Mapping Arctic Sea-Ice Surface Roughness with Multi-Angle Imaging SpectroRadiometer
<p>A schematic of the MISR instrument, illustrating near-simultaneous acquisition of multi-angular reflectance, shown here as referenced to an ellipsoid. The time interval between ‘Time 0’ and ‘Time 1’ (representing the <span class="html-italic">Cf</span> and <span class="html-italic">Ca</span> bands, respectively) is approximately five minutes.</p> "> Figure 2
<p>An illustration of the different cloud masks (<b>a</b>) SDCM, (<b>b</b>) ASCM, (<b>c</b>) SVC, (<b>d</b>) MOD29, (<b>e</b>) MODIS-derived cloud shadow mask after [<a href="#B41-remotesensing-14-06249" class="html-bibr">41</a>], (<b>f</b>) MOD35; for Orbit O054627 Blocks 20–23 around Svalbard. Pixels designated as cloud free from each mask are displayed; however, only (<b>c</b>) and (<b>d</b>) actually implement a sea-ice classifier. For (<b>a</b>): 4 = Near Surface High Confidence, 3 = Near Surface Low Confidence, 2 = Cloud Low Confidence, 1 = Cloud High Confidence, 0 = No Retrieval (considered clear); (<b>b</b>): 4 = Clear High Confidence, 3 = Clear Low Confidence, 2 = Cloud Low Confidence, 1 = Cloud High Confidence, 0 = No Retrieval (considered cloud). In all cases, magenta denotes a high-confidence positive (considered cloud-free) retrieval, blue a low-confidence positive retrieval, purple a positive retrieval with no associated confidence interval presented, and red no retrieval considered positive. WGS 84 / NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.</p> "> Figure 3
<p>A process diagram illustrating the workflow method used in model generation. Note that the model selection, feature selection, and hyper-parameterisation constitutes an iterative process that converges on a final hyper-parameterised model and feature subset via cross validation and bias-variance analysis.</p> "> Figure 4
<p>(<b>left</b>) PDFs of elevation used to characterise surface roughness used in training, (<b>right</b>) within-MISR pixel footprint of elevation measurements. N is the total number of elevation shots within a footprint; <math display="inline"><semantics> <mi>σ</mi> </semantics></math> is the standard deviation of the elevation measurements, or roughness.</p> "> Figure 5
<p>A map demonstrating the permutation of split in each fold for five-fold block k-fold cross validation, using a 100 km block size. WGS 84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.</p> "> Figure 6
<p>Model performance is shown for increasing numbers of features through successive iterations of our forward-floating sequential feature-selection scheme. The shaded region denotes <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>1</mn> <mi>σ</mi> </mrow> </semantics></math> error from fold aggregation. The highest cross-validation performance was found for 10 features, although there was no increase in performance with increasing features, which plateaued after approximately seven features.</p> "> Figure 7
<p>A coarse grid search cross-validation scheme implemented using blocked k-fold cross validation. The example shown varies both C and <math display="inline"><semantics> <mi>γ</mi> </semantics></math> for <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math> = 0.4. The coarse hyper parameters are denoted by the lowest CV scores at C = 1, <math display="inline"><semantics> <mi>γ</mi> </semantics></math> = 0.1.</p> "> Figure 8
<p>Learning curves for our regression model at specified hyperparameters and features, for the coefficient of determination <math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> (<b>left</b>) and mean absolute error (<b>right</b>). Demonstrates training and testing performance (from blocked k-fold cross validation, where <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>) for increasing training fractions in 10% increments. Highlighted regions demonstrate <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>1</mn> <mi>σ</mi> </mrow> </semantics></math> errors from averaging folds. Performance of testing and training scores exhibits convergence for increasing training fractions. MAE scores are in the transformed feature space (Box–Cox power transformation).</p> "> Figure 9
<p>A swath-level product (<b>left</b>) for three different orbits which illustrates (<b>a</b>) a smooth, (<b>b</b>) an intermediate, and (<b>c</b>) a rough scene. For each scene, a histogram (<b>right</b>, <b>bottom</b>) of sea-ice surface roughness and summary statistics are provided (<b>right</b>, <b>middle</b>) in addition to a pan-Arctic map illustrating the location of the scene. Dates and times within the summary statistical table refer to the start of the given orbit. WGS 84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.</p> "> Figure 9 Cont.
