Breakthrough Position and Trajectory of Sustainable Energy Technology
<p>Basic model of sustainable energy technology innovation ([<a href="#B4-sustainability-17-00313" class="html-bibr">4</a>,<a href="#B5-sustainability-17-00313" class="html-bibr">5</a>,<a href="#B20-sustainability-17-00313" class="html-bibr">20</a>,<a href="#B21-sustainability-17-00313" class="html-bibr">21</a>], adapted).</p> "> Figure 2
<p>Innovative R&D and E&D activities ([<a href="#B4-sustainability-17-00313" class="html-bibr">4</a>,<a href="#B5-sustainability-17-00313" class="html-bibr">5</a>,<a href="#B20-sustainability-17-00313" class="html-bibr">20</a>,<a href="#B21-sustainability-17-00313" class="html-bibr">21</a>], adapted).</p> "> Figure 3
<p>Partnership types ([<a href="#B4-sustainability-17-00313" class="html-bibr">4</a>,<a href="#B5-sustainability-17-00313" class="html-bibr">5</a>,<a href="#B20-sustainability-17-00313" class="html-bibr">20</a>,<a href="#B21-sustainability-17-00313" class="html-bibr">21</a>], adapted).</p> "> Figure 4
<p>Organizational locations ([<a href="#B4-sustainability-17-00313" class="html-bibr">4</a>,<a href="#B5-sustainability-17-00313" class="html-bibr">5</a>,<a href="#B20-sustainability-17-00313" class="html-bibr">20</a>,<a href="#B21-sustainability-17-00313" class="html-bibr">21</a>], adapted).</p> "> Figure 5
<p>Upscaling types ([<a href="#B4-sustainability-17-00313" class="html-bibr">4</a>,<a href="#B5-sustainability-17-00313" class="html-bibr">5</a>,<a href="#B20-sustainability-17-00313" class="html-bibr">20</a>,<a href="#B21-sustainability-17-00313" class="html-bibr">21</a>], adapted).</p> "> Figure 6
<p>Assessment of sustainable energy technologies’ breakthrough positions and trajectories.</p> ">
Abstract
:1. Introduction
2. Literature-Based Model of Sustainable Technology Innovation
2.1. Model of Sustainable Energy Technology Innovation
2.2. Research and Development (R&D) and Experiments and Demonstrations (E&Ds) in the Model
2.3. Partnership Types
2.4. Organizational Locations
2.5. Upscaling Types
3. Methodology and Methods
4. Assessment of Breakthrough Positions and Trajectories of Sustainable Energy Technologies
4.1. Hydrogen from Seawater Electrolysis
4.2. Hydrogen Airplanes
4.3. Inland Floating Photovoltaics
4.4. Redox Flow Batteries
4.5. Hydrogen Energy for Grid Balancing
4.6. Hydrogen Fuel Cell Electric Vehicles
4.7. Smart Energy Houses
5. Discussion
5.1. Assessment of Seven Sustainable Energy Technologies’ Breakthrough Position and Trajectory
5.2. Contribution to Practice
5.3. Scientific Contribution, Research Limitations, and Avenues for Further Research
6. Conclusions
- Development stage: prototyping, production process and organization, and niche market creation and sales;
- E&D stage: technical, organizational, and market;
- Form of collaboration: public–private, private–public, and private;
- Location: university and company laboratories, production sites, and marketplaces; and
- Scale-up type: demonstrative scale-up, and first- and second-order transformative scale-up.
- Tensions between academic researchers, product(ion) engineers, and organization and business developers;
- Physical and professional distances between professionals from laboratories, production sites, and marketplaces;
- Differences in and coherence between demonstrative upscaling and first- and second-order transformative upscaling of sustainable energy technologies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akaev, A.; Pantin, V. Technological innovations and future shifts in international politics. Int. Stud. Q. 2014, 58, 867–872. [Google Scholar] [CrossRef]
- Baden-Fuller, C.; Haefliger, S. Business models and technological innovation. Long Range Plan. 2013, 46, 419–426. [Google Scholar] [CrossRef]
- Augenstein, K.; Bachmann, B.; Egermann, M.; Hermelingmeier, V.; Hilger, A.; Jaeger-Erben, M.; Kessler, A.; Lam, D.P.; Palzkill, A.; Suski, P.; et al. From niche to mainstream: The dilemmas of scaling up sustainable alternatives. GAIA Ecol. Perspect. Sci. Soc. 2020, 29, 143–147. [Google Scholar] [CrossRef]
- Bossink, B. Demonstration projects for the diffusion of clean technological innovation: A review. J. Clean Technol. Environ. Policy 2015, 17, 1409–1427. [Google Scholar] [CrossRef]
- Bossink, B.; Blankesteijn, M.L.; Hasanefendic, S. Upscaling sustainable energy: From demonstration to transformation. Energy Res. Soc. Sci. 2023, 103, 103208. [Google Scholar] [CrossRef]
- Ortt, J.R.; Langley, D.J.; Pals, N. Exploring the market for breakthrough technologies. Technol. Forecast. Soc. Chang. 2007, 74, 1788–1804. [Google Scholar] [CrossRef]
- Baer, W.S.; Johnson, L.; Merrow, E.W. Analysis of Federally Funded Demonstration Projects: Final Report. RAND Corporation, Santa Monica. 1976. Available online: https://www.rand.org/pubs/reports/R1926.html (accessed on 2 July 2024).
