8, 1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Wang, L.; Hu, F.; Hu, J.; Chen, C.; Liu, X.; Zhang, D.; Chen, T.; Miao, Y.; Zhang, L. Multistage Spatiotemporal Variability of Temperature Extremes over South China from 1961 to 2018. Theor. Appl. Climatol. 2021, 146, 243–256. [Google Scholar] [CrossRef]
- Xu, Y.; Qin, Z.; Shen, Y. Study on the Estimation of Near-Surface Air Temperature from MODIS Data by Statistical Methods. Int. J. Remote Sens. 2012, 33, 7629–7643. [Google Scholar] [CrossRef]
- Bostan, P.A.; Heuvelink, G.B.M.; Akyürek, S.Z. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth Obs. Geoinf. 2012, 115–126. [Google Scholar] [CrossRef]
- McVicar, T.R.; Jupp, D.L. Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data. Remote Sens. Environ. 2002, 79, 199–212. [Google Scholar] [CrossRef]
- Price, D.T.; McKenney, D.W.; Nalder, I.A.; Hutchinson, M.F.; Kesteven, J. A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agric. For. Meteorol. 2000, 101, 81–94. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, S.; Ma, H.; Li, B.; He, T.; Wang, Q. An All-Sky 1 km Daily Land Surface Air Temperature Product over Mainland China for 2003–2019 from MODIS and Ancillary Data. Earth Syst. Sci. Data 2021, 13, 4241–4261. [Google Scholar] [CrossRef]
- Noi, P.T.; Degener, J.; Kappas, M. Comparison of Multiple Linear Regression, Cubist Regression, and Random Forest Algorithms to Estimate Daily Air Surface Temperature from Dynamic Combinations of MODIS LST Data. Remote Sens. 2017, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; He, M.; Jiang, H.; Lu, N. Reconstruction of 60-Year (1961–2020) Surface Air Temperature on the Tibetan Plateau by Fusing MODIS and ERA5 Temperatures. Sci. Total Environ. 2022, 853, 158406. [Google Scholar] [CrossRef]
- Xia, Y.; Hao, Z.; Shi, C.; Li, Y.; Meng, J.; Xu, T.; Wu, X.; Zhang, B. Regional and Global Land Data Assimilation Systems: Innovations, Challenges, and Prospects. J. Meteorol. Res. 2019, 33, 159–189. [Google Scholar] [CrossRef]
- Zeng, L.; Hu, Y.; Wang, R.; Zhang, X.; Peng, G.; Huang, Z.; Zhou, G.; Xiang, D.; Meng, R.; Wu, W.; et al. 8-Day and Daily Maximum and Minimum Air Temperature Estimation via Machine Learning Method on a Climate Zone to Global Scale. Remote Sens. 2021, 13, 2355. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, J.; Wang, J.; Yang, S.; Han, J.; Hassan, T. Reconstruction of 0.05° All-Sky Daily Maximum Air Temperature across Eurasia for 2003–2018 with Multi-Source Satellite Data and Machine Learning Models. Atmos. Res. 2022, 279, 106398. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Miralles, D.G.; Reichle, R.H.; Dorigo, W.A.; Hahn, S.; Sheffield, J.; Karthikeyan, L.; Balsamo, G.; Parinussa, R.M.; et al. Evaluation of 18 Satellite- and Model-Based Soil Moisture Products Using in Situ Measurements from 826 Sensors. Hydrol. Earth Syst. Sci. 2021, 25, 17–40. [Google Scholar] [CrossRef]
- Guo, B.; Xu, T.; Yang, Q.; Zhang, J.; Dai, Z.; Deng, Y.; Zou, J. Multiple Spatial and Temporal Scales Evaluation of Eight Satellite Precipitation Products in a Mountainous Catchment of South China. Remote Sens. 2023, 15, 1373. [Google Scholar] [CrossRef]
- Liu, H.; Xin, X.; Su, Z.; Zeng, Y.; Lian, T.; Li, L.; Yu, S.; Zhang, H. Intercomparison and Evaluation of Ten Global ET Products at Site and Basin Scales. J. Hydrol. 2023, 617, 128887. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Shi, C. Evaluation of Three Air Temperature Reanalysis Datasets in the Alpine Region of the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 4447. [Google Scholar] [CrossRef]