<p>A swath-level product (<b>left</b>) for three different orbits which illustrates (<b>a</b>) a smooth, (<b>b</b>) an intermediate, and (<b>c</b>) a rough scene. For each scene, a histogram (<b>right</b>, <b>bottom</b>) of sea-ice surface roughness and summary statistics are provided (<b>right</b>, <b>middle</b>) in addition to a pan-Arctic map illustrating the location of the scene. Dates and times within the summary statistical table refer to the start of the given orbit. WGS 84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.</p> "> Figure 10
<p>A sample monthly aggregated roughness product for April 2016; mean roughness (<b>left</b>); number of observations (<b>top right</b>); standard deviation of samples (<b>middle right</b>); coefficient of variation (<b>bottom right</b>), where CoV = standard deviation of roughness/mean roughness. WGS 84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.</p> "> Figure 11
<p>Swath-level roughness scene with an overlain intersecting IceBridge flight path, and a line of section. For each scene, a histogram (<b>right</b>, <b>bottom</b>) of sea-ice surface roughness and summary statistics are provided (<b>right</b>, <b>middle</b>) in addition to a pan-Arctic map illustrating the location of the scene. Dates and times within the summary-statistics table refer to the start of a given orbit. WGS 84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.</p> "> Figure 12
<p>Two-dimensional scatter plot shows a bivariate distribution between MISR-derived roughness (m) and AWI CS-2 SMOS merged thickness (m) for 01–15 April 2011–2020 and 25 km resolution. Count density refers to measurements over a 300 × 300 grid over the presented range (per 1.5 cm of thickness and per mm of roughness). The opaque shaded region represents 95% of the range, contours for the remaining percentiles are at single increments, and the valid bounds in light blue. Spearman’s rank correlation coefficient (SRCC) between derived MISR roughness and AWI CS-2 SMOS thickness is 0.66 (<span class="html-italic">p</span> < 0.001).</p> "> Figure A1
<p>A map of the NSIDC region mask, defining the regions and extents used in this paper. WGS 84/NSIDC EASE-Grid 2.0 North. Generated using Cartopy and Matplotlib.</p> "> Figure A2
<p>Two-dimensional scatter plot shows a bivariate distribution between MISR-derived roughness (m) and AWI CS-2 SMOS merged thickness (m) for 01–15 April 2011–2020 and 25 km resolution, for each Arctic region defined in <a href="#remotesensing-14-06249-f0A1" class="html-fig">Figure A1</a>. Similar to <a href="#remotesensing-14-06249-f012" class="html-fig">Figure 12</a> the count density refers to measurements over a 300 × 300 grid over the presented range (per 1.5cm of thickness and per mm of roughness). The opaque shaded region represents 95% of the range, contours for the remaining percentiles are at single increments, and the valid bounds are in light blue.</p> "> Figure A2 Cont.
<p>Two-dimensional scatter plot shows a bivariate distribution between MISR-derived roughness (m) and AWI CS-2 SMOS merged thickness (m) for 01–15 April 2011–2020 and 25 km resolution, for each Arctic region defined in <a href="#remotesensing-14-06249-f0A1" class="html-fig">Figure A1</a>. Similar to <a href="#remotesensing-14-06249-f012" class="html-fig">Figure 12</a> the count density refers to measurements over a 300 × 300 grid over the presented range (per 1.5cm of thickness and per mm of roughness). The opaque shaded region represents 95% of the range, contours for the remaining percentiles are at single increments, and the valid bounds are in light blue.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Products
2.2. Cloud Masking
2.3. Regression Modelling
2.4. Cross Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SIR | Sea-ice surface roughness |
MISR | Multi-angle imaging spectroRadiometer |