- Ryghaug, M.; Skjølsvold, T.M. Pilot Society and the Energy Transition: The Co-Shaping of Innovation, Participation and Politics (p. 130). Springer Nature, 2021. Available online: https://library.oapen.org/bitstream/id/e1527248-f67d-4886-b5db-2d807c7007d4/2021_Book_PilotSocietyAndTheEnergyTransi.pdf (accessed on 2 July 2024).
- Kaipainen, J.; Aarikka-Stenroos, L. How to renew business strategy to achieve sustainability and circularity? A process model of strategic development in incumbent technology companies. Bus. Strategy Environ. 2022, 31, 1947–1963. [Google Scholar] [CrossRef]
- Bento, N.; Wilson, C. Measuring the duration of formative phases for energy technologies. Environ. Innov. Soc. Transit. 2016, 21, 95–112. [Google Scholar] [CrossRef]
- Gibbins, J.; Chalmers, H. Preparing a global rollout: A ‘developed country first’ demonstration project programme for rapid CCS deployment. Energy Policy 2008, 36, 501–507. [Google Scholar] [CrossRef]
- Haszeldine, R.S. Carbon capture and storage: How green can black be? Science 2009, 325, 1647–1652. [Google Scholar] [CrossRef]
- Junginger, M.; de Visser, E.; Hjort-Gregersen, K.; Koornneef, J.; Raven, R.; Faaij, A.; Turkenburg, W. Technological learning in bioenergy systems. Energy Policy 2006, 34, 4024–4041. [Google Scholar] [CrossRef]
- Van der Loos, A.; Negro, S.O.; Hekkert, M.P. International markets and technological innovation systems: The case of offshore wind. Environ. Innov. Soc. Transit. 2020, 34, 121–138. [Google Scholar] [CrossRef]
- Van der Loos, H.A.; Negro, S.O.; Hekkert, M.P. Low-carbon lock-in? Exploring transformative innovation policy and offshore wind energy pathways in the Netherlands. Energy Res. Soc. Sci. 2020, 69, 101640. [Google Scholar] [CrossRef]
- Wilson, C. Up-scaling, formative phases, and learning in the historical diffusion of energy technologies. Energy Policy 2012, 50, 81–94. [Google Scholar] [CrossRef]
- Lincot, D. The new paradigm of photovoltaics: From powering satellites to powering humanity. Comptes Rendus Phys. 2017, 18, 381–390. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research: Design and Methods; Sage: Thousand Oaks, CA, USA, 2009; Volume 5. [Google Scholar]
- Wheelwright, S.C.; Clark, K.B. Creating project plans to focus product development. Harv. Bus. Rev. 1992, 70, 70–82. Available online: https://hbr.org/1992/03/creating-project-plans-to-focus-product-development (accessed on 2 July 2024).
- Bossink, B.A.G. Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects. Renew. Sustain. Energy Rev. 2017, 77, 1349–1362. [Google Scholar] [CrossRef]
- Bossink, B. Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations. Renew. Sustain. Energy Rev. 2020, 131, 110025. [Google Scholar] [CrossRef]
- Macey, S.M.; Brown, M.A. Demonstrations as a policy instrument with energy technology examples. Sci. Commun. 1990, 11, 219–236. [Google Scholar] [CrossRef]
- Hendry, C.; Harborne, P.; Brown, P. So what do innovating companies really get from publicly funded demonstration projects and trials? Innovation lessons from solar photovoltaics and wind. Energy Policy 2010, 38, 4507–4519. [Google Scholar] [CrossRef]
- Brown, J.; Hendry, C. Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics. Energy Policy 2009, 37, 2560–2573. [Google Scholar] [CrossRef]
- Frishammar, J.; Söderholm, P.; Bäckström, K.; Hellsmark, H.; Ylinenpää, H. The role of pilot and demonstration plants in technological development: Synthesis and directions for future research. Technol. Anal. Strateg. Manag. 2015, 27, 1–18. [Google Scholar] [CrossRef]
- Harborne, P.; Hendry, C.; Brown, J. The development and diffusion of radical technological innovation: The role of bus demonstration projects in commercializing fuel cell technology. Technol. Anal. Strateg. Manag. 2007, 19, 167–188. [Google Scholar] [CrossRef]