- Wang, M.; He, C.; Zhang, Z.; Hu, T.; Duan, S.-B.; Mallick, K.; Li, H.; Liu, X. Evaluation of Three Land Surface Temperature Products from Landsat Series Using in Situ Measurements. IEEE Trans. Geosci. Remote Sens. 2023, 61, 22508960. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Shi, C. Multiscale Assessments of Three Reanalysis Temperature Data Systems over China. Agriculture 2021, 11, 1292. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, C. Applicability Evaluation of Surface Air Temperature from Several Reanalysis Datasets in China. Plateau Meteorol. 2009, 28, 594–606. [Google Scholar] [CrossRef]
- Wang, C.; Bi, X.; Luan, Q.; Li, Z. Estimation of Daily and Instantaneous Near-Surface Air Temperature from MODIS Data Using Machine Learning Methods in the Jingjinji Area of China. Remote Sens. 2022, 14, 1916. [Google Scholar] [CrossRef]
- Meyer, H.; Katurji, M.; Appelhans, T.; Müller, M.U.; Nauss, T.; Roudier, P.; Zawar-Reza, P. Mapping Daily Air Temperature for Antarctica Based on MODIS LST. Remote Sens. 2016, 8, 732. [Google Scholar] [CrossRef] [Green Version]
- Otgonbayar, M.; Atzberger, C.; Mattiuzzi, M.; Erdenedalai, A. Estimation of Climatologies of Average Monthly Air Temperature over Mongolia Using MODIS Land Surface Temperature (LST) Time Series and Machine Learning Techniques. Remote Sens. 2019, 11, 2588. [Google Scholar] [CrossRef] [Green Version]
- Vulova, S.; Meier, F.; Fenner, D.; Nouri, H.; Kleinschmit, B. Summer Nights in Berlin, Germany: Modeling Air Temperature Spatially with Remote Sensing, Crowdsourced Weather Data, and Machine Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5074–5087. [Google Scholar] [CrossRef]
- Xu, Y.; Knudby, A.; Ho, H.C. Estimating Daily Maximum Air Temperature from MODIS in British Columbia, Canada. Int. J. Remote Sens. 2014, 35, 8108–8121. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Park, S.; Quackenbush, L.J. Estimation of Daily Maximum and Minimum Air Temperatures in Urban Landscapes Using MODIS Time Series Satellite Data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 149–162. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ortega-Farías, S.; Tian, F.; Wang, S.; Li, S. Estimation of Surface and Near-Surface Air Temperatures in Arid Northwest China Using Landsat Satellite Images. Front. Environ. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Jia, H.; Yang, D.; Deng, W.; Wei, Q.; Jiang, W. Predicting Land Surface Temperature with Geographically Weighed Regression and Deep Learning. WIREs Data Min. Knowl. Discov. 2021, 11, e1396. [Google Scholar] [CrossRef]
- Kartal, S.; Sekertekin, A. Prediction of MODIS Land Surface Temperature Using New Hybrid Models Based on Spatial Interpolation Techniques and Deep Learning Models. Environ. Sci. Pollut. Res. 2022, 29, 67115–67134. [Google Scholar] [CrossRef] [PubMed]
- Khalil, U.; Azam, U.; Aslam, B.; Ullah, I.; Tariq, A.; Li, Q.; Lu, L. Developing a Spatiotemporal Model to Forecast Land Surface Temperature: A Way Forward for Better Town Planning. Sustainability 2022, 14, 11873. [Google Scholar] [CrossRef]
- Mukonza, S.S.; Chiang, J.-L. Micro-Climate Computed Machine and Deep Learning Models for Prediction of Surface Water Temperature Using Satellite Data in Mundan Water Reservoir. Water 2022, 14, 2935. [Google Scholar] [CrossRef]
- Su, H.; Zhang, T.; Lin, M.; Lu, W.; Yan, X.-H. Predicting Subsurface Thermohaline Structure from Remote Sensing Data Based on Long Short-Term Memory Neural Networks. Remote Sens. Environ. 2021, 260, 112465. [Google Scholar] [CrossRef]
- Chung, J.; Lee, Y.; Jang, W.; Lee, S.; Kim, S. Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves. Remote Sens. 2020, 12, 3231. [Google Scholar] [CrossRef]
