Improved Forest Canopy Closure Estimation Using Multispectral Satellite Imagery within Google Earth Engine
<p>The regional division (<b>a</b>), the location of the study area and field survey samples (<b>b</b>), the terrain (<b>c</b>), and the false-color (i.e., RGB: 5-4-3) composite of Landsat 8 OLI (<b>d</b>).</p> "> Figure 2
<p>The pictures of the field survey of forest canopy closure in September 2019 in Chifeng city ((<b>a</b>–<b>c</b>), respectively, refer to <span class="html-italic">Populus</span> spp., <span class="html-italic">Larix</span> spp., and <span class="html-italic">Pinus tabulaeformis</span>).</p> "> Figure 3
<p>Workflow of forest canopy closure estimation (NDVI refers to normalized difference vegetation index, MBSI refers to modified bare soil index, BSI refers to bar soil index, and BEVIs refers to bounding envelope method based on vegetation indices).</p> "> Figure 4
<p>Curve of model accuracy variation with k value.</p> "> Figure 5
<p>The canopy closure estimation results using Landsat 8 images based on BEVIs.</p> "> Figure 6
<p>The canopy closure estimation results using Sentinel-2 images based on BEVIs.</p> "> Figure 7
<p>Accuracy Assessment for the canopy closure prediction using Landsat 8 satellite images.</p> "> Figure 8
<p>Accuracy assessment for the canopy closure prediction using Sentinel-2 satellite images.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey Plots
2.3. Canopy Closure Estimation Overview
2.4. Processing of Satellite Imagery in Google Earth Engine
2.5. Construction of Endmembers Extraction Model
2.6. Estimation of Forest Canopy Closure and Validation
3. Results
3.1. Optimal Parameter Value Determination for Vegetation Indices
3.2. Forest Canopy Closure Estimation and Validation
4. Discussion
4.1. Model Key Parameters Calibration
4.2. Model Robustness and Accuracy Verification
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [Google Scholar] [CrossRef]
- Xavier, A.C.; Vettorazzi, C.A. Monitoring leaf area index at watershed level through NDVI from Landsat-7/ETM+ data. Sci. Agric. 2004, 61, 243–252. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2005: Progress towards Sustainable Forest Management; FAO: Rome, Italy, 2006.
- Xu, L.; Shi, Y.J.; Fang, H.Y.; Zhou, G.M.; Xu, X.J.; Zhou, Y.F.; Tao, J.X.; Ji, B.Y.; Xu, J.; Li, C.; et al. Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems. Sci. Total Environ. 2018, 631–632, 619–626. [Google Scholar] [CrossRef]
- Xie, B.; Cao, C.; Xu, M.; Bashir, B.; Singh, R.P.; Huang, Z.; Lin, X. Regional Forest Volume Estimation by Expanding LiDAR Samples Using Multi-Sensor Satellite Data. Remote Sens. 2020, 12, 360. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Cao, C.X.; Xu, M.; Duerler, R.S.; Yang, X.W.; Bashir, B.; Chen, Y.Y.; Wang, K.M. Analysis of Regional Distribution of Tree Species Using Multi-Seasonal Sentinel-1&2 Imagery within Google Earth Engine. Forests 2021, 12, 565. [Google Scholar] [CrossRef]
- Du, H.Q.; Mao, F.J.; Li, X.J.; Zhou, G.M.; Xu, X.J.; Han, N.; Sun, S.B.; Gao, G.L.; Cui, L.; Li, Y.G.; et al. Mapping Global Bamboo Forest Distribution Using Multisource Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1458–1471. [Google Scholar] [CrossRef]
- Rodig, E.; Cuntz, M.; Heinke, J.; Rammig, A.; Huth, A. Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Glob. Ecol. Biogeogr. 2017, 26, 1292–1302. [Google Scholar] [CrossRef]
- Salvador, M.Z.; Nelson, W.L.; Rall, D.L. Estimating Canopy Cover via VNIR/SWIR Hyperspectral Detection Methods. In Proceedings of the Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, Orlando, FL, USA, 5–8 April 2010. [Google Scholar]