- Foxon, T.J.; Gross, R.; Chase, A.; Howes, J.; Arnall, A.; Anderson, D. UK innovation systems for new and renewable energy technologies: Drivers, barriers and systems failures. Energy Policy 2005, 33, 2123–2137. [Google Scholar] [CrossRef]
- Gosens, J.; Gilmanova, A.; Lilliestam, J. Windows of opportunity for catching up in formative clean-tech sectors and the rise of China in concentrated solar power. Environ. Innov. Soc. Transit. 2021, 39, 86–106. [Google Scholar] [CrossRef]
- Hain, D.S.; Jurowetzki, R.; Konda, P.; Oehler, L. From catching up to industrial leadership: Towards an integrated market-technology perspective. An application of semantic patent-to-patent similarity in the wind and EV sector. Ind. Corp. Chang. 2020, 29, 1233–1255. [Google Scholar] [CrossRef]
- Nemet, G.F.; Zipperer, V.; Kraus, M. The valley of death, the technology pork barrel, and public support for large demonstration projects. Energy Policy 2018, 119, 154–167. [Google Scholar] [CrossRef]
- Lindberg, M.B.; Kammermann, L. Advocacy coalitions in the acceleration phase of the European energy transition. Environ. Innov. Soc. Transit. 2021, 40, 262–282. [Google Scholar] [CrossRef]
- Palage, K.; Lundmark, R.; Söderholm, P. The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union. Int. J. Prod. Econ. 2019, 210, 42–55. [Google Scholar] [CrossRef]
- Mousavi, S.; Hellsmark, H.; Söderholm, P. How can pilot and demonstration plants drive market formation? Lessons from advanced biofuel development in Europe. Technol. Forecast. Soc. Chang. 2023, 194, 122703. [Google Scholar] [CrossRef]
- Sjöö, K.; Frishammar, J. Demonstration projects in sustainable technology: The road to fulfillment of project goals. J. Clean. Prod. 2019, 228, 331–340. [Google Scholar] [CrossRef]
- Von Wirth, T.; Fuenfschilling, L.; Frantzeskaki, N.; Coenen, L. Impacts of urban living labs on sustainability transitions: Mechanisms and strategies for systemic change through experimentation. Eur. Plan. Stud. 2019, 27, 229–257. [Google Scholar] [CrossRef]
- Ming, Z.; Ximei, L.; Yulong, L.; Lilin, P. Review of renewable energy investments and financing in China: Status, mode, issues and countermeasures. Renew. Sustain. Energy Rev. 2014, 31, 23–37. [Google Scholar] [CrossRef]
- Nemet, G.F. Beyond the learning curve: Factors influencing cost reductions in photovoltaics. Energy Policy 2006, 34, 3218–3232. [Google Scholar] [CrossRef]
- Zhao, L.; Gallagher, K.S. Research, development, demonstration project, and early deployment policies for advanced-coal technology in China. Energy Policy 2007, 35, 6467–6477. [Google Scholar] [CrossRef]
- Markusson, N.; Ishii, A.; Stephens, J.C. The social and political complexities of learning in carbon capture and storage demonstration projects. Glob. Environ. Chang. 2011, 21, 293–302. [Google Scholar] [CrossRef]
- Hellsmark, H.; Frishammar, J.; Söderholm, P.; Ylinenpaa, H. The role of pilot and demonstration plants in technology development and innovation policy. Res. Policy 2016, 45, 1743–1761. [Google Scholar] [CrossRef]
- Evers, G.; Chappin, M. Knowledge sharing in smart grid pilot projects. Energy Policy 2020, 143, 111577. [Google Scholar] [CrossRef]
- Van der Grijp, N.; Van der Woerd, F.; Gaiddon, B.; Hummelshøj, R.; Larsson, M.; Osunmuyiwa, O.; Rooth, R. Demonstration projects of nearly zero energy buildings: Lessons from end-user experiences in Amsterdam, Helsingborg, and Lyon. Energy Res. Soc. Sci. 2019, 49, 10–15. [Google Scholar] [CrossRef]
- Wilczynski, M.; Schanz, H. The role of market perceptions in bridging the innovation gap of bio-based markets: The example of biomass-to-liquid in Germany. J. Clean. Prod. 2021, 291, 125926. [Google Scholar] [CrossRef]
- Bossink, B. The influence of knowledge flow on sustainable innovation in a project-based industry: From demonstration to limited adoption of eco-innovations. J. Clean. Prod. 2018, 193, 249–262. [Google Scholar] [CrossRef]