MODIS | Moderate resolution imaging spectroradiometer |
OIB | Operation IceBridge |
CS2 | CryoSat-2 |
SMOS | Soil moisture and ocean salinity |
SAR | Synthetic aperture radar |
ATM | Airborne topographic mapper |
AWI | Alfred Wegener Institute |
NSIDC | National Snow and Ice Data Center |
SVR | Support vector regression |
SVM | Support vector machines |
SVC | Support vector classification |
RBF | Radial basis function |
MAE | Mean absolute error |
LOGO | Leave one group out |
NIR | Near-infrared |
CCD | Charge-coupled device |
NDAI | Normalised difference angular index |
NDSI | Normalised difference snow index |
SDCM | Stereoscopically derived cloud mask |
ASCM | Angular signature cloud mask |
BDAS | Band differenced angular signature |
TOA | Top-of-atmosphere |
EASE-2 | Equal-Area Scalable Earth-2 |
RDQI | Radiometric data quality indicator |
STD | Standard deviation |
CoV | Coefficient of variation |
SRCC | Spearman’s rank correlation coefficient |
PMCC | Pearson’s product moment correlation coefficient |
Appendix A
Appendix A.1. NSIDC Arctic Regional Mask
Appendix A.2. Regional Bivariate Distribution Plots between MISR-Derived Surface Roughness and AWI CS2-SMOS Merged Sea-Ice Thickness
References
- Thomas, T. Characterization of surface roughness. Precis. Eng. 1981, 3, 97–104. [Google Scholar] [CrossRef]
- Martin, T. Arctic Sea Ice Dynamics: Drifts and Ridging in Numerical Models and Observations; Alfred-Wegener-Institut für Polar-und Meeresforschung, University of Bremen: Bremen, Germany, 2007; Volume 563. [Google Scholar]
- Segal, R.A.; Scharien, R.K.; Duerden, F.; Tam, C.L. The Best of Both Worlds: Connecting Remote Sensing and Arctic Communities for Safe Sea Ice Travel. Arctic 2020, 73, 461–484. [Google Scholar] [CrossRef]
- Dammann, D.O.; Eicken, H.; Mahoney, A.R.; Saiet, E.; Meyer, F.J.; John, C. Traversing sea ice—Linking surface roughness and ice trafficability through SAR polarimetry and interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 416–433. [Google Scholar] [CrossRef]
- Martin, T.; Tsamados, M.; Schroeder, D.; Feltham, D.L. The impact of variable sea ice roughness on changes in Arctic Ocean surface stress: A model study. J. Geophys. Res. Ocean. 2016, 121, 1931–1952. [Google Scholar] [CrossRef] [Green Version]
- Petty, A.A.; Tsamados, M.C.; Kurtz, N.T. Atmospheric form drag coefficients over Arctic sea ice using remotely sensed ice topography data, spring 2009–2015. J. Geophys. Res. Earth Surf. 2017, 122, 1472–1490. [Google Scholar] [CrossRef] [Green Version]
- Tsamados, M.; Feltham, D.L.; Schroeder, D.; Flocco, D.; Farrell, S.L.; Kurtz, N.; Laxon, S.W.; Bacon, S. Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J. Phys. Oceanogr. 2014, 44, 1329–1353. [Google Scholar] [CrossRef] [Green Version]
- Petrich, C.; Eicken, H.; Polashenski, C.M.; Sturm, M.; Harbeck, J.P.; Perovich, D.K.; Finnegan, D.C. Snow dunes: A controlling factor of melt pond distribution on Arctic sea ice. J. Geophys. Res. Ocean. 2012, 117, C9. [Google Scholar] [CrossRef]
- Landy, J.C.; Ehn, J.K.; Barber, D.G. Albedo feedback enhanced by smoother Arctic sea ice. Geophys. Res. Lett. 2015, 42, 10–714. [Google Scholar] [CrossRef]
- Landy, J.C.; Petty, A.A.; Tsamados, M.; Stroeve, J.C. Sea ice roughness overlooked as a key source of uncertainty in CryoSat-2 ice freeboard retrievals. J. Geophys. Res. Ocean. 2020, 125, e2019JC015820. [Google Scholar] [CrossRef]
- Leberl, F.W. A review of: “Microwave Remote Sensing—Active and Passive”. By F. T. Ulaby. R. K. Moore and A. K. Fung. (Reading, Massachusetts: Addison-Wesley, 1981 and 1982.) Volume I: Microwave Remote Sensing Fundamentals and Radiometry. [Pp. 473.] Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory. [Pp. 628.]. Int. J. Remote Sens. 1984, 5, 463–466. [Google Scholar] [CrossRef]