- Yang, D.; Zhong, S.; Mei, X.; Ye, X.; Niu, F.; Zhong, W. A Comparative Study of Several Popular Models for Near-Land Surface Air Temperature Estimation. Remote Sens. 2023, 15, 1136. [Google Scholar] [CrossRef]
- Che, J.; Ding, M.; Zhang, Q.; Wang, Y.; Sun, W.; Wang, Y.; Wang, L.; Huai, B. Reconstruction of Near-Surface Air Temperature over the Greenland Ice Sheet Based on MODIS Data and Machine Learning Approaches. Remote Sens. 2022, 14, 5775. [Google Scholar] [CrossRef]
- Shwetha, H.R.; Kumar, D.N. Prediction of High Spatio-Temporal Resolution Land Surface Temperature under Cloudy Conditions Using Microwave Vegetation Index and ANN. ISPRS J. Photogramm. Remote Sens. 2016, 117, 40–55. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Z. Development of MODIS Data-Based Algorithm for Retrieving Sea Surface Temperature in Coastal Waters. Environ. Monit. Assess 2017, 189, 286. [Google Scholar] [CrossRef]
- Wu, W.; Tang, X.-P.; Guo, N.-J.; Yang, C.; Liu, H.-B.; Shang, Y.-F. Spatiotemporal Modeling of Monthly Soil Temperature Using Artificial Neural Networks. Theor. Appl. Climatol. 2013, 113, 481–494. [Google Scholar] [CrossRef]
- Runke, W.; Xiaoni, Y.; Yaya, S.; Chengyong, W.; Baokang, L. Study on Air Temperature Estimation and Its Influencing Factors in a Complex Mountainous Area. PLoS ONE 2022, 17, e0272946. [Google Scholar] [CrossRef]
- Şahin, M. Modelling of Air Temperature Using Remote Sensing and Artificial Neural Network in Turkey. Adv. Space Res. 2012, 50, 973–985. [Google Scholar] [CrossRef]
- Chiueh, Y.-W.; Tan, C.-H.; Hsu, H.-Y. The Value of a Decrease in Temperature by One Degree Celsius of the Regional Microclimate—The Cooling Effect of the Paddy Field. Atmosphere 2021, 12, 353. [Google Scholar] [CrossRef]
- Gogoi, P.P.; Vinoj, V.; Swain, D.; Dash, J.; Tripathy, S. Land use and land cover change effect on surface temperature over Eastern India. Sci. Rep. 2019, 9, 8859. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Gu, X.; Liu, P.; Wang, D.; Mumtaz, F.; Shi, S.; Liu, Q.; Zhan, Y. Impacts of Inter-Annual Cropland Changes on Land Surface Temperature Based on Multi-Temporal Thermal Infrared Images. Infrared Phys. Technol. 2022, 122, 104081. [Google Scholar] [CrossRef]
- Xin, B.; Yu, L.; Li, G.; Jiao, Y.; Liu, T.; Zhang, S.; Lei, Z. Impact of Saline-Alkali Land Greening on the Local Surface Temperature—A Multiscale Assessment Based on Remote Sensing. Remote Sens. 2022, 14, 4246. [Google Scholar] [CrossRef]
- Liu, T.; Yu, L.; Zhang, S. Land Surface Temperature Response to Irrigated Paddy Field Expansion: A Case Study of Semi-arid Western Jilin Province, China. Sci. Rep. 2019, 9, 5278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, D.; Li, D.; Sun, G.; Zhang, L.; Liu, Y.; Hao, L. Contrasting effects of urbanization and agriculture on surface temperature in eastern China. J. Geophys. Res. Atmos. 2016, 121, 9597–9606. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Jiang, Y.; Li, T.; Cheng, Q.; Zeng, C.; Zhang, L. Deep Learning-Based Air Temperature Mapping by Fusing Remote Sensing, Station, Simulation and Socioeconomic Data. Remote Sens. Environ. 2020, 240, 111692. [Google Scholar] [CrossRef] [Green Version]
- Livingston, F.J. Implementation of Breiman’s Random Forest Machine Learning Algorithm. ECE591Q Mach. Learn. J. Pap. 2005, 1–13. [Google Scholar]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Du, B.; Mao, K.; Bateni, S.M.; Meng, F.; Wang, X.-M.; Guo, Z.; Jun, C.; Du, G. A Novel Fully Coupled Physical–Statistical–Deep Learning Method for Retrieving Near-Surface Air Temperature from Multisource Data. Remote Sens. 2022, 14, 5812. [Google Scholar] [CrossRef]