- Hasaneen, R.; Elsayed, N.A.; Barrufet, A. Analysis of the technical, microeconomic, and political impact of a carbon tax on carbon dioxide sequestration resulting from liquefied natural gas production. Clean Technol. Environ. Policy 2014, 16, 1597–1613. Available online: https://link.springer.com/article/10.1007/s10098-014-0735-6 (accessed on 2 July 2024). [CrossRef]
- Kivimaa, P.; Mickwitz, P. The challenge of greening technologies: Environmental policy integration in Finnish technology policies. Res. Policy 2006, 35, 729–744. [Google Scholar] [CrossRef]
- Krahé, M.; Heidug, W.; Ward, J.; Smale, R. From demonstration to deployment: An economic analysis of support policies for carbon capture and storage. Energy Policy 2013, 60, 753–763. [Google Scholar] [CrossRef]
- Bento, N.; Fontes, M. Emergence of floating offshore wind energy: Technology and industry. Renew. Sustain. Energy Rev. 2019, 99, 66–82. [Google Scholar] [CrossRef]
- Breetz, H.; Mildenberger, M.; Stokes, L. The political logics of clean energy transitions. Bus. Politics 2018, 20, 492–522. [Google Scholar] [CrossRef]
- Dixon, R.K.; Wang, X.; Wang, M.Q.; Wang, J.; Zhang, Z. Development and demonstration project of fuel cell vehicles and supporting infrastructure in China. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 775–789. Available online: https://link.springer.com/article/10.1007/s11027-011-9293-y (accessed on 2 July 2024). [CrossRef]
- Haavik, T.; Mlecnik, E.; Rødsjø, A. From demonstration projects to volume market of sustainable construction. Energy Procedia 2012, 30, 1411–1421. [Google Scholar] [CrossRef]
- Jolly, S.; Raven, R.; Romijn, H. Upscaling of business model experiments in off-grid PV solar energy in India. Sustain. Sci. 2012, 7, 199–212. [Google Scholar] [CrossRef]
- Wimbadi, R.W.; Djalante, R.; Mori, A. Urban experiments with public transport for low carbon mobility transitions in cities: A systematic literature review (1990–2020). Sustain. Cities Soc. 2021, 72, 103023. [Google Scholar] [CrossRef]
- Downing, M.; Volk, T.A.; Schmidt, D.A. Development of a new generation cooperatives in agriculture for renewable energy research, development, and demonstration projects. Biomass Bioenergy 2005, 28, 425–434. [Google Scholar] [CrossRef]
- Hoppmann, J. Hand in hand to Nowhereland? How the resource dependence of research institutes influences their co-evolution with industry. Res. Policy 2021, 50, 104145. [Google Scholar] [CrossRef]
- McAslan, D.; Najar Arevalo, F.; King, D.A.; Miller, T.R. Pilot project purgatory? Assessing automated vehicle pilot projects in US cities. Humanit. Soc. Sci. Commun. 2021, 8, 325. Available online: https://www.nature.com/articles/s41599-021-01006-2 (accessed on 2 July 2024). [CrossRef]
- Gillett, W.; Gambi, R.; Obled, C.; Ossenbrink, H.; Perujo, A.; Scholz, H.; Ademe, R.D. Results from PV demonstration projects in Europe. Proceedings 17th European PV Solar Energy Conference, Munich. 2001. Available online: https://www.researchgate.net/profile/Adolfo-Perujo/publication/267547845_RESULTS_FROM_PV_DEMONSTRATION_PROJECTS_IN_EUROPE/links/55474bce0cf24107d39834a7/RESULTS-FROM-PV-DEMONSTRATION-PROJECTS-IN-EUROPE.pdf (accessed on 2 July 2024).
- Koch, C.; Bertelsen, N.H. Learning from demonstration project? Developing construction for sustainability. Open Constr. Build. Technol. J. 2014, 8, 9–17. Available online: https://pdfs.semanticscholar.org/aea1/2a7d3a7cf8ee6e20a513e2ec93c1927fae4a.pdf (accessed on 2 July 2024). [CrossRef]
- Scarpellini, S.; Aranda, A.; Aranda, J.; Llera, E.; Marco, M. R&D and eco-innovation: Opportunities for close collaboration between universities and companies through technology centers. Clean Technol. Environ. Policy 2012, 14, 1047–1058. Available online: https://link.springer.com/article/10.1007/s10098-012-0514-1 (accessed on 2 July 2024).
