Multi-Scale Spatial Structure Impacts on Carbon Emission in Cold Region: Case Study in Changchun, China
<p>Research area.</p> "> Figure 2
<p>Urban land use carbon emission framework translation diagram.</p> "> Figure 3
<p>Schematic diagram of modeling scope for spatial syntax analysis.</p> "> Figure 4
<p>Technology roadmap. (In the picture, “AF & Other” means “Agriculture, Forestry, and Other Land Use”, “IP & PU” means “Industrial Processes and Product Use”.)</p> "> Figure 5
<p>Analysis of the trend of annual carbon emission in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 6
<p>Carbon emission Changes of various sectors in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 7
<p>Trend analysis of seasonal carbon emissions in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 8
<p>Analysis of seasonal carbon emission changes in the central urban area of Changchun from 2012 to 2021.</p> "> Figure 9
<p>Spatial evolution index changes in annual high- and low-carbon-emission zones in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 10
<p>Spatial distribution of annual carbon emissions in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 11
<p>Change in functional area of land use in high-carbon-emission areas in the central urban area of Changchun from 2012 to 2021.</p> "> Figure 12
<p>Spatial evolution index changes in seasonal high carbon emissions in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 13
<p>Spatial distribution of seasonal carbon emissions in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 14
<p>Trend of integration and selectivity in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 15
<p>Change in integration (<b>top</b>) and selectivity (<b>bottom</b>) in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 16
<p>Spatial distribution of integration in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 17
<p>Spatial distribution of selectivity in the central urban area of Changchun City from 2012 to 2021.</p> "> Figure 18
<p>Selection of threshold values for spatial structure at different analytical radii.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources and Pre-Processing
2.2.1. Road Network Data
2.2.2. Land Use Data
2.2.3. Road Network Data
2.2.4. Energy Statistics Data
2.3. Methods
2.3.1. Carbon Emission Translation Method
2.3.2. Spatial Syntax Analysis Method
2.3.3. Landscape Pattern Index Analysis Method
2.3.4. Random Forest Model Method
2.3.5. Segmented Linear Regression Method
3. Results
3.1. Spatiotemporal Evolution Characteristics of Carbon Emissions in Changchun City
3.1.1. Temporal Evolution Characteristics of Carbon Emissions
- (1)
- Temporal Evolution Characteristics of Annual Carbon Emissions
- (2)
- Seasonal Carbon Emission Temporal Evolution Characteristics
3.1.2. Spatial Evolution Characteristics of Carbon Emission
- (1)
- Spatial Evolution Characteristics of Annual Carbon Emission
- (2)
- Seasonal Carbon Emission Spatial Evolution Characteristics
3.2. Spatial Structure’s Impact on Carbon Emission
3.2.1. Multi-Scale Evolutionary Characteristics of Spatial Structure
- (1)
- Multi-scale Temporal Evolutionary Characteristics of Spatial Structure
- (2)
- Multi-scale Spatial Evolutionary Characteristics of Spatial Structure
3.2.2. Selection of the Radius of Influence and Determination of Threshold Value
- (1)
- Selection of the Radius of Influence at Multiple Scales
- (2)
- Determination of the Multi-scale Spatial Structure’s Threshold Values
4. Discussion
4.1. Strengthening the Control and Management of Winter Carbon Emission in Cold Region Cities
4.2. Differential Optimization Based on Multi-Scale Effects
5. Conclusions and Discussions
5.1. Conclusions
5.2. Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- González-Herrero, S.; Lemus-Canovas, M.; Pereira, P. Climate change in cold regions. Sci. Total Environ. 2024, 933, 173127. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Zhao, Y.; Wang, F.; Zeng, X.; Wang, Z. Planning responses towards carbon neutrality. City Plan. 2022, 46, 25–31. [Google Scholar]