- Liu, Q.W.; Li, S.M.; Hu, K.L.; Pang, Y.; Li, Z.Y. Forest Canopy Cover Analysis Using Uas Lidar. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 2863–2866. [Google Scholar]
- Pu, Y.H.; Xu, D.D.; Wang, H.B.; An, D.S.; Xu, X. Extracting Canopy Closure by the CHM-Based and SHP-Based Methods with a Hemispherical FOV from UAV-LiDAR Data in a Poplar Plantation. Remote Sens. 2021, 13, 3837. [Google Scholar] [CrossRef]
- Ni, W.J.; Sun, G.Q.; Pang, Y.; Zhang, Z.Y.; Liu, J.L.; Yang, A.Q.; Wang, Y.; Zhang, D.F. Mapping Three-Dimensional Structures of Forest Canopy Using UAV Stereo Imagery: Evaluating Impacts of Forward Overlaps and Image Resolutions with LiDAR Data as Reference. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3578–3589. [Google Scholar] [CrossRef]
- Lang, M.W.; Kasischke, E.S. Using C-band synthetic aperture radar data to monitor forested wetland hydrology in Maryland’s coastal plain, USA. IEEE Trans. Geosci. Remote Sens. 2008, 46, 535–546. [Google Scholar] [CrossRef]
- Ji, M.H.; Feng, J. Subpixel measurement of mangrove canopy closure via spectral mixture analysis. Front. Earth Sci. 2011, 5, 130–137. [Google Scholar] [CrossRef]
- Van Coillie, F.M.; Liao, W.; Kempeneers, P.; Vandekerkhove, K.; Gautama, S.; Philips, W.; De Wulf, R.R. Optimized feature fusion of LiDAR and hyperspectral data for tree species mapping in closed forest canopies. In Proceedings of the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar]
- Shukla, A.; Kot, R. An Overview of Hyperspectral Remote Sensing and its applications in various Disciplines. IRA-Int. J. Appl. Sci. 2016, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- George, R.; Padalia, H.; Kushwaha, S. Forest tree species discrimination in western Himalaya using EO-1 Hyperion. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 140–149. [Google Scholar] [CrossRef]
- Korhonen, L.; Ali-Sisto, D.; Tokola, T. Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data. Silva Fenn. 2015, 49, 1405. [Google Scholar] [CrossRef]
- Chen, R.H.; Pinto, N.; Duan, X.Y.; Tabatabaeenejad, A.; Moghaddam, M. Mapping Tree Canopy Cover and Canopy Height with L-Band Sar Using Lidar Data and Random Forests. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4136–4139. [Google Scholar]
- Ningthoujam, R.K.; Tansey, K.; Balzter, H.; Morrison, K.; Johnson, S.C.M.; Gerard, F.; George, C.; Burbidge, G.; Doody, S.; Veck, N.; et al. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar. Remote Sens. 2016, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Zribi, M.; Le Hegarat-Mascle, S.; Taconet, O.; Ciarletti, V.; Vidal-Madjar, D. Derivation of wild vegetation cover density in semi-arid regions: ERS2/SAR evaluation. Int. J. Remote Sens. 2003, 24, 1335–1352. [Google Scholar] [CrossRef]
- Varghese, A.O.; Suryavanshi, A.; Joshi, A.K. Analysis of different polarimetric target decomposition methods in forest density classification using C band SAR data. Int. J. Remote Sens. 2016, 37, 694–709. [Google Scholar] [CrossRef]
- Varghese, A.O.; Joshi, A.K. Polarimetric classification of C-band SAR data for forest density characterization. Curr. Sci. 2015, 108, 100–106. [Google Scholar]
- Wang, B.; Jia, K.; Liang, S.L.; Xie, X.H.; Wei, X.Q.; Zhao, X.; Yao, Y.J.; Zhang, X.T. Assessment of Sentinel-2 MSI Spectral Band Reflectances for Estimating Fractional Vegetation Cover. Remote Sens. 2018, 10, 1927. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Sha, Z. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Baumann, M.; Radeloff, V.C.; Abrudan, I.V.; Lieskovsky, J.; Munteanu, C.; Ostapowicz, K.; Hostert, P. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens. Environ. Interdiscip. J. 2014, 151, 72–88. [Google Scholar] [CrossRef]