- Heiskanen, E.; Nissilä, H.; Lovio, R. Demonstration buildings as protected spaces for clean energy solutions–the case of solar building integration in Finland. J. Clean. Prod. 2015, 109, 347–356. [Google Scholar] [CrossRef]
- Grübler, A.; Nakicenovic, N.; Victor, D.G. Dynamics of energy technologies and global change. Energy Policy 1999, 27, 247–280. [Google Scholar] [CrossRef]
- Russell, S.; Markusson, N.; Scott, V. What will CCS demonstration projects demonstrate? A research agenda. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 651–668. Available online: https://link.springer.com/article/10.1007/s11027-011-9313-y (accessed on 2 July 2024). [CrossRef]
- Naber, R.; Raven, R.; Kouw, M.; Dassen, T. Scaling up sustainable energy innovations. Energy Policy 2017, 110, 342–354. [Google Scholar] [CrossRef]
- Ruggiero, S.; Martiskainen, M.; Onkila, T. Understanding the scaling-up of community energy niches through strategic niche management theory: Insights from Finland. J. Clean. Prod. 2018, 170, 581–590. [Google Scholar] [CrossRef]
- Sengers, F.; Turnheim, B.; Berkhout, F. Beyond experiments: Embedding outcomes in climate governance. Environ. Plan. C Politics Space 2021, 39, 1148–1171. [Google Scholar] [CrossRef]
- Laakso, S.; Heiskanen, E.; Matschoss, K.; Apajalahti, E.L.; Fahy, F. The role of practice-based interventions in energy transitions: A framework for identifying types of work to scale up alternative practices. Energy Res. Soc. Sci. 2021, 72, 101861. [Google Scholar] [CrossRef]
- Mlecnik, E.; Straub, A.; Haavik, T. Collaborative business model development for home energy renovations. Energy Effic. 2018, 12, 123–138. Available online: https://link.springer.com/article/10.1007/s12053-018-9663-3 (accessed on 2 July 2024). [CrossRef]
- Labbafan, T. Hydrogen from Seawater Electrolysis: Increasing the Flexibility of Market Penetration. Master’s thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2023; p. 42. [Google Scholar]
- Van Mourik, B. The Implementation of Hydrogen Airplanes. Master’s Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2023; p. 25. [Google Scholar]
- Schermerhorn, L. Floating Photovoltaics in The Netherlands. Master’s Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2023; p. 30. [Google Scholar]
- Drost, F. Redox Flow Battery Implementation in Smart Energy Grids. Master’s Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2023; p. 28. [Google Scholar]
- Feije, I. Hydrogen as a Grid Balancer. Master’s Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2023; p. 25. [Google Scholar]
- El Mourabit, W. Internal research report Master of Science, Business & Innovation; Vrije Universiteit Amsterdam: Amsterdam, The Netherlands, 2023; p. 47. [Google Scholar]
- Mortier, J. The Energy-Efficiency of Smart Homes. Master’s Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2023; p. 23. [Google Scholar]
- PosHYdon: Green Hydrogen from Seawater Thanks to Unique Trial Plant. Available online: https://www.tno.nl/nl/duurzaam/co2-neutrale-industrie/schone-waterstofproductie/groene-waterstof-zeewater/ (accessed on 2 July 2024).
- Wetenschappers Maken Waterstof Direct uit Zeewater. Available online: https://www.change.inc/energie/wetenschappers-maken-waterstof-direct-uit-zeewater-38877 (accessed on 2 July 2024).
- ‘Zeewaterstof’ Levert Waterstof, Drinkwater, Stroom, Tafelzout en Mineralen op. Available online: https://watermaritime.nl/waterinnovatiefestival2024-2/ (accessed on 2 July 2024).
- TNO & EBN. Haalbaarheidsstudie Offshore Ondergrondse Waterstofopslag; TNO & EBN: Utrecht, The Netherlands, 2022; p. 75. Available online: https://www.tno.nl/nl/newsroom/2022/07/onderzoek-tno-ebn-waterstofopslag-zee/ (accessed on 2 July 2024).
- Kuipers, N.J.M.; van Medevoort, J. Seahydrogen: Integral Nexus Approach for the Production of Hydrogen at Sea; Wageningen University & Research: Wageningen, The Netherlands, 2023; p. 30. [Google Scholar]
- d’Amore-Domenech, R.; Santiago, O.; Leo, T.J. Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea. Renew. Sustain. Energy Rev. 2020, 133, 110166. [Google Scholar] [CrossRef]
- Khan, M.A.; Al-Attas, T.; Roy, S.; Rahman, M.M.; Ghaffour, N.; Thangadurai, V.; Kibria, M.G. Seawater electrolysis for hydrogen production: A solution looking for a problem? Energy Environ. Sci. 2021, 14, 4831–4839. [Google Scholar] [CrossRef]
- Mohammed-Ibrahim, J.; Moussab, H. Recent advances on hydrogen production through seawater electrolysis. Mater. Sci. Energy Technol. 2020, 3, 780–807. [Google Scholar] [CrossRef]
- World’s First Commercial Hydrogen-Powered Aircraft Is ‘Made-in-Holland’ and Zero Emission. Available online: https://www.innovationquarter.nl/worlds-first-commercial-hydrogen-powered-aircraft-is-made-in-holland-and-zero-emission/ (accessed on 2 July 2024).
- Hydrogen-Powered Planes Almost Ready for Takeoff. Available online: https://arstechnica.com/science/2023/08/hydrogen-powered-planes-almost-ready-for-takeoff/ (accessed on 2 July 2024).
- H2 Powered Aircraft. Available online: https://www.clean-aviation.eu/h2-powered-aircraft (accessed on 2 July 2024).