- Mi, Z.; Guan, D.; Liu, Z.; Liu, J.; Viguié, V.; Fromer, N.; Wang, Y. Cities: The core of climate change mitigation. J. Clean. Prod. 2019, 207, 582–589. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, L.; Wang, B.; Ding, S.; Ge, X.; Cai, S. Research on the Impact of Carbon Emissions and Spatial Form of Town Construction Land: A Study of Macheng, China. Land 2023, 12, 1385. [Google Scholar] [CrossRef]
- Liu, J.; Tian, Z.; Shi, Y. Spatial differences in China’s CO2 emissions and analysis of its two-dimensional internal structure: 2000–2019. Geogr. Res. 2023, 42, 857–877. [Google Scholar]
- Ding, Y.; Xie, L.; Huang, Y.; Zhu, L.; Lu, S. Research hotspots and prospects on urban regional carbon emissions based on CiteSpace. Ecol. Econ. 2023, 39, 222–229. [Google Scholar]
- Ding, G.; Guo, J.; Pueppke, S.G.; Yi, J.; Ou, M.; Ou, W.; Tao, Y. The influence of urban form compactness on CO2 emissions and its threshold effect: Evidence from cities in China. J. Environ. Manag. 2022, 322, 116032. [Google Scholar] [CrossRef]
- Qiang, W.W.; Wen, T.; Luo, H.; Huang, B.; Lee, H.F. Does a more compact urban center layout matter in reducing household carbon emissions? Evidence from Chinese cities. Land Use Policy 2024, 146, 107320. [Google Scholar] [CrossRef]
- Geng, L.; Fu, J.; Song, Y. Difference analysis of consumption-based carbon emissions in the three northeastern provinces. Resour. Sci. 2012, 34, 1445–1451. [Google Scholar]
- Cheng, H. How to calculate carbon emissions—“2006 IPCC Guidelines for National Greenhouse Gas Inventories”. China Stat. 2014, 11, 28–30. [Google Scholar]
- Li, S.; Zhou, C.; Wang, S.; Hu, J. Dose urban landscape pattern affect CO2 emission efficiency? Empirical evidence from megacities in China. J. Clean. Prod. 2018, 203, 164–178. [Google Scholar] [CrossRef]
- Shi, K.; Liu, G.; Cui, Y.; Wu, Y. What urban spatial structure is more conducive to reducing carbon emissions? A conditional effect of population size. Appl. Geogr. 2023, 151, 102855. [Google Scholar] [CrossRef]
- Lu, X.; Ji, M.; Guo, J. Spatiotemporal distribution simulation of carbon emissions in the North China region based on NPP/VIIRS nighttime light data. Environ. Sci. Manag. 2023, 48, 17–21+27. [Google Scholar]
- Wang, Y.; Niu, Y.; Li, M.; Yu, Q.; Chen, W. Spatial structure and carbon emission of urban agglomerations: Spatiotemporal characteristics and driving forces. Sustain. Cities Soc. 2022, 78, 103600. [Google Scholar] [CrossRef]
- Jung, M.C.; Kang, M.; Kim, S. Does polycentric development produce less transportation carbon emissions? Evidence from urban form identified by night-time lights across US metropolitan areas. Urban Clim. 2022, 44, 101223. [Google Scholar] [CrossRef]
- Lan, T.; Shao, G.; Xu, Z.; Tang, L.; Dong, H. Considerable role of urban functional form in low-carbon city development. J. Clean. Prod. 2023, 392, 136256. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Wang, S.; Xie, R.; Li, X. Investigating the differentiated impacts of socioeconomic factors and urban forms on CO2 emissions: Empirical evidence from Chinese cities of different developmental levels. J. Clean. Prod. 2019, 226, 601–614. [Google Scholar] [CrossRef]
- Han, S.; Miao, C.; Li, Y. The impact of polycentric spatial structure of cities in the Yellow River basin on carbon emissions. Geogr. Res. 2023, 42, 936–954. [Google Scholar]
- Lei, Y.; Zhu, H.; Peng, W. The impact of polycentric spatial structure on urban carbon emission reduction: An empirical analysis based on Chinese megacities. Urban Probl. 2023, 2, 4–12. [Google Scholar] [CrossRef]
- Xu, X.; Ou, J.; Liu, P.; Liu, X.; Zhang, H. Investigating the impacts of three-dimensional spatial structures on CO2 emissions at the urban scale. Sci. Total Environ. 2021, 762, 143096. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shi, K.; Cui, Y.; Liu, S.; Liu, L. Differentiated effects of morphological and functional polycentric urban spatial structure on carbon emissions in China: An empirical analysis from remotely sensed nighttime light approach. Int. J. Digit. Earth 2023, 16, 532–551. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Q.; Su, H. Do the urban polycentricity and dispersion affect multisectoral carbon dioxide emissions? A case study of 95 cities in southeast China based on nighttime light data. Int. J. Digit. Earth 2023, 16, 4867–4884. [Google Scholar] [CrossRef]