- Sun, S.S.; Li, Z.Y.; Tian, X.; Gao, Z.H.; Wang, C.Y.; Gu, C.Y. Forest Canopy Closure Estimation in Greater Khingan Forest Based On Gf-2 Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 6640–6643. [Google Scholar]
- Li, J.R.; Mao, X.G. Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images. Forests 2020, 11, 597. [Google Scholar] [CrossRef]
- Chen, G.S.; Lou, T.T.; Jing, W.P.; Wang, Z.Y. Sparkpr: An Efficient Parallel Inversion of Forest Canopy Closure. IEEE Access 2019, 7, 135949–135956. [Google Scholar] [CrossRef]
- Wang, L.; Mao, X.G. Estimating canopy cover in artificial forests using high spatial resolution GF-1 and ZY-3 images: Acrosssensor and across-site comparison. Int. J. Remote Sens. 2021, 42, 7166–7187. [Google Scholar] [CrossRef]
- Myroniuk, V.; Kutia, M.; Sarkissian, A.J.; Bilous, A.; Liu, S.G. Regional-Scale Forest Mapping over Fragmented Landscapes Using Global Forest Products and Landsat Time Series Classification. Remote Sens. 2020, 12, 187. [Google Scholar] [CrossRef] [Green Version]
- Townshend, J.R.; Masek, J.G.; Huang, C.Q.; Vermote, E.F.; Gao, F.; Channan, S.; Sexton, J.O.; Feng, M.; Narasimhan, R.; Kim, D.; et al. Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. Int. J. Digit. Earth 2012, 5, 373–397. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, R.J.; Campbell, J. Classification of vegetation in the Western Australian wheatbelt using Landsat MSS data. Plant Ecol. 1989, 80, 91–105. [Google Scholar] [CrossRef]
- Chowdhury, S.; Peddle, D.R.; Wulder, M.A.; Heckbert, S.; Shipman, T.C.; Chao, D.K. Estimation of land-use/land-cover changes associated with energy footprints and other disturbance agents in the Upper Peace Region of Alberta Canada from 1985 to 2015 using Landsat data. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102224. [Google Scholar] [CrossRef]
- Wu, T.X.; Zhao, Y.T.; Wang, S.D.; Su, H.J.; Yang, Y.Y.; Jia, D.Z. Improving the Accuracy of Fractional Evergreen Forest Cover Estimation at Subpixel Scale in Cloudy and Rainy Areas by Harmonizing Landsat-8 and Sentinel-2 Time-Series Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3373–3385. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Franklin, S.E.; Wulder, M.A.; White, J.C. Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm. ISPRS J. Photogramm. Remote Sens. 2015, 101, 89–101. [Google Scholar] [CrossRef]
- Landry, S.; St-Laurent, M.H.; Nelson, P.R.; Pelletier, G.; Villard, M.A. Canopy Cover Estimation from Landsat Images: Understory Impact onTop-of-canopy Reflectance in a Northern Hardwood Forest. Can. J. Remote Sens. 2018, 44, 435–446. [Google Scholar] [CrossRef]
- Hadi; Korhonen, L.; Hovi, A.; Ronnholm, P.; Rautiainen, M. The accuracy of large-area forest canopy cover estimation using Landsat in boreal region. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 118–127. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Wachid, M.N.; Hapsara, R.P.; Cahyo, R.D.; Wahyu, G.N.; Syarif, A.M.; Umarhadi, D.A.; Fitriani, A.N.; Ramadhanningrum, D.P.; Widyatmanti, W. Mangrove canopy density analysis using Sentinel-2A imagery satellite data. In Proceedings of the 3rd International Conference of Planning in the Era of Uncertainty (ICPEU), Univ Brawijaya, Malang, Indonesia, 3–7 March 2017. [Google Scholar]