- Clean Sky & FCH. Hydrogen-Powered Aviation: A Fact-Based Study of Hydrogen Technology, Economics, and Climate Impact by 2050; Publications Office of the European Union: Luxemburg, 2020; p. 96. [Google Scholar]
- Steer. Analysing the Costs of Hydrogen Aircraft; Steergroup: London, UK, 2023; p. 55. [Google Scholar]
- Hoelzen, J.; Silberhorn, D.; Zill, T.; Bensmann, B.; Hanke-Rauschenbach, R. Hydrogen-powered aviation and its reliance on green hydrogen infrastructure–Review and research gaps. Int. J. Hydrogen Energy 2022, 47, 3108–3130. [Google Scholar] [CrossRef]
- Degirmenci, H.; Uludag, A.; Ekici, S.; Karakoc, T.H. Challenges, prospects and potential future orientation of hydrogen aviation and the airport hydrogen supply network: A state-of-art review. Prog. Aerosp. Sci. 2023, 141, 100923. [Google Scholar] [CrossRef]
- Yusaf, T.; Mahamude AS, F.; Kadirgama, K.; Ramasamy, D.; Farhana, K.; Dhahad, H.A.; Talib, A.R.A. Sustainable hydrogen energy in aviation–A narrative review. Int. J. Hydrogen Energy 2023, 52, 1026–1045. [Google Scholar] [CrossRef]
- Floating Solar Panels. Available online: https://www.tno.nl/nl/duurzaam/hernieuwbare-elektriciteit/duurzame-zonne-energie-land-water/drijvende-zonnepanelen/ (accessed on 2 July 2024).
- De Potentie van Drijvende Zonnepanelen. Available online: https://www.solar365.nl/nieuws/de-potentie-van-drijvende-zonnepanelen-65a7acaf.html (accessed on 2 July 2024).
- Zee aan Kansen voor Zonne-Energie op Water. Available online: https://www.ew-installatietechniek.nl/artikelen/open/zee-aan-kansen-voor-zonne-energie-op-water (accessed on 2 July 2024).
- Larrivee, J.; Verheijden, H.; Stroeken, F.; Teunis, M. Zon op Recreatiewater: Studie Naar de Toepassing van Zonne-Energie op Recreatiewateren; Anrhem/Zeist, Innovatie Recreatie & Ruimte and Leisurelands, 2019; p. 88. Available online: https://blueterra.nl/wp-content/uploads/2019/04/werkboek_zon_op_water_DEF-gecomprimeerd.pdf (accessed on 2 July 2024).
- Boogaard, F.; de Lima, R.; de Graaf, R.; Lin, F.-Y. Drijvende Zonnepanelen en hun Effect op de Waterkwaliteit. 2019, p. 8. Available online: https://www.h2owaternetwerk.nl/vakartikelen/het-effect-van-drijvende-zonnepanelen-op-de-waterkwaliteit (accessed on 2 July 2024).
- Friel, D.; Karimirad, M.; Whittaker, T.; Doran, J.; Howlin, E. A review of floating photovoltaic design concepts and installed variations. In Proceedings of the 4th International Conference Offshore Renew Energy CORE, Surrey, UK, 30 August 2019; pp. 1–10. Available online: https://pure.qub.ac.uk/en/publications/a-review-of-floating-photovoltaic-design-concepts-and-installed-v (accessed on 2 July 2024).
- Kumar, M.; Niyaz, H.M.; Gupta, R. Challenges and opportunities towards the development of floating photovoltaic systems. Sol. Energy Mater. Sol. Cells 2021, 233, 111408. [Google Scholar] [CrossRef]
- Perez, M.; Perez, R.; Ferguson, C.R.; Schlemmer, J. Deploying effectively dispatchable PV on reservoirs: Comparing floating PV to other renewable technologies. Sol. Energy 2018, 174, 837–847. [Google Scholar] [CrossRef]
- NewBat Werkt aan Duurzame Redox Flow-batterij van de Toekomst. Available online: https://solarmagazine.nl/nieuws-zonne-energie/i34325/newbat-werkt-aan-duurzame-redox-flow-batterij-van-de-toekomst (accessed on 2 July 2024).
- Being Able to See Inside a Flow Battery. Available online: https://www.tue.nl/nieuws-en-evenementen/nieuwsoverzicht/06-09-2024-in-een-flowbatterij-kunnen-kijken (accessed on 2 July 2024).
- U Geeft om de Natuur en Wil Graag Meer Rendement van uw Groene Investering? Available online: https://www.uwthuisbatterij.eu/verschillende-soorten (accessed on 2 July 2024).