- Zhu, K.; Tu, M.; Li, Y. Did polycentric and compact structure reduce carbon emissions? A spatial panel data analysis of 286 Chinese cities from 2002 to 2019. Land 2022, 11, 185. [Google Scholar] [CrossRef]
- Li, Z.; Wang, F.; Kang, T.; Wang, C.; Chen, X.; Miao, Z.; Zhang, H. Exploring differentiated impacts of socioeconomic factors and urban forms on city-level CO2 emissions in China: Spatial heterogeneity and varying importance levels. Sustain. Cities Soc. 2022, 84, 104028. [Google Scholar] [CrossRef]
- Zha, Q.; Liu, Z.; Wang, J. Spatial pattern and driving factors of synergistic governance efficiency in pollution reduction and carbon reduction in Chinese cities. Ecol. Indic. 2023, 156, 111198. [Google Scholar] [CrossRef]
- Lee, S.; Lee, B. The influence of urban form on GHG emissions in the US household sector. Energy Policy 2014, 68, 534–549. [Google Scholar] [CrossRef]
- Liu, X.; Ou, J.; Chen, Y.; Wang, S.; Li, X.; Jiao, L.; Liu, Y. Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures. Appl. Energy 2019, 238, 1163–1178. [Google Scholar] [CrossRef]
- Zeng, S.; Jin, G.; Tan, K.; Liu, X. Can low-carbon city construction reduce carbon intensity? Empirical evidence from low-carbon city pilot policy in China. J. Environ. Manag. 2023, 332, 117363. [Google Scholar] [CrossRef]
- Zhang, B.; Xin, Q.; Chen, S.; Yang, Z.; Wang, Z. Urban spatial structure and commuting-related carbon emissions in China: Do monocentric cities emit more? Energy Policy 2024, 186, 113990. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, F. Carbon emissions in China’s urban agglomerations: Spatio-temporal patterns, regional inequalities, and driving forces. Environ. Sci. Pollut. Res. 2024, 31, 22528–22546. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Zhou, B. Impact of urban spatial structure elements on carbon emissions efficiency in growing megacities: The case of Chengdu. Sci. Rep. 2023, 13, 9939. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Zeng, H.; Li, F. Spatial Quantitative Analysis of Urban Energy Consumption based on Night-Time Remote Sensing Data and POI. J. Geo-Inf. Sci. 2021, 23, 891–902. [Google Scholar] [CrossRef]
- Zhu, H.; Pan, K.; Liu, Y.; Chang, Z.; Jiang, P.; Li, Y. Analyzing temporal and spatial characteristics and determinant factors of energy-related CO2 emissions of Shanghai in China using high-resolution gridded data. Sustainability 2019, 11, 4766. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, B.; Lyu, J.; Liang, X.; Ding, D.; Zhong, Y.; Guan, Q. Optimizing urban functional land towards “dual carbon” target: A coupling structural and spatial scales approach. Cities 2024, 148, 104860. [Google Scholar] [CrossRef]
- Yuan, Q.; Guo, R.; Leng, H.; Song, S. The impact of spatial form on carbon emission efficiency in small and medium-sized cities of county level in the Yangtze River Delta region. J. Hum. Settl. West. China 2021, 36, 8–15. [Google Scholar] [CrossRef]
- Czepkiewicz, M.; Ottelin, J.; Ala-Mantila, S.; Heinonen, J.; Hasanzadeh, K.; Kyttä, M. Urban structural and socioeconomic effects on local, national and international travel patterns and greenhouse gas emissions of young adults. J. Transp. Geogr. 2018, 68, 130–141. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, X.; Li, L.; Li, G. Does urban spatial form affect carbon emissions? An analysis based on data from 110 prefecture-level cities in China. Ecol. Econ. 2016, 32, 22–26. [Google Scholar]
- Lin, J.; Lu, S.; He, X.; Wang, F. Analyzing the impact of three-dimensional building structure on CO2 emissions based on random forest regression. Energy 2021, 236, 121502. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, T.; Gao, W.; Mei, D. Analysis on spatial pattern and driving factors of carbon emission in urban–rural fringe mixed-use communities: Cases study in East Asia. Sustainability 2020, 12, 3101. [Google Scholar] [CrossRef]