- Lindell, D.; Long, D. Multiyear arctic ice classification using ASCAT and SSMIS. Remote Sens. 2016, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Girard-Ardhuin, F.; Ezraty, R. Enhanced Arctic Sea Ice Drift Estimation Merging Radiometer and Scatterometer Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2639–2648. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Rignot, E.; Holt, B.; Onstott, R. Identification of sea ice types in spaceborne synthetic aperture radar data. J. Geophys. Res. Ocean. 1992, 97, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Casey, J.A.; Beckers, J.; Busche, T.; Haas, C. Towards the retrieval of multi-year sea ice thickness and deformation state from polarimetric C- and X-band SAR observations. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1190–1193. [Google Scholar] [CrossRef]
- Karvonen, J.; Simila, M.; Heiler, I. Ice thickness estimation using SAR data and ice thickness history. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 1, pp. 74–76. [Google Scholar] [CrossRef]
- Daida, J.; Onstott, R.; Bersano-Begey, T.; Ross, S.; Vesecky, J. Ice roughness classification and ERS SAR imagery of Arctic sea ice: Evaluation of feature-extraction algorithms by genetic programming. In Proceedings of the IGARSS ’96. 1996 International Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 31 May 1996; Volume 3, pp. 1520–1522. [Google Scholar] [CrossRef]
- Segal, R.A.; Scharien, R.K.; Cafarella, S.; Tedstone, A. Characterizing winter landfast sea-ice surface roughness in the Canadian Arctic Archipelago using Sentinel-1 synthetic aperture radar and the Multi-angle Imaging SpectroRadiometer. Ann. Glaciol. 2020, 61, 284–298. [Google Scholar] [CrossRef]
- Farrell, S.L.; Duncan, K.; Buckley, E.M.; Richter-Menge, J.; Li, R. Mapping Sea Ice Surface Topography in High Fidelity with ICESat-2. Geophys. Res. Lett. 2020, 47, e2020GL090708. [Google Scholar] [CrossRef]
- Nolin, A.W.; Fetterer, F.M.; Scambos, T.A. Surface roughness characterizations of sea ice and ice sheets: Case studies with MISR data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1605–1615. [Google Scholar] [CrossRef] [Green Version]
- Nolin, A.W.; Payne, M.C. Classification of glacier zones in western Greenland using albedo and surface roughness from the Multi-angle Imaging SpectroRadiometer (MISR). Remote Sens. Environ. 2007, 107, 264–275. [Google Scholar] [CrossRef]
- Nolin, A.W.; Mar, E. Arctic sea ice surface roughness estimated from multi-angular reflectance satellite imagery. Remote Sens. 2019, 11, 50. [Google Scholar] [CrossRef] [Green Version]
- Studinger, M. IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, Version 2; NSIDC: Boulder, CO, USA, 2014; Updated 2020. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Kaleschke, L.; Tian-Kunze, X.; King, J.; Haas, C. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere 2017, 11, 1607–1623. [Google Scholar] [CrossRef] [Green Version]
- Studinger, M. IceBridge ATM L1B Qfit Elevation and Return Strength, Version 1; NSIDC: Boulder, CO, USA, 2010; Updated 2013. [Google Scholar] [CrossRef]
- Studinger, M. IceBridge ATM L1B Elevation and Return Strength, Version 2; NSIDC: Boulder, CO, USA, 2013; Updated 2020. [Google Scholar] [CrossRef]
- NASA/LARC/SD/ASDC. MISR Level 1B2 Ellipsoid Data V003. 2007. Available online: https://asdc.larc.nasa.gov/project/MISR/MI1B2E_3 (accessed on 1 January 2022).
- NASA/LARC/SD/ASDC. MISR Geometric Parameters V002. 2008. Available online: https://asdc.larc.nasa.gov/project/MISR/MIB2GEOP_2 (accessed on 1 January 2022).
- NASA/LARC/SD/ASDC. MISR Level 2 TOA/Cloud Classifier Parameters V003. 2008. Available online: https://asdc.larc.nasa.gov/project/MISR/MIL2TCCL_3 (accessed on 1 January 2022).
- NASA/LARC/SD/ASDC. MISR Level 2 TOA/Cloud Height and Motion Parameters V001. 2012. Available online: https://asdc.larc.nasa.gov/project/MISR/MIL2TCSP_1 (accessed on 1 January 2022).