- Brans, H. Verkenning Toekomstige Batterijtypen en Veiligheid; Nederlands Instituut Publieke Veiligheid: Amsterdam, The Netherland, 2023; p. 44. [Google Scholar]
- Sprenkle, V.; Li, B.; Zhang, L.; Robertson, L.A.; Li, Z.; Balducci, P. Technology Strategy Assessment: Findings from Storage Innovations 2030 Flow Batteries. Department of Energy. 2023. Available online: https://www.energy.gov/sites/default/files/2023-07/Technology%20Strategy%20Assessment%20-%20Flow%20Batteries.pdf (accessed on 2 July 2024).
- Alotto, P.; Guarnieri, M.; Moro, F. Redox flow batteries for the storage of renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 29, 325–335. [Google Scholar] [CrossRef]
- Iwakiri, I.; Antunes, T.; Almeida, H.; Sousa, J.P.; Figueira, R.B.; Mendes, A. Redox flow batteries: Materials, design and prospects. Energies 2021, 14, 5643. [Google Scholar] [CrossRef]
- Petrov, M.M.; Modestov, A.D.; Konev, D.V.; Antipov, A.E.; Loktionov, P.A.; Pichugov, R.D.; Kartashova, N.V.; Glazkov, A.T.; Abunaeva, L.Z.; Andreev, V.N.; et al. Redox flow batteries: Role in modern electric power industry and comparative characteristics of the main types. Russ. Chem. Rev. 2021, 90, 677. [Google Scholar] [CrossRef]
- Balancing the Grid with Hydrogen Storage. Available online: https://etech.iec.ch/issue/2024-01/balancing-the-grid-with-hydrogen-storage#:~:text=Because%20hydrogen%20can%20be%20stored,convert%20hydrogen%20back%20to%20electricity. (accessed on 2 July 2024).
- Industrie kan Stroomvraag & -Aanbod Balanceren. Available online: https://www.netbeheernederland.nl/artikelen/uit-net-nl/industrie-kan-stroomvraag-aanbod-balanceren (accessed on 2 July 2024).
- Waterstof. Available online: https://topsectorenergie.nl/nl/maak-kennis-met-tse/waterstof/ (accessed on 2 July 2024).
- Fritsche, U.R. Renewable Gases: Hydrogen in the Grid; Darmstadt, International Institute for Sustainability Analysis and Strategy: Amsterdam, The Netherlands, 2022; p. 63. [Google Scholar]
- Enpuls. Marktpotentie Groene Waterst of Productiefaciliteiten. Arnhem, DNV GL. 2018, p. 47. Available online: https://www.enpuls.nl/media/2346/eindrapport-module-2-_-marktpotentie-waterstof-uit-electrolyse_-enpuls.pdf (accessed on 2 July 2024).
- Zenith, F.; Flote, M.N.; Santos-Mugica, M.; Duncan, C.S.; Mariani, V.; Marcantonini, C. Value of green hydrogen when curtailed to provide grid balancing services. Int. J. Hydrogen Energy 2022, 47, 35541–35552. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, F.; Guerrero-Hernández, I. Balancing the grid loads by large scale integration of hydrogen technologies: The case of the Spanish power system. Int. J. Hydrogen Energy 2012, 37, 1151–1161. [Google Scholar] [CrossRef]
- Stamatakis, E.; Perwög, E.; Garyfallos, E.; Millán, M.S.; Zoulias, E.; Chalkiadakis, N. Hydrogen in Grid Balancing: The European Market Potential for Pressurized Alkaline Electrolyzers. Energies 2022, 15, 637. [Google Scholar] [CrossRef]
- Onderzoek Naar Verbrandingsmotor op Waterstof. Available online: https://www.waterstofmagazine.nl/achtergronden/12-interviews/932-onderzoek-naar-verbrandingsmotor-op-waterstof (accessed on 2 July 2024).
- De Brandstofcel als Interessant Alternatief. Available online: https://www.tno.nl/nl/duurzaam/mobiliteit-logistiek/brandstofcel/ (accessed on 2 July 2024).
- Auto’s op Waterstof: De Toekomst of Achterhaald? Available online: https://www.change.inc/mobiliteit/autos-op-waterstof-de-toekomst-of-achterhaald-38965 (accessed on 2 July 2024).
- Hoen, A.; Koetse, M. Rijden op Elektriciteit, WaterstCof of Biobrandstoffen, Wat Wil de Automobilist? Planbureau voor de Leefomgeving: Den Haag, The Netherlands, 2012; p. 60. [Google Scholar]
- Wisse, W.; van der Doorn, L. Verduurzaming Landbouwwerktuigen: Routes Voor Transitie; Den Haag, Rijksdienst voor Ondernemend Nederland: Den Haag, The Netherlands, 2023; p. 56.