- Xia, C.; Li, Y.; Xu, T.; Ye, Y.; Shi, Z.; Peng, Y.; Liu, J. Quantifying the spatial patterns of urban carbon metabolism: A case study of Hangzhou, China. Ecol. Indic. 2018, 95, 474–484. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, W.; Liao, Z. Impact of Urban Morphology on High-Density Commercial Block Energy Consumption in Severe Cold Regions. Sustainability 2024, 16, 5795. [Google Scholar] [CrossRef]
- Li, L.; Yan, F. How Does Density Impact Carbon Emission Intensity: Insights from the Block Scale and an Optimal Parameters-Based Geographical Detector. Land 2024, 13, 1036. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Sha, C.; Zhang, W.; Liu, Z.; Wang, Z.; Du, X. Evaluation of the impact of urban morphology on commercial building carbon emissions at the block scale–A study of commercial buildings in Beijing. J. Clean. Prod. 2023, 408, 137191. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, Y.; Shen, Z.; Wang, Y. Research on the Correlations between Spatial Morphological Indices and Carbon Emission during the Operational Stage of Built Environments for Old Communities in Cold Regions. Buildings 2023, 13, 2222. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, Z.; Zhou, X.; Guo, Y.; Scheuer, B.; Liu, Y. How building and street morphology affect CO2 emissions: Evidence from a spatially varying relationship analysis in Beijing. Build. Environ. 2023, 236, 110258. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Gong, Y. The Association between Carbon Emission and Urban Spatial Form—A Study of Zhuhai, China. Land 2023, 12, 720. [Google Scholar] [CrossRef]
- Jung, M.C.; Wang, T.; Kang, M.; Dyson, K.; Dawwas, E.B.; Alberti, M. Urban landscape affects scaling of transportation carbon emissions across geographic scales. Sustain. Cities Soc. 2024, 113, 105656. [Google Scholar] [CrossRef]
- He, X.; Zhuang, Y.; Qiu, S.; Li, H.; Zhao, Y. Scale effect of urban three-dimensional spatial structure on carbon emissions. Acta Ecol. Sin. 2024, 44, 612–624. [Google Scholar] [CrossRef]
- Yang, Y.; Takase, T. Spatial characteristics of carbon dioxide emission intensity of urban road traffic and driving factors: Road network and land use. Sustain. Cities Soc. 2024, 113, 105700. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, L.; Wang, Y.; Wang, J. Exploring the impact of explicit and implicit urban form on carbon emissions: Evidence from Beijing, China. Ecol. Indic. 2023, 154, 110558. [Google Scholar] [CrossRef]
- Li, Y.; Yan, D.; Sun, W. Research on the influence of urban spatial structure on carbon emission efficiency—Taking the Yangtze River Delta region as an example. Resour. Environ. Yangtze Basin 2024, 33, 2461–2473. [Google Scholar]
- Cui, X.; Lei, Y.; Zhang, F.; Zhang, X.; Wu, F. Mapping spatiotemporal variations of CO2 (carbon dioxide) emissions using nighttime light data in Guangdong Province. Phys. Chem. Earth Parts A/B/C 2019, 110, 89–98. [Google Scholar] [CrossRef]
- Wang, X.; Cai, Y.; Liu, G.; Zhang, M.; Bai, Y.; Zhang, F. Carbon emission accounting and spatial distribution of industrial entities in Being—Combining nighttime light data and urban functional areas. Ecol. Inform. 2022, 70, 101759. [Google Scholar] [CrossRef]
- Holland, J.H. Complex adaptive systems. Daedalus 1992, 121, 17–30. [Google Scholar]
- Liu, H. City evaluation methodology: An overview. Geogr. Res. 2024, 43, 596–620. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, J.; Li, W. Spatial Evolution Model of Tourist Destinations Based on the Theory of Complex Adaptive Systems: A Case Study of the Wannan Tourist Area. J. Geogr. 2016, 71, 1059–1074. [Google Scholar] [CrossRef]
- Khan, F.; Pinter, L. Scaling indicator and planning plane: An indicator and a visual tool for exploring the relationship between urban form, energy efficiency and carbon emissions. Ecol. Indic. 2016, 67, 183–192. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: www.opensrtreetmap.org (accessed on 23 September 2023).