- Ma, H.E.; Lin, C.; Hai, P.N. Applying an Object-Based Svm Classifier to Explore Canopy Closure of Mangrove Forest in the Mekong Delta Using Sentinel-2 Multispectral Images. In Proceedings of the 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 5402–5405. [Google Scholar]
- Mikeladze, G.; Gavashelishvili, A.; Akobia, I.; Metreveli, V. Estimation of forest cover change using Sentinel-2 multi-spectral imagery in Georgia (the Caucasus). iForest 2020, 13, 329–335. [Google Scholar] [CrossRef]
- Korhonen, L.; Hadi; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Gunlu, A.; Baskent, E.Z. Estimating Crown Closure of Forest Stands Using Landsat Tm Data: A Case Study from Turkey. Environ. Eng. Manag. J. 2015, 14, 183–193. [Google Scholar] [CrossRef]
- Hua, Y.Y.; Zhao, X.S. Multi-Model Estimation of Forest Canopy Closure by Using Red Edge Bands Based on Sentinel-2 Images. Forests 2021, 12, 1768. [Google Scholar] [CrossRef]
- Loranty, M.M.; Davydov, S.P.; Kropp, H.; Alexander, H.D.; Mack, M.C.; Natali, S.M.; Zimov, N.S. Vegetation Indices Do not Capture Forest cover Variation in Upland Siberian Larch Forests. Remote Sens. 2018, 10, 1686. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Tiyip, T.; Ding, J.L.; Sawut, M.; Johnson, V.C.; Tashpolat, N.; Gui, D.W. Vegetation fractional coverage change in a typical oasis region in Tarim River Watershed based on remote sensing. J. Arid Land 2013, 5, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Y.; Wu, T.X.; Zeng, Y.H.; Wang, S.D. An Adaptive-Parameter Pixel Unmixing Method for Mapping Evergreen Forest Fractions Based on Time-Series NDVI: A Case Study of Southern China. Remote Sens. 2021, 13, 4678. [Google Scholar] [CrossRef]
- Yu, Q.Z.; Mickler, R.A.; Liu, Y.J.; Sun, L.G.; Zhou, L.; Zhang, B.H.; Deng, H.G.; Liang, L.L. Remote Sensing of Potamogeton crispus L. in Dongping Lake in the North China Plain Based on Vegetation Phenology. J. Indian Soc. Remote Sens. 2020, 48, 563–573. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Wu, T.X.; Wang, S.D.; Li, H. Fractional evergreen forest cover mapping by MODIS time-series FEVC-CV methods at sub-pixel scales. ISPRS J. Photogramm. Remote Sens. 2020, 163, 272–283. [Google Scholar] [CrossRef]
- Feng, L.L.; Jia, Z.Q.; Li, Q.X.; Zhao, A.Z.; Zhao, Y.L.; Zhang, Z.J. Spatiotemporal Change of Sparse Vegetation Coverage in Northern China. J. Indian Soc. Remote Sens. 2019, 47, 359–366. [Google Scholar] [CrossRef]
- Yang, S.W.; Dong, B.; Liu, L.P.; Sun, L.; Sheng, S.W.; Wang, Q.; Peng, W.J.; Wang, X.; Zhang, Z.F.; Zhao, J. Research on Vegetation Coverage Change in Sheng Jin Lake Wetland of Anhui Province. Wetlands 2015, 35, 677–682. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.F.; Xie, J. Karst rock-desertification of extracting vegetation coverage inversion based on NDVI serial images and dimidiate pixel model—A case study of the Yachi demonstrate area in Bijie city of Guizhou. In Proceedings of the 7th Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR), Guilin, China, 4–6 November 2011. [Google Scholar]
- Cui, Y.Q.; Luo, Y.Q.; Wang, L. Extraction of Vegetation Fraction Based on the Dimidiate Pixel Model and Vegetation Index Transform Plan. In Proceedings of the Conference on PIAGENG 2010, Shanghai, China, 25–26 December 2010. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 183. [Google Scholar] [CrossRef] [Green Version]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Catherine, L.; Verstraete, M.M.; Pinty, B. Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data. Remote Sens. Rev. 1994, 10, 265–284. [Google Scholar] [CrossRef]