- Albatayneh, A.; Juaidi, A.; Jaradat, M.; Manzano-Agugliaro, F. Future of electric and hydrogen cars and trucks: An overview. Energies 2023, 16, 3230. [Google Scholar] [CrossRef]
- Tanç, B.; Arat, H.T.; Baltacıoğlu, E.; Aydın, K. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. Int. J. Hydrogen Energy 2019, 44, 10120–10128. [Google Scholar] [CrossRef]
- Eberle, U.; Müller, B.; Von Helmolt, R. Fuel cell electric vehicles and hydrogen infrastructure: Status 2012. Energy Environ. Sci. 2012, 5, 8780–8798. [Google Scholar] [CrossRef]
- De Slimme Woning: De Doos van Pandora? Available online: https://www.duurzaamgebouwd.nl/artikel/20230413-de-slimme-woning-de-doos-van-pandora (accessed on 2 July 2024).
- De Woning Die Energie Teruglevert aan Het Net. Available online: https://www.tno.nl/media/7372/energiepositieve_woning_infographic.pdf (accessed on 2 July 2024).
- Met Slimme Gebouwen Naar een Duurzame Toekomst. Available online: https://www.nwo.nl/cases/met-slimme-gebouwen-naar-een-duurzame-toekomst (accessed on 2 July 2024).
- Team EKBRS. Smart Energie Systemen. 2020, p. 25. Available online: https://www.smartcirculair.com/wp-content/uploads/2020/09/Rapport-Energieneutraal-of-Leverend.pdf (accessed on 2 July 2024).
- Vringer, K.; Boomsma, M.; van Soest, D. Energieverbruiksmanagers in Nederland: Energie Besparen Met de Slimme Meter; Planbureau voor de Leefomgeving: Den Haag, The Netherlands, 2023; p. 33. [Google Scholar]
- Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renew. Sustain. Energy Res. 2021, 140, 110755. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. Using the internet of things in smart energy systems and networks. Sustain. Cities Soc. 2021, 68, 102783. [Google Scholar] [CrossRef]
- AlFaris, F.; Juaidi, A.; Manzano-Agugliaro, F. Intelligent homes’ technologies to optimize the energy performance for the net zero energy home. Energy Build. 2017, 153, 262–274. [Google Scholar] [CrossRef]
- Farquhar, J.; Michels, N.; Robson, J. Triangulation in industrial qualitative case study research: Widening the scope. Ind. Mark. Manag. 2020, 87, 160–170. [Google Scholar] [CrossRef]
Sustainable Energy Technology | Description |
---|---|
Hydrogen from seawater electrolysis | Splitting of seawater into oxygen and hydrogen gas, using electricity. |
Hydrogen airplanes | Airplanes that convert chemical energy from hydrogen into electricity as a power source. |
Inland floating photovoltaics | Photovoltaic systems placed on inland water bodies. |
Redox flow batteries | Storage devices that convert chemical to electrical energy. |
Hydrogen energy for grid balancing | Energy production and storage in hydrogen and conversion of this energy into electricity for peak demand use in energy networks. |
Hydrogen fuel cell electric vehicles | Vehicles that convert chemical energy from hydrogen into electricity as a power source. |
Smart sustainable energy houses | Homes that use internet-connected devices to manage the effectiveness and efficiency of sustainable energy applications. |
Cluster | Management Focus |
---|---|
Technical | 1. Tensions between university and company researchers and engineers [25]. |
2. Physical distances between university and corporate laboratories [4,5,20,21]. | |
3. Technical first-order transformational scale-up opportunities [63,67]. | |
Organizational | 1. Tensions between product(ion) engineers and organization developers [25]. |
2. Covering investment risks and developing business models for the companies involved [9,39,58,59,67]. | |
3. Technical and organizational first-order transformational scale-up opportunities [63]. | |
Market | 1. Tensions between production engineers and business developers [4,5,20,21]. |
2. Alignment with market and societal wishes and requirements [34,35,42,67]. | |
3. Demonstrative upscaling, technical, organizational, and market first-order transformational upscaling, and second-order transformational upscaling opportunities [63]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossink, B.; Hasanefendic, S.; Hoogstraaten, M.; Ramanan, C. Breakthrough Position and Trajectory of Sustainable Energy Technology. Sustainability 2025, 17, 313. https://doi.org/10.3390/su17010313
Bossink B, Hasanefendic S, Hoogstraaten M, Ramanan C. Breakthrough Position and Trajectory of Sustainable Energy Technology. Sustainability. 2025; 17(1):313. https://doi.org/10.3390/su17010313
Chicago/Turabian StyleBossink, Bart, Sandra Hasanefendic, Marjolein Hoogstraaten, and Charusheela Ramanan. 2025. "Breakthrough Position and Trajectory of Sustainable Energy Technology" Sustainability 17, no. 1: 313. https://doi.org/10.3390/su17010313
APA StyleBossink, B., Hasanefendic, S., Hoogstraaten, M., & Ramanan, C. (2025). Breakthrough Position and Trajectory of Sustainable Energy Technology. Sustainability, 17(1), 313. https://doi.org/10.3390/su17010313