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China Multi-Period Land Use Remote Sensing Monitoring Dataset (CNLUCC). Resource and Environmental Science Data Registration and Publishing System. 2018. Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=54 (accessed on 25 November 2024).
- Yang, J.; Shao, D.; Wang, Q.; Zhang, Y. Exploring an artificial intelligence-based method for fine-grained identification of urban land use: Based on big data of building morphology and business formats. City Plan. 2021, 45, 46–56. [Google Scholar]
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Wang, J.; Bai, Y.; Xu, B. Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull. 2020, 65, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Colorado School of Mines. Available online: https://www.mines.edu (accessed on 26 October 2023).
- Hu, W.; Liu, C.; Zhan, Q. Synthesis methods and comparative validation of annual nighttime light data of NPP-VIIRS for regional NPP in China. J. Guilin Univ. Technol. 2021, 41, 141–148. [Google Scholar]
- Xu, Y.; Li, T.; Xu, L. A greenhouse gas accounting model for territorial spatial master planning. Adv. Clim. Change Res. 2022, 18, 355–365. [Google Scholar]
- Liu, C.; Su, Y.; Li, L. Estimation and spatial distribution of energy consumption-based carbon emissions at the county level in China. Environ. Pollut. Control 2020, 42, 113–119. [Google Scholar] [CrossRef]
- Sun, H.; Liang, H.; Chang, X.; Cui, Q.; Tao, Y. Carbon emissions from land use in China and their spatial correlation. Econ. Geogr. 2015, 35, 154–162. [Google Scholar] [CrossRef]
- Meng, Q.; Zheng, Y.; Liu, Q.; Li, B.; Wei, H. Analysis of spatiotemporal variation and influencing factors of land-use carbon emissions in nine provinces of the yellow river basin based on the LMDI model. Land 2023, 12, 437. [Google Scholar] [CrossRef]
- Leng, H.; Zhao, Y.; Yuan, Q. Research on the application path of carbon accounting methods in territorial spatial planning under the “dual carbon” target. Urban Plan. Int. 2023, 1–16. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, Y.; Lu, S.; Xiao, Y.; He, X. Simulating the spatial distribution of carbon emissions in Guangzhou by combining “Luojia-1” nighttime lights with urban functional zoning and analysis of influencing factors. J. Geo-Inf. Sci. 2022, 24, 1176–1188. [Google Scholar]
- Huang, D.; Gu, H.; Jiang, H. Constructing a mechanism for the integration of urban design methods and processes based on spatial syntax. Planners 2018, 34, 59–65. [Google Scholar]
- Hillier, W.R.G.; Yang, T.; Turner, A. Advancing DepthMap to advance our understanding of cities: Comparing streets and cities and streets with cities. In Proceedings of the Eighth International Space Syntax Symposium, Pontificia Universidad Católica de Chile, Santiago, Chile, 3–6 January 2012. [Google Scholar]
- Batty, M. Integrating space syntax with spatial interaction. Urban Inform. 2022, 1, 4. [Google Scholar] [CrossRef]
- Silva, E.A.; Healey, P.; Harris, N.; Van den Broeck, P. Handbook of Planning Research Methods, 1st ed.; China Architecture Publishing & Media Press: Beijing, China, 2015; pp. 250–261. [Google Scholar]