- Pan, B.; Zheng, Y.; Shen, R.; Ye, T.; Zhao, W.; Dong, J.; Ma, H.; Yuan, W. High Resolution Distribution Dataset of Double-Season Paddy Rice in China. Remote Sens. 2021, 13, 4609. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Chen, Y.; Vasileva, M.; Zhang, B.; Xie, G. Quantitative-Spatial Relationships between Air and Surface Temperature, a Proxy for Microclimate Studies in Fine-Scale Intra-Urban Areas? Sustain. Cities Soc. 2022, 77, 103584. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Yang, Z.; Cohen, W.B.; Bell, D.M. A forest vulnerability index based on drought and high temperatures. Remote Sens. Environ. 2016, 173, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Bird, D.N.; Banzhaf, E.; Knopp, J.; Wu, W.; Jones, L. Combining Spatial and Temporal Data to Create a Fine-Resolution Daily Urban Air Temperature Product from Remote Sensing Land Surface Temperature (LST) Data. Atmosphere 2022, 13, 1152. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S. Impacts of Land Cover Transitions on Surface Temperature in China Based on Satellite Observations. Environ. Res. Lett. 2018, 13, 024010. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Y.; Zhou, T.; Jiang, L.; Qi, Q. Temperature Mediates the Dynamic of MODIS NPP in Alpine Grassland on the Tibetan Plateau, 2001–2019. Remote Sens. 2022, 14, 2401. [Google Scholar] [CrossRef]
- Sun, J.; Du, W. Effects of Precipitation and Temperature on Net Primary Productivity and Precipitation Use Efficiency across China’s Grasslands. GIScience Remote Sens. 2017, 54, 881–897. [Google Scholar] [CrossRef]
- Zhang, H.; Immerzeel, W.W.; Zhang, F.; de Kok, R.J.; Gorrie, S.J.; Ye, M. Creating 1-Km Long-Term (1980–2014) Daily Average Air Temperatures over the Tibetan Plateau by Integrating Eight Types of Reanalysis and Land Data Assimilation Products Downscaled with MODIS-Estimated Temperature Lapse Rates Based on Machine Learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102295. [Google Scholar] [CrossRef]
- Loginov, S.V.; Ippolitov, I.I.; Kharyutkina, E. The relationship of surface air temperature, heat balance at the surface, and radiative balance at the top of atmosphere over the Asian territory of Russia using reanalysis and remote-sensing data. Int. J. Remote Sens. 2014, 35, 5878–5898. [Google Scholar] [CrossRef]
- Girjatowicz, J.P.; Świątek, M. Effects of atmospheric circulation on water temperature along the southern Baltic Sea coast. Oceanologia 2019, 61, 38–49. [Google Scholar] [CrossRef]
- Nastos, P.T.; Philandras, C.M.; Founda, D.; Zerefos, C.S. Air temperature trends related to changes in atmospheric circulation in the wider area of Greece. Int. J. Remote Sens. 2011, 32, 737–750. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, J.; Ai, B.; Sun, S. Two-Decade Variability of Sea Surface Temperature and Chlorophyll-a in the Northern South China Sea as Revealed by Reconstructed Cloud-Free Satellite Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9033–9046. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. 2012, 117, D05102. [Google Scholar] [CrossRef]
- Yang, K.; Guo, X.; He, J.; Qin, J.; Koike, T. On the Climatology and Trend of the Atmospheric Heat Source over the Tibetan Plateau: An Experiments-Supported Revisit. J. Clim. 2011, 24, 1525–1541. [Google Scholar] [CrossRef] [Green Version]
- Strajnar, B.; Cedilnik, J.; Fettich, A.; Ličer, M.; Pristov, N.; Smerkol, P.; Jerman, J. Impact of two-way coupling and sea-surface temperature on precipitation forecasts in regional atmosphere and ocean models. Q. J. R. Meteorol. Soc. 2019, 145, 228–242. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.K. Role of equatorial central Pacific and northwest of North Atlantic 2-metre surface temperatures in modulating Indian summer monsoon variability. Clim. Dyn. 2009, 32, 549–563. [Google Scholar] [CrossRef]