- Hall, D.K.; Riggs, G. MODIS/Terra Sea Ice Extent 5-Min L2 Swath 1km, Version 6; NSIDC: Boulder, CO, USA, 2015. [Google Scholar] [CrossRef]
- MODIS Science Team. MODIS/Terra Geolocation Fields 5-Min L1A Swath 1 km, Version 6; L1 and Atmosphere Archive and Distribution System: Greenbelt, MD, USA, 2015. [CrossRef]
- MCST Team. MODIS/Terra Calibrated Radiances 5-Min L1B Swath 1 km, Version 6; L1 and Atmosphere Archive and Distribution System: Greenbelt, MD, USA, 2015. [CrossRef]
- Tschudi, M.; Meier, W.N.; Stewart, J.S.; Fowler, C.; Maslanik, J. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4; NSIDC: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Studinger, M. Pre-IceBridge ATM L1B Qfit Elevation and Return Strength, Version 1; NSIDC: Boulder, CO, USA, 2012. [Google Scholar] [CrossRef]
- MISR Toolkit. Available online: https://github.com/nasa/MISR-Toolkit (accessed on 1 January 2022).
- Muller, J.P.; Mandanayake, A.; Moroney, C.; Davies, R.; Diner, D.J.; Paradise, S. MISR stereoscopic image matchers: Techniques and results. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1547–1559. [Google Scholar] [CrossRef] [Green Version]
- Mueller, K.; Moroney, C.; Jovanovic, V.; Garay, M.; Muller, J.; Di Girolamo, L.; Davies, R. MISR Level 2 Cloud Product Algorithm Theoretical Basis; JPL Tech. Doc. JPL D-73327; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2013. [Google Scholar]
- Horvath, A. Improvements to MISR stereo motion vectors. J. Geophys. Res. 2013, 118, 5600–5620. [Google Scholar] [CrossRef]
- Zhan, Y.; Di Girolamo, L.; Davies, R.; Moroney, C. Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic. Remote Sens. 2018, 10, 1882. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, K.D.; Mahoney, R.L.; Vermote, E.F.; Kopp, T.J.; Jackson, J.M.; Sei, A.; Iisager, B.D. A geometry-based approach to identifying cloud shadows in the VIIRS cloud mask algorithm for NPOESS. J. Atmos. Ocean. Technol. 2009, 26, 1388–1397. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Yu, B.; Clothiaux, E.E.; Braverman, A.J. Daytime Arctic Cloud Detection Based on Multi-Angle Satellite Data with Case Studies. J. Am. Stat. Assoc. 2008, 103, 584–593. [Google Scholar] [CrossRef] [Green Version]
- Kharbouche, S.; Muller, J.P. Sea Ice Albedo from MISR and MODIS: Production, Validation, and Trend Analysis. Remote Sens. 2019, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Stroeve, J.; Tsamados, M.; Khan, A.L. Machine learning approaches to retrieve pan-Arctic melt ponds from visible satellite imagery. Remote Sens. Environ. 2020, 247, 111919. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1997, 9, 155–161. [Google Scholar]
- Mazzoni, D.; Garay, M.J.; Davies, R.; Nelson, D. An operational MISR pixel classifier using support vector machines. Remote Sens. Environ. 2007, 107, 149–158. [Google Scholar] [CrossRef]
- Durbha, S.S.; King, R.L.; Younan, N.H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 2007, 107, 348–361. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27:1–27:27. Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 1 January 2022). [CrossRef]