- Yang, L.; Wang, L.; Sun, X.; Liu, J. Evolution of thermal landscape pattern in Xi’an based on remote sensing. Res. Soil Water Conserv. 2017, 24, 250–255+264. [Google Scholar] [CrossRef]
- Cui, H.; Xu, S.; Zhang, L.; Welsch, R.E.; Horn, B.K.P. Research and prospect on feature selection methods in machine learning. J. Beijing Univ. Posts Telecommun. 2023, 41, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.; Xu, X.; Xie, T.; Wu, B. Analysis of the carbon emission effects of land use at the county scale in Fujian Province. Res. Environ. Sci. 2023, 36, 1446–1456. [Google Scholar] [CrossRef]
- Wu, J.; Guo, X.; Zhu, Q.; Guo, J.; Han, Y.; Zhong, L.; Liu, S. Threshold effects and supply-demand ratios should be considered in the mechanisms driving ecosystem services. Ecol. Indic. 2022, 142, 109281. [Google Scholar] [CrossRef]
Reclassification Type | Land Use Category |
---|---|
Construction | Urban Land |
Rural Living | Rural Residential |
Cropland | Paddy Field, Dry Land |
Unused Land | Sand, Gobi, Saline–Alkali Land, Swamp, Bare Land, Bare Rock, Other |
Forest Land | Forest Land, Shrub Land, Sparse Forest Land, Other Forest Land |
Grassland | High-, Medium-, Low-Coverage Grassland |
Water | Rivers, Lakes, Reservoirs, Permanent Glacier and Snow, Beach, River Beach |
Land Use Type | Carbon Emission Coefficient t/hm2 | |
---|---|---|
Cropland | 0.422 | |
Other | Grassland and Unused Land | −0.021 |
Forest Land | −0.578 | |
Water | −0.252 |
Scale | Radius 1 | Annual Emission | Seasonal Carbon Emission | ||||
---|---|---|---|---|---|---|---|
Summer Emission | Winter Emission | ||||||
NAIN | NACH | NAIN | NACH | NAIN | NACH | ||
Micro | 400 | 16.13% | 14.61% | 13.71% | 13.41% | 16.51% | 15.81% |
800 | 4.67% | 5.69% | 4.59% | 6.79% | 4.69% | 7.89% | |
1200 | 7.19% | 3.29% | 6.69% | 3.19% | 7.49% | 2.89% | |
1400 | 2.82% | 2.52% | 2.81% | 2.62% | 2.92% | 2.62% | |
Meso | 2800 | 3.19% | 2.69% | 3.29% | 4.79% | 2.79% | 2.79% |
3200 | 1.89% | 3.59% | 2.69% | 16.19% | 2.39% | 12.36% | |
4200 | 2.81% | 33.01% | 3.01% | 14.61% | 2.51% | 22.64% | |
6400 | 7.48% | 13.59% | 7.79% | 15.09% | 7.79% | 13.29% | |
Macro | 9600 | 27.52% | 3.21% | 29.12% | 3.11% | 25.71% | 3.81% |
12,000 | 14.02% | 3.62% | 16.12% | 3.42% | 12.52% | 5.02% | |
20,000 | 4.89% | 8.19% | 3.79% | 9.79% | 5.19% | 5.89% | |
n 2 | 7.39% | 5.89% | 6.39% | 7.09% | 9.49% | 4.99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zheng, Q.; Jiang, X.; He, C. Multi-Scale Spatial Structure Impacts on Carbon Emission in Cold Region: Case Study in Changchun, China. Sustainability 2025, 17, 228. https://doi.org/10.3390/su17010228
Li B, Zheng Q, Jiang X, He C. Multi-Scale Spatial Structure Impacts on Carbon Emission in Cold Region: Case Study in Changchun, China. Sustainability. 2025; 17(1):228. https://doi.org/10.3390/su17010228
Chicago/Turabian StyleLi, Bingxin, Qiang Zheng, Xue Jiang, and Chennan He. 2025. "Multi-Scale Spatial Structure Impacts on Carbon Emission in Cold Region: Case Study in Changchun, China" Sustainability 17, no. 1: 228. https://doi.org/10.3390/su17010228
APA StyleLi, B., Zheng, Q., Jiang, X., & He, C. (2025). Multi-Scale Spatial Structure Impacts on Carbon Emission in Cold Region: Case Study in Changchun, China. Sustainability, 17(1), 228. https://doi.org/10.3390/su17010228