- Sun, X.; Xie, L.; Semazzi, F.H.; Liu, B. Effect of Lake Surface Temperature on the Spatial Distribution and Intensity of the Precipitation over the Lake Victoria Basin. Mon. Weather. Rev. 2015, 143, 1179–1192. [Google Scholar] [CrossRef]
- Pan, C.; Wang, X.; Liu, L.; Wang, D.; Huang, H. Characteristics of Heavy Storms and the Scaling Relation with Air Temperature by Event Process-Based Analysis in South China. Water 2019, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Steinkopf, J.; Engelbrecht, F. Verification of ERA5 and ERA-Interim precipitation over Africa at intra-annual and interannual timescales. Atmos. Res. 2022, 280, 106427. [Google Scholar] [CrossRef]
- Lim Kam Sian, K.T.; Dosio, A.; Ayugi, B.O.; Hagan, D.F.; Kebacho, L.L.; Ongoma, V. Dominant modes of precipitation over Africa, and their associated atmospheric circulations from observations. Int. J. Climatol. 2023. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, G.; Wang, Y.; Yang, L. Impacts of Land Cover and Seasonal Variation on Maximum Air Temperature Estimation Using MODIS Imagery. Remote Sens. 2017, 9, 233. [Google Scholar] [CrossRef] [Green Version]
Data Sources | Abbreviation | Data | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
In situ site | Ta | Air temperature | / | Daily |
MODIS | NDVI | Normalized difference vegetation index | 500 m | Daily |
LST | Land surface temperature | 1000 m | Daily | |
GLASS | NIR | Black-sky albedo in the near-infrared band | 1000 m | 8-day |
ET | Evapotranspiration | 1000 m | 8-day | |
NPP | Net primary production | 500 m | 8-day | |
ERA5 | SP | Surface pressure | 0.1° | hourly |
TP | Total precipitation | 0.1° | hourly | |
WD | 10 m u/v component of wind | 0.1° | hourly | |
GLDAS | SP | Psurf_f_inst | 0.25° | 3-h |
TP | Rainf_f_tavg | 0.25° | 3-h | |
WD | Wind_f_inst | 0.25° | 3-h | |
CMFD | SP | Pressure | 0.1° | Daily |
TP | Precipitation rate | 0.1° | Daily | |
WD | Wind speed | 0.1° | Daily |
Indicators | GLASS | CMFD | GLDAS | ERA5 | |
---|---|---|---|---|---|
RF | R2 | 0.938 | 0.946 | 0.948 | 0.951 |
MAE | 1.157 | 1.080 | 1.067 | 1.023 | |
RMSE | 1.582 | 1.486 | 1.469 | 1.414 | |
ANN | R2 | 0.868 | 0.882 | 0.888 | 0.892 |
MAE | 1.753 | 1.664 | 1.622 | 1.600 | |
RMSE | 2.301 | 2.191 | 2.130 | 2.105 | |
LSTM | R2 | 0.846 | 0.849 | 0.854 | 0.854 |
MAE | 1.906 | 1.890 | 1.887 | 1.888 | |
RMSE | 2.486 | 2.461 | 2.457 | 2.450 | |
MLR | R2 | 0.838 | 0.844 | 0.847 | 0.845 |
MAE | 1.974 | 1.950 | 1.948 | 1.949 | |
RMSE | 2.544 | 2.514 | 2.512 | 2.510 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; Fang, Q.; Xia, J.; Xu, C. Air Temperature Monitoring over Low Latitude Rice Planting Areas: Combining Remote Sensing, Model Assimilation, and Machine Learning Techniques. Remote Sens. 2023, 15, 3805. https://doi.org/10.3390/rs15153805
Lin M, Fang Q, Xia J, Xu C. Air Temperature Monitoring over Low Latitude Rice Planting Areas: Combining Remote Sensing, Model Assimilation, and Machine Learning Techniques. Remote Sensing. 2023; 15(15):3805. https://doi.org/10.3390/rs15153805
Chicago/Turabian StyleLin, Minghao, Qiang Fang, Jizhe Xia, and Chenyang Xu. 2023. "Air Temperature Monitoring over Low Latitude Rice Planting Areas: Combining Remote Sensing, Model Assimilation, and Machine Learning Techniques" Remote Sensing 15, no. 15: 3805. https://doi.org/10.3390/rs15153805
APA StyleLin, M., Fang, Q., Xia, J., & Xu, C. (2023). Air Temperature Monitoring over Low Latitude Rice Planting Areas: Combining Remote Sensing, Model Assimilation, and Machine Learning Techniques. Remote Sensing, 15(15), 3805. https://doi.org/10.3390/rs15153805