- Awad, M.; Khanna, R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, 1st ed.; Apress: New York, NY, USA, 2015. [Google Scholar]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef] [Green Version]
- Itkin, P.; Krumpen, T. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay. Cryosphere 2017, 11, 2383–2391. [Google Scholar] [CrossRef] [Green Version]
- Cornish, S.; Johnson, H.; Mallett, R.; Dörr, J.; Kostov, Y.; Richards, A.E. Rise and fall of ice production in the Arctic Ocean’s ice factories. Earth Space Sci. Open Arch. 2021. [Google Scholar] [CrossRef]
- Belter, H.J.; Krumpen, T.; von Albedyll, L.; Alekseeva, T.A.; Birnbaum, G.; Frolov, S.V.; Hendricks, S.; Herber, A.; Polyakov, I.; Raphael, I.; et al. Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification. Cryosphere 2021, 15, 2575–2591. [Google Scholar] [CrossRef]
- Wang, Y.; Bi, H.; Liang, Y. A Satellite-Observed Substantial Decrease in Multiyear Ice Area Export through the Fram Strait over the Last Decade. Remote Sens. 2022, 14, 2562. [Google Scholar] [CrossRef]
- Babb, D.G.; Galley, R.J.; Howell, S.E.; Landy, J.C.; Stroeve, J.C.; Barber, D.G. Increasing Multiyear Sea Ice Loss in the Beaufort Sea: A New Export Pathway for the Diminishing Multiyear Ice Cover of the Arctic Ocean. Geophys. Res. Lett. 2022, 49, e2021GL097595. [Google Scholar] [CrossRef]
- Kwok, R. Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: Variability and extremes (1992–2014). Geophys. Res. Lett. 2015, 42, 7598–7605. [Google Scholar] [CrossRef]
- Mallett, R.; Stroeve, J.; Cornish, S.; Crawford, A.; Lukovich, J.; Serreze, M.; Barrett, A.; Meier, W.; Heorton, H.; Tsamados, M. Record winter winds in 2020/21 drove exceptional Arctic sea ice transport. Commun. Earth Environ. 2021, 2, 149. [Google Scholar] [CrossRef]
- Duncan, K.; Farrell, S.L. Determining Variability in Arctic Sea Ice Pressure Ridge Topography with ICESat-2. Geophys. Res. Lett. 2022, 49, e2022GL100272. [Google Scholar] [CrossRef]
- Castellani, G.; Lüpkes, C.; Hendricks, S.; Gerdes, R. Variability of A rctic sea-ice topography and its impact on the atmospheric surface drag. J. Geophys. Res. Ocean. 2014, 119, 6743–6762. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
Camera | View Angle | Resolution (km) | |||
---|---|---|---|---|---|
Blue | Green | Red | NIR | ||
Df | +70.5° | 1.1 | 1.1 | 0.275 | 1.1 |
Cf | +60.0° | 1.1 | 1.1 | 0.275 | 1.1 |
Bf | +45.6° | 1.1 | 1.1 | 0.275 | 1.1 |
Af | +26.1° | 1.1 | 1.1 | 0.275 | 1.1 |
An | 0.0° | 0.275 | 0.275 | 0.275 | 0.275 |
Aa | −26.1° | 1.1 | 1.1 | 0.275 | 1.1 |
Ba | −45.6° | 1.1 | 1.1 | 0.275 | 1.1 |
Ca | −60.0° | 1.1 | 1.1 | 0.275 | 1.1 |
Da | −70.5° | 1.1 | 1.1 | 0.275 | 1.1 |
Data Field | Product (Version) | Short Name | Use |
---|---|---|---|
Latitude, Longitude, Elevation | IceBridge ATM L1B Qfit Elevation and Return Strength (V001) [25] IceBridge ATM L1B Elevation and Return Strength (V002) [26] | ILATM1B | To provide observations of surface roughness for the construction of training data |