- Deng, B.; Yang, W.-N.; Huang, J.; Mu, N. Estimating the Change of Vegetation Coverage of the Upstream of Minjiang River by Using Remote-Sensing Images. Rev. Int. Contam. Ambient. 2019, 35, 11–22. [Google Scholar] [CrossRef]
- Maas, S.J. Estimating cotton canopy ground cover from remotely sensed scene reflectance. Agron. J. 1998, 90, 384–388. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Chidthaisong, A.; Kieu Diem, P.; Huo, L.-Z. A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8. Land 2021, 10, 231. [Google Scholar] [CrossRef]
- Roy, P.S.; Sharma, K.P.; Jain, A. Stratification of density in dry deciduous forest using satellite remote sensing digital data—An approach based on spectral indices. J. Biosci. 1996, 21, 723–734. [Google Scholar] [CrossRef]
- Pladsrichuay, S.; Mongkolsawat, C. Integrated Satellite-Derived Indices to Estimate Change Detection of Vegetation Canopy Density in the Lower Chi Basin, Northeast Thailand. In Proceedings of the 20th International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 14–17 December 2016. [Google Scholar]
- Song, W.J.; Mu, X.H.; Ruan, G.Y.; Gao, Z.; Li, L.Y.; Yan, G.J. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Humagain, K.; Portillo-Quintero, C.; Cox, R.D.; Cain, J.W. Mapping Tree Density in Forests of the Southwestern USA Using Landsat 8 Data. Forests 2017, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Cilek, A.; Berberoglu, S.; Donmez, C.; Sahingoz, M. The use of regression tree method for Sentinel-2 satellite data to mapping percent tree cover in different forest types. Environ. Sci. Pollut. Res. 2021, 29, 23665–23676. [Google Scholar] [CrossRef]
Data Type | Year | Month | Spatial Resolution | Bands |
---|---|---|---|---|
Landsat 8 surface reflectance | 2019 | 7, 8, 9 | 30 m | Band 4, band 5, band 6, and band 7 |
Sentinel-2 surface reflectance | 2019 | 7, 8, 9 | 10 m | Band 2, band 4, band 8, and band 12 |
SRTM DEM | 2000 | - | 30 m | - |
Field survey plots | 2019 | 9 | - | - |
k Value | UBveg | LBveg | UBsoil | LBsoil | NDVIveg | NDVIsoil |
---|---|---|---|---|---|---|
0.00 | 0.999 | 0.999 | 0.460 | 0.460 | 0.999 | 0.040 |
0.05 | 0.990 | 0.459 | 0.994 | 0.040 | ||
0.10 | 0.982 | 0.456 | 0.987 | 0.040 | ||
0.15 | 0.973 | 0.453 | 0.985 | 0.198 | ||
0.20 | 0.965 | 0.449 | 0.979 | 0.198 | ||
0.25 | 0.956 | 0.446 | 0.974 | 0.174 | ||
0.30 | 0.948 | 0.443 | 0.964 | 0.181 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, B.; Cao, C.; Xu, M.; Yang, X.; Duerler, R.S.; Bashir, B.; Huang, Z.; Wang, K.; Chen, Y.; Guo, H. Improved Forest Canopy Closure Estimation Using Multispectral Satellite Imagery within Google Earth Engine. Remote Sens. 2022, 14, 2051. https://doi.org/10.3390/rs14092051
Xie B, Cao C, Xu M, Yang X, Duerler RS, Bashir B, Huang Z, Wang K, Chen Y, Guo H. Improved Forest Canopy Closure Estimation Using Multispectral Satellite Imagery within Google Earth Engine. Remote Sensing. 2022; 14(9):2051. https://doi.org/10.3390/rs14092051
Chicago/Turabian StyleXie, Bo, Chunxiang Cao, Min Xu, Xinwei Yang, Robert Shea Duerler, Barjeece Bashir, Zhibin Huang, Kaimin Wang, Yiyu Chen, and Heyi Guo. 2022. "Improved Forest Canopy Closure Estimation Using Multispectral Satellite Imagery within Google Earth Engine" Remote Sensing 14, no. 9: 2051. https://doi.org/10.3390/rs14092051
APA StyleXie, B., Cao, C., Xu, M., Yang, X., Duerler, R. S., Bashir, B., Huang, Z., Wang, K., Chen, Y., & Guo, H. (2022). Improved Forest Canopy Closure Estimation Using Multispectral Satellite Imagery within Google Earth Engine. Remote Sensing, 14(9), 2051. https://doi.org/10.3390/rs14092051