Cf *, Af *, An *, Aa *, Ca * | MISR Level 1B2 Ellipsoid Data (V003) [27] | MI1B2E | To provide observations of specular anisotropy used for model construction and application for conversion to roughness |
View Azimuth, Solar Azimuth, Solar Zenith | MISR Geometric Parameters V002 [28] | MI1B2GEOP | To provide contextual solar and view geometries for modelling |
SDCM | MISR Level 2 TOA/Cloud Classifier parameters (V003) [29] | MIL2TCCL | Cloud masking |
ASCM | MISR Level 2 TOA/Cloud Height and Motion parameters (V001) [30] | MIL2TCSP | Cloud masking |
Sea Ice By Ref, Ice Surface Temperature | MODIS/Terra Sea Ice Extent 5-Min L2 Swath 1km (Version 6) [31] | MOD29 | Cloud masking and modelling |
Latitude, Longitude | MODIS Level 1B Geolocation (Version 6) [32] | MOD03 | Cloud masking |
b19, b5, b13, b16 | MODIS Level 1B Calibrated Radiances (Version 6) [33] | MOD021KM | Cloud shadow masking |
U, V, X, Y | Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors (Version 4) [34] | NSIDC-0116 | Filtering |
Latitude, Longitude, Analysis sea ice thickness | CryoSat-SMOS Merged Sea Ice Thickness (v202) [24] | AWI CS2-SMOS | Validation |
Latitude, Longitude, Elevation | Pre-IceBridge ATM L1B Qfit Elevation and Return Strength, (V001) [35] | BLATM1B | Validation |
Fold | (Test) | (Train) | MAE (m) |
---|---|---|---|
1 | 0.36 | 0.55 | 0.044 |
2 | 0.48 | 0.52 | 0.041 |
3 | 0.32 | 0.53 | 0.033 |
4 | 0.43 | 0.54 | 0.045 |
5 | 0.48 | 0.53 | 0.041 |
Mean | 0.43 | 0.53 | 0.041 |
Region | Roughness (m) | ||||||
---|---|---|---|---|---|---|---|
Mean | STD | Minimum | 25% | Median | 75% | Maximum | |
Baffin Bay | 0.105 | 0.033 | 0.010 | 0.081 | 0.100 | 0.124 | 0.447 |
Barents Sea | 0.091 | 0.029 | 0.011 | 0.071 | 0.088 | 0.107 | 0.464 |
Beaufort Sea | 0.120 | 0.026 | 0.016 | 0.104 | 0.118 | 0.134 | 0.356 |
Canadian Islands | 0.129 | 0.032 | 0.018 | 0.108 | 0.126 | 0.146 | 0.457 |
Central Arctic | 0.138 | 0.028 | 0.019 | 0.120 | 0.135 | 0.154 | 0.460 |
Chukchi Sea | 0.117 | 0.028 | 0.018 | 0.099 | 0.116 | 0.132 | 0.404 |
East Greenland Sea | 0.123 | 0.033 | 0.013 | 0.101 | 0.121 | 0.143 | 0.505 |
East Siberian Sea | 0.115 | 0.026 | 0.020 | 0.100 | 0.113 | 0.127 | 0.345 |
Kara Sea | 0.104 | 0.029 | 0.016 | 0.084 | 0.101 | 0.121 | 0.395 |
Laptev Sea | 0.111 | 0.024 | 0.019 | 0.094 | 0.110 | 0.125 | 0.308 |
Year (April) | Roughness (m) | ||||||
---|---|---|---|---|---|---|---|
Mean | STD | Minimum | 25% | Median | 75% | Maximum | |
2000 | 0.164 | 0.032 | 0.014 | 0.147 | 0.166 | 0.185 | 0.481 |
2001 | 0.147 | 0.030 | 0.018 | 0.131 | 0.150 | 0.164 | 0.489 |
2002 | 0.131 | 0.032 | 0.016 | 0.110 | 0.132 | 0.150 | 0.524 |
2003 | 0.120 | 0.029 | 0.015 | 0.102 | 0.119 | 0.136 | 0.469 |
2004 | 0.122 | 0.029 | 0.013 | 0.106 | 0.121 | 0.138 | 0.471 |
2005 | 0.119 | 0.027 | 0.012 | 0.102 | 0.121 | 0.136 | 0.491 |
2006 | 0.119 | 0.027 | 0.011 | 0.104 | 0.121 | 0.133 | 0.397 |
2007 | 0.108 | 0.027 | 0.013 | 0.090 | 0.107 | 0.123 | 0.464 |
2008 | 0.103 | 0.026 | 0.015 | 0.086 | 0.103 | 0.117 | 0.416 |
2009 | 0.114 | 0.027 | 0.013 | 0.097 | 0.114 | 0.131 | 0.467 |
2010 | 0.104 | 0.025 | 0.014 | 0.090 | 0.106 | 0.119 | 0.421 |
2011 | 0.120 | 0.028 | 0.012 | 0.104 | 0.121 | 0.134 | 0.488 |
2012 | 0.106 | 0.029 | 0.010 | 0.089 | 0.105 | 0.123 | 0.447 |
2013 | 0.108 | 0.025 | 0.013 | 0.092 | 0.108 | 0.122 | 0.455 |
2014 | 0.106 | 0.029 | 0.014 | 0.087 | 0.104 | 0.119 | 0.462 |
2015 | 0.114 | 0.028 | 0.015 | 0.096 | 0.112 | 0.129 | 0.458 |
2016 | 0.116 | 0.031 | 0.015 | 0.096 | 0.118 | 0.133 | 0.477 |
2017 | 0.112 | 0.030 | 0.016 | 0.091 | 0.112 | 0.130 | 0.507 |
2018 | 0.111 | 0.026 | 0.018 | 0.095 | 0.110 | 0.124 | 0.454 |
2019 | 0.110 | 0.029 | 0.010 | 0.091 | 0.109 | 0.126 | 0.490 |
2020 | 0.118 | 0.030 | 0.016 | 0.096 | 0.117 | 0.140 | 0.429 |
Orbit | Path | Count | Date | Time | Roughness (m) | PMCC | ||
---|---|---|---|---|---|---|---|---|
Mean | Median | STD | ||||||
33299 | 90 | 665 | 22 March 2006 | 23:08:21 | 0.105 | 0.103 | 0.027 | 0.71 |
33314 | 97 | 356 | 23 March 2006 | 23:51:36 | 0.097 | 0.095 | 0.012 | 0.64 |
33328 | 88 | 756 | 24 March 2006 | 22:55:59 | 0.127 | 0.125 | 0.024 | 0.74 |
33341 | 63 | 205 | 25 March 2006 | 20:21:29 | 0.233 | 0.235 | 0.035 | 0.20 |
33342 | 79 | 1259 | 25 March 2006 | 22:00:22 | 0.148 | 0.141 | 0.037 | 0.56 |
33370 | 61 | 95 | 27 March 2006 | 20:09:07 | 0.204 | 0.213 | 0.046 | 0.65 |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|---|---|
Baffin Bay | 0.81 | 0.59 | 0.36 | 0.69 | 0.83 | 0.67 | 0.58 | 0.5 | 0.52 |
East Greenland Sea | 0.64 | 0.57 | 0.71 | 0.67 | 0.44 | 0.81 | 0.63 | 0.63 | 0.74 |
Barents Sea | 0.68 | 0.39 | 0.7 | 0.49 | 0.55 | 0.57 | 0.23 | 0.59 | 0.49 |
Kara Sea | 0.76 | 0.7 | 0.21 | 0.46 | 0.48 | 0.67 | 0.65 | 0.37 | 0.7 |
Laptev Sea | 0.67 | 0.56 | 0.71 | 0.78 | 0.67 | 0.68 | 0.39 | 0.52 | 0.8 |
East Siberian Sea | 0.51 | 0.35 | 0.21 | 0.17 | 0.63 | 0.25 | 0.65 | 0.07 | 0.44 |
Chukchi Sea | - | 0.15 | 0.29 | 0.21 | 0.6 | 0.21 | 0.16 | 0.78 | 0.46 |
Beaufort Sea | 0.27 | 0.57 | 0.43 | 0.64 | 0.42 | 0.53 | −0.16 | 0.43 | 0.61 |
Canadian Islands | 0.24 | 0.34 | 0.27 | 0.63 | 0.48 | 0.64 | 0.49 | 0.62 | 0.63 |
Central Arctic | 0.55 | 0.87 | 0.68 | 0.86 | 0.83 | 0.85 | 0.77 | 0.6 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, T.; Tsamados, M.; Muller, J.-P.; Stroeve, J. Mapping Arctic Sea-Ice Surface Roughness with Multi-Angle Imaging SpectroRadiometer. Remote Sens. 2022, 14, 6249. https://doi.org/10.3390/rs14246249
Johnson T, Tsamados M, Muller J-P, Stroeve J. Mapping Arctic Sea-Ice Surface Roughness with Multi-Angle Imaging SpectroRadiometer. Remote Sensing. 2022; 14(24):6249. https://doi.org/10.3390/rs14246249
Chicago/Turabian StyleJohnson, Thomas, Michel Tsamados, Jan-Peter Muller, and Julienne Stroeve. 2022. "Mapping Arctic Sea-Ice Surface Roughness with Multi-Angle Imaging SpectroRadiometer" Remote Sensing 14, no. 24: 6249. https://doi.org/10.3390/rs14246249
APA StyleJohnson, T., Tsamados, M., Muller, J.-P., & Stroeve, J. (2022). Mapping Arctic Sea-Ice Surface Roughness with Multi-Angle Imaging SpectroRadiometer. Remote Sensing, 14(24), 6249. https://doi.org/10.3390/rs14246249